
Generalized Ontology-Based Production Systems

Riccardo Rosati
DIS, Sapienza Università di Roma, Italy

rosati@dis.uniroma1.it

Enrico Franconi
Free University of Bozen-Bolzano, Italy

franconi@inf.unibz.it

Abstract
We define generalized ontology-based production systems
(GOPSs), which formalize a very general and powerful com-
bination of ontologies and production systems. We show that
GOPSs capture and generalize many existing formal notions
of production systems. We introduce a powerful verifica-
tion query language for GOPSs, which is able to express the
most relevant formal properties of production systems pre-
viously considered in the literature. We establish a general
sufficient condition for the decidability of answering verifi-
cation queries over GOPSs. Then, we define Lite-GOPS, a
particular class of GOPSs based on the use of a light-weight
ontology language (DL-LiteA), a light-weight ontology query
language (EQL-Lite(UCQ)), and a tractable semantics for up-
dates over Description Logic ontologies. We show decidabil-
ity of all the above verification tasks over Lite-GOPSs, and
prove tractability of some of such tasks.

Introduction
Motivation
The integration of ontologies and production rules is a chal-
lenging task. Many approaches have recently dealt with this
problem (Raschid 1994; Damasio, Alferes, and Leite 2010;
Baral and Lobo 1995; Kowalski and Sadri 2009; Rezk and
Nutt 2011; de Bruijn and Rezk 2009). However, known ap-
proaches suffer from the following limitations: (i) there is no
unifying approach capturing all the above proposals within a
coherent formal setting; (ii) no approach seems to be flexible
enough to allow for the combination of arbitrary ontologies
with production rules; (iii) there are very few results con-
cerning the computational properties of such extended forms
of production systems (an exception is (de Bruijn and Rezk
2009)).

The goal of this paper is to identify and explore a gen-
eral way of combining ontologies and production rules.
We argue that there are at least two strong motivations for
pursuing such a goal. First, the existence of a framework
which is general enough to capture the main existing pro-
posals for the combination of ontologies and production
rules makes it possible to easily and effectively study and
compare the different proposals in a coherent formal set-
ting. Second, this general framework makes it possible to

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

identify and study decidability and complexity of reason-
ing in classes of systems combining ontologies and produc-
tion rules. In this paper we are particularly interested in the
static analysis of such systems (Lunardhi and Passino 1995;
de Bruijn and Rezk 2009): thus, the form of reasoning we
are interested in is the verification of dynamic properties in
systems combining ontologies and production rules.

Contribution

Our approach is based on a very abstract vision of an ontol-
ogy, whose roots lie in the principles of knowledge repre-
sentation (Levesque 1984): we see the ontology as a knowl-
edge base defined through a functional specification. More
precisely, the ontology is equipped with a query language
and an update language. Such languages are provided with
a semantics given by a function ASK and a function TELL,
respectively. The function ASK provides the semantics of
queries posed to an ontology; the function TELL provides
the semantics of updates over an ontology.

According to this view, the integration of ontologies with
production rules is very simple and natural. Roughly speak-
ing, production rules are “if condition then action” state-
ments. Now, the functional specification of an ontology
makes it very simple to define a combination of ontolo-
gies and production systems. This combination is based on
the following, almost straightforward, considerations: when
combining ontologies and production rules, it is natural to
use ontology query languages to express rule conditions and
ontology update languages to express rule actions; to inter-
pret the meaning of such conditions and of such actions, it
is natural to use the semantics of ontology queries and on-
tology updates, respectively. Thus, production rules are exe-
cuted on an ontology: the condition language corresponds to
the ontology query language, while the action language cor-
responds to the ontology update language. The production
system uses the ontology as a working memory, and the se-
mantics of the system is then given by the usual operational
semantics of production rules, using the ASK and TELL
functions to interpret conditions and actions, respectively.

Hence, this approach to the integration of ontologies and
production rules is very natural. However, to effectively ex-
ploit such an approach, we have to face a big issue: in fact,
very few ontology languages are equipped with a satisfac-

435

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

tory query language and/or a satisfactory update language.1
Few results are available in the field of updating ontologies,
in particular Description Logic (DL) ontologies.

This approach might seem just elegant but of no use: for-
tunately, this is not true for at least two reasons. First of
all, the functional view of ontologies makes it clear that
the technical obstacles towards the combination of ontolo-
gies and production systems are only due to the ontol-
ogy component, in the sense that such obstacles are due to
the fact that the specifications of ontologies are often still
incomplete (they lack a proper query functionality and/or
a proper update functionality). Moreover, some recent re-
sults allow us to identify ontology specifications that actu-
ally match the requirements for a meaningful combination
with production rules. In fact, many expressive (and decid-
able) query languages have been defined for DL ontolo-
gies (e.g., (Sirin and Parsia 2007; Calvanese et al. 2007a;
Glimm 2011)), and some recent approaches have proposed
interesting semantics for updates over DL ontologies, as
well as algorithms for effectively computing such updates
(e.g., (De Giacomo et al. 2009; Calvanese et al. 2010;
Lenzerini and Savo 2011; Liu et al. 2011)).

We formalize the above vision of the combination of on-
tologies and production systems as follows.

• We define generalized ontology-based production systems
(GOPSs), which formalize a very general and powerful
combination of ontologies and production systems based
on the functional specification of ontologies.

• We introduce a powerful verification query language for
GOPSs, able to express the most relevant dynamic prop-
erties of production systems considered in the literature.
In particular, we define a variant of µ-calculus (Emer-
son 1996) which is tailored for expressing properties of
GOPSs.

• We study reasoning over GOPSs and establish a general
sufficient condition for the decidability of answering ver-
ification queries over GOPSs.

• Next, we turn our attention to specific ontology lan-
guages. More specifically, we define Lite-GOPSs, a par-
ticular class of GOPSs based on the use of a light-weight
ontology language (DL-LiteA) (Poggi et al. 2008), a light-
weight ontology query language (EQL-Lite(UCQ)) (Cal-
vanese et al. 2007a), and a tractable semantics for updates
over Description Logic ontologies (Lenzerini and Savo
2011).

• We show decidability of the above verification tasks over
Lite-GOPSs, and prove tractability of some of such tasks.

1Here, by satisfactory language we mean that both syntax (i.e.,
the expressiveness) and semantics of the language should be ade-
quate. For instance, we argue that a semantics for the update action
of inserting an axiom which corresponds to the simple syntactic
addition of the axiom to the DL ontology is to be considered as
unsatisfactory, since it is not coherent with the semantics of the
ontology itself.

Preliminaries
We start by briefly recalling production rules and Descrip-
tion Logics.

Concerning production rules, essentially we stick to the
RIF-PRD specification (de Sainte Marie, Hallmark, and
Paschke editors 2010). A production rule system (or pro-
duction system) is a pair 〈F0, P 〉 where F0 is a state of a
fact base and P is a set of production rules. A state of a fact
base is simply a finite set of facts (ground atomic formulas).
A production rule is an expression of the form

FORALL ~x : IF φ(~x) THEN α1(~x), . . . , αn(~x)

such that:
• φ(~x) is a first-order formula, called condition, with free

variables ~x;
• every αi(~x) is such that for every ground substitution
〈~x,~c〉, i.e., a substitution of the rule variables with con-
stants, αi(~c) is an action, i.e., an expression of the form
Assert(f) or Retract(f), where f is a fact.
A rule instance is the variable-free rule obtained apply-

ing a ground substitution to a production rule. A priority is
associated to every rule instance.

The semantics of production systems is expressed in
terms of a transistion system. Such a notion is based on the
semantics of execution of a production rule over a fact base
and on the notion of conflict resolution strategy. Given a
production rule p of the above form, a ground substitution
〈~x,~c〉, and a state of the fact base F , the rule instance p(~c)
matches F if the formula φ(~c) is satisfied by F . The set of
rule instances matching a state F of a fact base is called the
conflict set of F . The execution of p(~c) over F is a state of
the fact base F ′ obtained from F by applying the sequence
of fact addition (Assert) and fact deletion (Retract) ac-
tions corresponding to α1(~c), . . . , αn(~c). A conflict resolu-
tion strategy is a function that, given a conflict set and infor-
mation on the previous history of the system, picks one rule
instance among the ones in the conflict set.

The operational semantics of a production system is given
by a transition system: roughly, every state2 of a transition
system represents a state of the fact base plus the informa-
tion needed by the conflict resolution strategy, and there is a
transition from one state s to another state s′ (labeled by the
sequence of actions of p(~c)) if the rule p(~c) is the one picked
by the conflict resolution strategy in s and s′ is the state re-
sulting by the execution of rule p(~c) in s: in particular, the
state F ′ of the fact base of s′ is the state of the fact base re-
sulting from the execution of rule p(~c) on the state F of the
fact base of s. For more details, we refer to (de Sainte Marie,
Hallmark, and Paschke editors 2010).

As explained above, the conflict resolution strategy is
a central aspect of the semantics of production systems.
The RIF-PRD specification formalizes a particular conflict
resolution strategy, whose principles are the same as the
conflict resolution principles of real prodution rule sys-
tems: the so-called rif:forwardChaining strategy. The

2This refers to the so-called cyclic states of the transition sys-
tem, which are distinct from the transitional states.

436

rif:forwardChaining strategy can be described as fol-
lows. Given a conflict set:

1. (refraction step) if a rule instance has been executed in a
given state of the system, it is no longer eligible for exe-
cution as long as it satisfies the states of facts associated
to all the subsequent system states; this property is called
refraction. Therefore, all the refracted rule instances are
removed from further consideration;

2. (priority step) the remaining rule instances are ordered by
decreasing priority, and only the rule instances with the
highest priority are kept for further consideration;

3. (recency step) the rule instances are ordered by the num-
ber of consecutive system states in which they have been
in the conflict set, and only the most recent rule instances
are kept for further consideration;

4. (tie-break step) any remaining tie is broken is some way,
and a single rule instance is kept for firing.

Description Logics (DLs) (Baader et al. 2003) allow for
expressing knowledge in terms of atomic concepts, i.e.,
unary predicates, and atomic roles, i.e., binary predicates.
General concepts and roles are built through the constructs
allowed in the DL: such constructs are usually expressible
in first-order logic (FOL). A DL ontology is formed by a set
of assertions, typically divided into a TBox, expressing in-
tensional knowledge, and an ABox, expressing extensional
knowledge. Again, usually such assertions can be expressed
as FOL sentences (i.e., closed FOL formulas). Thus, in most
cases DL ontologies can be seen as FOL theories (of spe-
cific forms). The only notable exceptions are those DLs that
include some form of second-order constructs, such as tran-
sitive closure or fixpoints (Baader et al. 2003).

In the following, we will speak about a specification lan-
guage for ontologies, about queries to an ontology, and
about updates to an ontology. There are several approaches
that define and study query languages over DL ontologies
(e.g. (Levy and Rousset 1998; Calvanese, De Giacomo,
and Lenzerini 1998; Calvanese et al. 2007b; Lutz 2008))
and updates over DL ontologies (e.g., (Liu et al. 2006;
De Giacomo et al. 2009; Calvanese et al. 2010; Lenzerini
and Savo 2011)).

GOPS
In this section we define syntax and semantics of generalized
ontology-based production systems (GOPSs).

Syntax
We start from the following pairwise disjoint alphabets: an
alphabet of predicates Pred , an alphabet of constants Const ,
an alphabet of variables Var and an alphabet of production
rule identifiers RuleID . Our notion of production system
builds on three languages over the above alphabets Pred ,
Const and Var :

• an ontology specification language OL which specifies
the syntax of the ontology;

• an ontology query languageQLwhich defines the queries
over the ontology;

• an ontology update language UL which defines the up-
dates over the ontology.

An ontology is a set of formulas from OL. An ontology
query is a formula of QL. An ontology update is a formula
of UL. An ontology query with no occurrences of free vari-
ables is called a Boolean ontology query. A ground ontology
update is an update with no occurrences of free variables.

We denote by φ(~x) a formula φ containing the free vari-
ables ~x (~x is a tuple of variable symbols). Given an n-tuple
~x, a ground substitution of ~x is a pair 〈~x,~c〉, where ~c is an n-
tuple of constants from Const . Given a formula with n free
variables φ(~x), and an n-tuple of constants ~c, the formula
φ(~c) obtained from φ by applying the ground substitution
〈~x,~c〉, i.e., by replacing the variables in ~x with the corre-
sponding constants in ~c, is called a grounding of φ(~x).

Definition 1 A Generalized Ontology-Based Production
System (GOPS) G is a pair 〈Oin ,P〉 where:

• Oin is an ontology;
• P is a set of production rules. A production rule is an

expression of the form

FORALL ~x : IF φ(~x) THEN α1(~x), . . . , αn(~x) (1)

such that:
– φ(~x) is an ontology query overO (i.e., a query posed to
O) with free variables ~x. The variables in ~x are symbols
from Var and are called the variables of the production
rule;

– every αi(~x) is such that every grounding αi(~c) of αi(~x)
is an ontology update.

Every production rule has an associated rule identifier,
i.e., a symbol from RuleID which is associated with no
other production rule. A ground production rule is a pro-
duction rule without variables:

IF φ THEN α1, . . . , αn (2)

where φ is an ontology query without free variables and
every αi is an ontology update.

Given a production rule with identifier p of the form (1),
an instance of rule p is a ground production rule obtained
from (1) by applying a ground substitution 〈~x,~c〉, i.e., a
ground production rule of the form

IF φ(~c) THEN α1(~c), . . . , αn(~c)

The rule instance identifier associated with the above rule
instance is p(~c) (which represents the fact that the above rule
can be obtained by instantiation of the rule p with constants
~c).

Semantics
The semantics of GOPSs is based on three functions: (i) the
function ASK , which provides the semantics of ontology
queries; (ii) the function TELL, which provides the seman-
tics of ontology updates; (iii) the function Φ, which governs
the execution of production rules. These functions are intro-
duced in the following.

437

Ontology queries. The semantics of ontology queries is de-
fined by the function ASK (O, φ(~x)). For every ontology
O and for every ontology query φ(~x) with free variables ~x,
ASK (O, φ(~x)) is a set of ground substitutions for ~x. Notice
that, if φ has no free variables, i.e., φ is a Boolean query, then
ASK (O, φ) is either the set of ground substitutions contain-
ing the empty ground substitution {∅} (which means that the
query φ is entailed by O) or the empty set of ground substi-
tutions ∅ (which means that φ is not entailed by O).

Ontology updates. The semantics of ontology updates is
defined by the partial function TELL(O, α). More pre-
cisely, given an ontology O and an ontology update α,
TELL(O, α) is either undefined or is equal to one ontology
O′. Intuitively, the case when TELL(O, α) is undefined en-
codes those situations in which it is impossible (according
to the intended semantics of ontology updates) to update the
ontology O according to the update action α.

Production rules. Given a ground production rule pg of the
form (2) and an ontology O, we say that pg is fireable in O
if the following conditions hold:

1. ASK (φ,O) 6= ∅;
2. there is a sequence of ontologies O0, . . . ,On such that
O0 = O and, for every i such that 0 ≤ i ≤ n − 1,
TELL(Oi, αi+1) is defined and is equal to Oi+1.

Moreover, if pg is fireable in O, we denote by
EXEC (pg ,O) the result of the execution of pg over O; i.e.,
the above ontology On.

Given a GOPS G and an ontology O, we denote by
CS (O,G) the conflict set for O and G, i.e., the set of in-
stances pg of the production rules from P such that pg is
fireable in O.

GOPS. A GOPS graph GG = 〈N,Sin , E, Le〉 is a directed
graph: N is the set of nodes, called GOPS states, which are
pairs of the form 〈id,O〉 where id is the state identifier and
O is an ontology; Sin is a node of N , called the initial state
of GG; E is the set of edges, i.e., pairs of GOPS states;
and Le is function which labels the edges with rule instance
identifiers. A GOPS path is a path of a GOPS graph.

A (partial) conflict resolution function is a function Φ
over paths of a GOPS graph. Let G be a GOPS and let π
be a GOPS path. Let Se = 〈id,O〉 be the ending state of π.
Then, the value of Φ(G, π) is ∅ if CS (O,G) = ∅; otherwise,
the value of Φ(G, π) is a non-empty set of ground production
rules Pg such that Pg ⊆ CS (O,G). If the value of the func-
tion Φ is always either the empty set or a singleton set (i.e., Φ
selects at most one rule among the ones in CS (O,G)), then
we call Φ a total conflict resolution function. Informally, a
partial conflict resolution function selects a subset of the rule
instances in the conflict resolution set CS (O,G). Intuitively,
such a function chooses a subset of the rules in the conflict
set: any of the rules in such a subset could be chosen for exe-
cution. On the other hand, a total conflict resolution function
actually resolves the conflict among the rules, since it just
selects one rule. While real production systems only adopt
total conflict resolution functions, we introduce partial con-
flict resolution functions because this allows us to study the

properties of families of conflict resolution stategies. For in-
stance, the rif:forwardChaining strategy previously de-
scribed can be seen as a partial conflict resolution function,
since it does not actually specify the final tie-break step. So,
studying GOPS under this partial conflict resolution func-
tion makes it possible to verify the formal properties of the
rif:forwardChaining strategy independently of the par-
ticular implementation of the tie-break step.

Notice also that the conflict resolution function does not
only depend on the current state of the ontology (i.e., the
ontology labeling the final state of the GOPS path), but de-
pends on a GOPS path, which represents the whole “history”
of the GOPS evolution. This reflects the conflict resolution
strategies adopted in real systems: e.g., the above described
rif:forwardChaining strategy depends not only on the
current state of the fact base, but also on the previous states
of the transition system.

The semantics of a GOPS G is defined by the notion of
transition system.

Definition 2 Given a GOPS G = 〈Oin ,P〉, the transi-
tion system of G, denoted by TS (G), is the GOPS graph
〈N,Sin , E, Le〉 defined inductively as follows:

1. the initial state Sin is the state 〈SGin ,Oin〉;
2. for every state S of the form 〈id,O〉 belonging to N ,

let π(S) be the path of TS (G) starting in Sin and end-
ing at S. If pg is the identifier of a rule instance such
that pg ∈ Φ(G, π(S)) then: (i) 〈pg(id),O′〉 ∈ N with
O′ = EXEC (pg ,O), (ii) 〈S, 〈pg(id),O′〉〉 ∈ E, and (iii)
Le(〈S, 〈pg(id),O′〉〉 = pg .

Informally, TS (G) is the GOPS graph built starting from
the initial state and adding, for every state S, an edge (tran-
sition) and a new state for every rule instance selected by the
conflict resolution function Φ((G, π(S)): the new state is the
state obtained by the execution of the rule instance on S.

We call run of G any path of TS (G) starting at the state
whose identifier is SGin and such that the path either is infinite
or ends at a sink node (i.e., a node which does not have any
outcoming edge). Of course, if Φ is a total conflict resolution
function, then TS (G) contains only one run. Intuitively, the
transition system TS (G) represents all the possible runs of
G, i.e., all the possible sequences of execution of production
rule instances starting from the initial ontology. Of course,
the transition system may be infinite, since there may be in-
finite runs of G.

Verification query language
In this section we define the verification query language
V(QL). The language V(QL) is an extension of µ-calculus
where state formulas are formulas of the ontology query lan-
guage QL. This language builds from an analogous previ-
ous proposal (Cangialosi et al. 2010) in the field of artifact-
centric services, and is also related to the verification lan-
guage proposed in (de Bruijn and Rezk 2009).

To specify dynamic properties, we will use a variant of
µ-calculus (Emerson 1996). The choice of µ-calculus is a
very natural one in our setting, since: (i) we are interested in
the static analysis of GOPSs; (ii) the semantics of GOPSs is

438

given in terms of labelled transition systems: (iii) µ-calculus
is a powerful language for expressing properties of labelled
transition systems. Moreover, the known verification tech-
niques for µ-calculus may constitute the basis for verifica-
tion techniques in our setting.

The variant of µ-calculus that we propose conforms with
the basic assumption of our formalism: the use of ontologies
and ontology queries to describe the properties of a state.

To define verification queries, we need a further alphabet,
the alphabet of predicate variables PV , which is pairwise
disjoint with all the alphabets introduced in the previous sec-
tion.

Definition 3 A verification query is specified by the follow-
ing abstract syntax:

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | [p]ψ | 〈p〉ψ | µZ.ψ | νZ.ψ

where φ is a Boolean ontology query (i.e., a formula from
QLwithout free variables),Z is a predicate variable symbol
from PV , and p is: (i) a rule instance identifier; or (ii) a
rule identifier; or (iii) the symbol −. The verification query
language V(QL) is the language of verification queries.

The symbols µ and ν can be considered as quantifiers,
and we make use of the notions of scope, bound and free oc-
currences of variables, closed formulas, etc. The definitions
of these notions are the same as in first-order logic, treat-
ing µ and ν as quantifiers. For formulas of the form µZ.ψ
and νZ.ψ, we require the syntactic monotonicity of ψ wrt Z:
Every occurrence of the variable Z in ψ must be within the
scope of an even number of negation signs. In µ-calculus,
given the requirement of syntactic monotonicity, the least
fixpoint µZ.ψ and the greatest fixpoint νZ.ψ always exist.

LetGG = 〈N,Sin , E, Le〉 be a GOPS graph. A valuation
on GG is a mapping from the predicate variables appearing
in ψ to subsets of N . We assign meaning to V(QL) formu-
las through an evaluation function EvalGG(·), which maps
V(QL) formulas to subsets of N . In the following, id repre-
sents a rule identifier, and the id(~c) represents the identifier
of an instance of the rule id .

Definition 4 The evaluation function EvalGG(·) for a
GOPS graph GG = 〈N,Sin , E, Le〉 is defined inductively
as follows:

EvalGG(φ) = {s = 〈sid,O〉 | s ∈ N and ASK (φ,O) 6= ∅}
EvalGG(Z) = N ′ ⊆ N
EvalGG(¬ψ) = N − EvalGG(ψ)
EvalGG(ψ1 ∧ ψ2) = EvalGG(ψ1) ∩ EvalGG(ψ2)
EvalGG(〈id(~c)〉ψ) = {s ∈ N | ∃s′. 〈s, s′〉 ∈ E and

Le(s, s′) = id(~c) and s′ ∈ EvalGG(ψ)}
EvalGG([id(~c)]ψ) = {s ∈ N | ∀s′. (〈s, s′〉 ∈ E and

Le(s, s′) = id(~c)) implies s′ ∈ EvalGG(ψ)}
EvalGG(〈id〉ψ) = {s ∈ N | ∃s′,~c. 〈s, s′〉 ∈ E and

Le(s, s′) = id(~c) and s′ ∈ EvalGG(ψ)}
EvalGG([id]ψ) = {s ∈ N | ∀s′,~c. (〈s, s′〉 ∈ E and

Le(s, s′) = id(~c)) implies s′ ∈ EvalGG(ψ)}
EvalGG(〈−〉ψ) = {s ∈ N | ∃s′. 〈s, s′〉 ∈ E and

s′ ∈ EvalGG(ψ)}
EvalGG([−]ψ) = {s ∈ N | ∀s′. 〈s, s′〉 ∈ E implies

s′ ∈ EvalGG(ψ)}

EvalGG(µZ.ψ) =
⋂
{N ′ ⊆ N | EvalGG[Z ← N ′](ψ) ⊆ N ′ }

EvalGG(νZ.ψ) =
⋃
{N ′ ⊆ N | N ′ ⊆ EvalGG[Z ← N ′](ψ)}

where EvalGG[X ← N ′](ψ) represents the value
EvalGG(ψ) when every occurrence of the predicate variable
X is evaluated as the set of states N ′.

Intuitively, the evaluation function EvalGG(·) assigns to
the various constructs of µ-calculus the following meanings:

• The boolean connectives have the expected meaning.

• The evaluation of 〈id(~c)〉ψ includes the states s ∈ N such
that at state s there is an execution of the rule instance
id(~c) that leads to a state s′ included in the evaluation of
ψ. Thus, the intuitive meaning of 〈id(~c)〉ψ is “there exists
an execution of rule instance id(~c) that leads to a state
where ψ holds”.

• The evaluation of [id(~c)]ψ includes the states s ∈ N such
that each execution of the rule instance id(~c) at state s
leads to some state s′ included in the evaluation of ψ.
Thus, the intuitive meaning of the operator [id(~c)] is “ev-
ery execution of the rule instance id(~c) leads to a state
where ψ holds”.

• The evaluation of 〈id〉ψ includes the states s ∈ N such
that at state s there is an execution of any instance of the
rule id that leads to a state s′ included in the evaluation
of ψ. Thus, the intuitive meaning of 〈id〉ψ is “there exists
an execution of an instance of rule id that leads to a state
where ψ holds”.

• The evaluation of [id]ψ includes the states s ∈ N such
that each execution of any instance of the rule id at state
s leads to some state s′ included in the evaluation of ψ.
Thus, the intuitive meaning of the operator [id] is “every
execution of an instance of rule id leads to a state where
ψ holds”.

• The evaluation of 〈−〉ψ includes the states s ∈ N such
that at state s there is an execution of an arbitrary rule
instance that leads to a state s′ included in the evaluation
of ψ. Thus, the intuitive meaning of 〈−〉ψ is “there exists
an execution of a rule instance that leads to a state where
ψ holds”.

• The evaluation of [−]ψ includes the states s ∈ N such
that each execution of any arbitrary rule instance at state
s leads to some state s′ included in the evaluation of ψ.
Thus, the intuitive meaning of the operator [−] is “every
execution of rule instances leads to a state whereψ holds”.

• The evaluation of µZ.ψ is the smallest subset N ′ of N
such that, assigning to Z the evaluation N ′, the resulting
evaluation of ψ is contained in N ′.

• Similarly, the evaluation of νZ.ψ is the greatest subset
N ′ of N such that, assigning to Z the evaluation N ′, the
resulting evaluation of ψ contains N ′.

The reasoning problem we are interested in is model
checking. Let GG = 〈N,Sin , E, Le〉 be a GOPS graph, let
s ∈ N be one of its states, and let ψ be a verification query.
The related model checking problem is to verify whether
s ∈ EvalGG(ψ).

439

In particular, in the following we focus on the Boolean
problem of verifying whether the initial state Sin is in
the evaluation of a verificaton query ψ. Thus, for every
verification query ψ and for every GOPS graph GG =
〈N,Sin , E, Le〉, we define Entailed(ψ,GG) as true if
Sin ∈ EvalGG(ψ), and false otherwise.

It is immediate to verify that checking verification queries
over a finite model is decidable if answering ontology
queries is decidable. In particular, the following property
holds.

Theorem 1 Checking a verification query ψ over a finite
GOPS graph GG = 〈N,Sin , E, Le〉 can be done in time

O((|GG| · |ψ|)k)

where |GG| = |N |+ |E|, i.e., the number of states plus the
number of transitions of GG, |ψ| is the size of formula ψ (in
fact, considering propositional formulas as atomic), and k is
the number of nested fixpoints, i.e., fixpoints whose variables
are one within the scope of the other, using an oracle for
deciding ASK (φ,O) 6= ∅ for every verification query φ and
ontology O.

Finally, we introduce a notion of bisimilarity for GOPS
graph which will be important to establish decidability re-
sults on answering verification queries over GOPSs.

Let S1 = 〈id1,O1〉, S2 = 〈id2,O2〉 be two GOPS states.
We say that S1 and S2 are locally bisimilar if, for every on-
tology query φ, ASK (φ,O1) = ASK (φ,O2).

Given two GOPS graphs GG1 = 〈N1, S
in
1 , E1, L

e
1〉,

GG2 = 〈N2, S
in
2 , E2, L

e
2〉, we say that GG1 and GG2 are

bisimilar if there exists a function β from the states of GG1

to the states of GG2 such that β(Sin
1) = Sin

2 and, for every
state S of GG1, the following conditions hold:

1. S and β(S) are locally bisimilar;
2. for each state S′ such that 〈S, S′〉 is an edge of GG1,
〈β(S), β(S′)〉 is an edge of GG2, and Le1(〈S, S′〉) =
Le2(〈β(S), β(S′)〉);

3. for each state S′′ such that 〈β(S), S′′〉 is an edge of
GG2, there exists a state S′ of GG1 such that 〈S, S′〉
is an edge of GG1, S′′ = β(S′), and Le1(〈S, S′〉) =
Le2(〈β(S), β(S′)〉).

Theorem 2 If GG1 and GG2 are bisimilar GOPS graphs,
then for every verification query ψ, Entailed(ψ,GG1) =
Entailed(ψ,GG2).

Given a GOPS G and a verification query ψ, we say that ψ
is entailed by G if Entailed(ψ,TS (G)) = true . Moreover,
we define AnsGOPS (ψ,G) as Entailed(ψ,TS (G)). The
problem of answering a verification query ψ over a GOPS G
amounts to establishing whether AnsGOPS (ψ,G) = true .

Expressing dynamic properties of GOPSs
In this section we show that the verification query language
defined in the previous section is a very powerful tool for the
static analysis of GOPSs. In particular, using the verification
query language V(QL), we provide a formalization of some
interesting and complex dynamic properties of GOPSs. In
the following, we refer to a GOPS G and use the symbol IG

to denote the set of production rule identifiers of the GOPS
G.

Moreover, without loss of generality, we assume that the
language allows to express a Boolean ontology query which
holds in every ontology, and we denote by TRUE such a
query (and denote by FALSE the formula¬TRUE). In fact,
even in the case when the ontology query language does not
allow for such a tautological query, it is possible to easily
modify the specification of the GOPS G in a way such that
there exists a Boolean ontology query that holds in every
state of the transition system of G: this kind of “locally tau-
tological” ontology query for G is enough for our purposes.

As an extension of µ-calculus, the language V(QL) has
the same abilities of µ-calculus of expressing complex dy-
namic properties over transition systems. As we will see in
the following examples, the typical relevant properties of dy-
namic systems which are considered in verification can be
expressed over GOPSs through V(QL).

The following list presents some relevant dynamic prop-
erties of a GOPS G expressed in terms of V(QL) queries:

• Every run terminates in a state where the ontology query
φ holds if and only if Entailed(ψ,TS (G)) = true , where
ψ is the formula:
ψ = µX.(([-]FALSE ∧ φ) ∨ (〈−〉TRUE ∧ [-]X))

• Every run is finite if and only if Entailed(ψ,TS (G)) =
true , where ψ is the formula:
ψ = µX.[-]X
• An ontology query φ eventually holds forever in some run

if and only if Entailed(ψ,TS (G)) = true , where ψ is
the formula:
ψ = µX.((νY.φ ∧ 〈−〉Y) ∨ 〈−〉X)

• An ontology query φ eventually holds forever in every run
if and only if Entailed(ψ,TS (G)) = true , where ψ is
the formula:
ψ = µX.((νY.φ ∧ [-]Y) ∨ (〈−〉TRUE ∧ [-]X))

• The production rule id is applied in every run if and only
if Entailed(ψ,TS (G)) = true, where ψ is the formula:
ψ = µX.(〈id〉.(TRUE ∨ (〈−〉TRUE ∧ [-]X)))

• Every production rule is applied in every run if and only
if Entailed(ψ,TS (G)) = true, where ψ is the formula:
ψ =

∧
id∈IG µX.(〈id〉.TRUE ∨ (〈−〉TRUE ∧ [-]X))

• Rule id is never applied if and only if
Entailed(ψid

1 ,TS (G)) = true , where ψid
1 is the

formula:
ψid

1 = µX.([-].FALSE ∨ ([id]FALSE ∧ [-]X))

• Rule id is applied at most once in every run if and only if
Entailed(ψid

2 ,TS (G)) = true, where ψid
2 is the formula:

ψid
2 = µY.(ψid

1) ∨ (([id](ψid
1) ∧

∧
id′∈IG−{id}[id

′]Y)

and ψid
1 is the formula defined in the previous point.

• Every rule is applied at most once in every run if and only
if Entailed(ψ,TS (G)) = true, where ψ is the formula:
ψ =

∧
id∈IG(ψid

2)

and ψid
2 is the formula defined in the previous point.

440

Reasoning over GOPSs
In this section we focus on the reasoning task of answering
verification queries over GOPSs. We start from the follow-
ing undecidability result.

Theorem 3 If either the function ASK is undecidable or
the function TELL is undecidable,3 then answering verifi-
cation queries over GOPSs is undecidable.

As a consequence of the above result, we have that we
must carefully choose the ontology query language to be
coupled with a DL ontology language: in fact, all the typi-
cal relational database query languages are undecidable over
DL ontologies, and even fragments of such languages are
undecidable for many DL languages (see e.g. (Rosati 2007)).
Indeed, the language of unions of conjunctive queries (a sub-
set of FOL queries) is one of the most expressive languages
which is decidable over (almost all) DL ontologies (see e.g.
(Lutz 2007)). Analogous considerations hold in principle for
updates over DL ontologies, even though research in this
field is at an earlier stage than research in query answering,
and a classification of decidable and undecidable update lan-
guages and update semantics for DLs is not available yet.

We focus now to decidable classes of GOPS. Our aim is
to provide sufficient conditions for the decidability of an-
swering verification queries over GOPSs. Our analysis starts
from the fact that, according to Theorem 1, answering verifi-
cation queries over a GOPS is decidable if the transition sys-
tem TS (G) of G can be built in a finite amount of time. This
is not the case, of course, when TS (G) is infinite: however, it
might still be possible to construct in a finite amount of time
a GOPS graph GG that is bisimilar to TS (G). This implies
decidability of our reasoning task, since, due to Theorem
2, we can evaluate verification queries using GG instead of
TS (G). In the following, we look for sufficient conditions
(on the specification of G) for the construction of a GOPS
graph that is bisimilar to TS (G).

Let GO be the set of all GOPS, let GP be the set of
GOPS paths, let GR be the set of all ground production
rules, and let D be an arbitrary set. A finite transforma-
tion of a conflict resolution function Φ is a pair of func-
tions 〈τπ, τΦ〉 where τπ : GP → D, τΦ : GO × D →
2GR, such that, for every GOPS G: (i) for every path π ∈
TS (G), Φ(G, π) = τΦ(G, τπ(π)); (ii) the set {d | d =
τπ(π) and π is a path of TS (G)} is finite.

The idea behind a finite transformation of a conflict reso-
lution function is that it is possible to formulate the function
without using all the information on the previous history of
the system (represented by the whole GOPS path ending in
the current state), but using only an approximation of such
information, such that the number of possible instances of
such an approximation which is relevant for a given tran-
sition system is finite. Notice that the number of possible
GOPS paths is infinite, and that in general a conflict resolu-
tion function may admit no finite transformations. The idea

3More precisely, either the problem of establishing whether
ASK (φ,O) 6= ∅ for a Boolean ontology query φ is undecidable,
or, given two ontologies O,O′ and an ontology update α, estab-
lishing whether O′ = TELL(O, α) is undecidable.

of finite transformation is crucial to prove a general result
on the finite representability of the transition system of a
GOPS, and hence a general decidability result on answering
verification queries over GOPSs.

Given a GOPS G and a finite transformation T = 〈τπ, τΦ〉
for Φ, the T -core of G, denoted by T-core(G), is the GOPS
graph obtained from TS (G) by collapsing every pair of
states S, S′ such S and S′ are locally bisimilar and τπ(πS) =
τπ(πS′), where πS and πS′ are the paths of TS (G) ending
in S and S′, respectively.

Lemma 1 Given a GOPS G and a finite transformation T =
〈τπ, τΦ〉 for Φ, the T -core of TS (G) is a finite GOPS graph.

The following lemma states that a T -core of G constitutes
a correct representation of TS (G) with respect to the verifi-
cation query language V(QL).

Lemma 2 For every GOPS G and finite transformation T
for Φ, TS (G) and T-core(G) are bisimilar.

Proof (sketch). From the definition of finite transformation,
it follows that the outcoming edges of two states s, s′ such
that τπ(πs) = τπ(πs′) are the same, and since s and s′

are locally bisimilar, every pair of corresponding successor
states of s and s′ are locally bisimilar as well.

Theorem 4 Suppose 〈τπ, τΦ〉 is a finite transformation for
Φ such that both τπ and τΦ are decidable. Then, answering
verification queries over a GOPS G is decidable.

Proof (sketch). First, it can be shown that the hypotheses
and Lemma 1 imply that the T -core of G can be computed
in a finite amount of time. Then, by Lemma 2 and since the
evaluation of a verification query over a finite GOPS graph
is decidable, the thesis follows.

We now prove that the conflict resolution function cor-
responding to the rif:forwardChaining strategy (with-
out the definition of a tie-break rule) admits a finite trans-
formation, under the condition that the number of differ-
ent states of the ontology is finite. Given an ontology O,
we define the update-closure of O as the set C inductively
defined as follows: (i) O ∈ C; (ii) if O′ ∈ C and the for-
mula φ is an ontology update using the constants occurring
inO, then TELL(O′, φ) ∈ C. We say that updates have a fi-
nite evolution if, for every ontologyO, the update-closure of
O contains a finite number of locally-bisimilar equivalence
classes.

Theorem 5 Suppose Φ corresponds to the
rif:forwardChaining conflict resolution strategy,
and suppose that ASK is decidable, TELL is decidable,
and updates have a finite evolution. Then, answering
verification queries over GOPSs is decidable.

Proof (sketch). The definition of the conflict resolution
strategy rif:forwardChaining implies that the corre-
sponding conflict resolution function Φ actually uses a small
amount of the information on the previous history of the sys-
tem. This property, together with the hypothesis, allows for
defining a function τπ and a function τΦ which satisfy the
hypotheses of Theorem 4. Consequently, the thesis follows.

441

We conclude by considering the case when the ontology
is a relational database without integrity constraints. More
precisely, we call DB-GOPSs the GOPSs defined based on
the following assumptions:

• the ontology language is the language of ground atoms:
that is, ontologies correspond to databases (sets of facts);

• the ontology update language consists of assert and retract
actions of single ground atoms;

• the ontology query language consists of domain-
independent FOL queries (i.e., a subclass of SQL
queries);

• the ASK function evaluates queries according to the stan-
dard semantics of domain-independent FOL queries in re-
lational databases (i.e., a database is considered as an in-
terpretation over which the FOL queries are evaluated ac-
cording to the standard FOL semantics);

• the TELL function corresponds to the syntactic additions
and deletions of facts in the database.

Now, it is immediate to verify that, in DB-GOPSs, updates
have a finite evolution.

Corollary 1 Answer verification queries over DB-GOPSs
under the rif:forwardChaining conflict resolution strat-
egy is decidable.

Light-weight GOPS
In this section we present Lite-GOPSs, a special class
of GOPSs is based on three light-weight ontology lan-
guages: the DL-LiteA ontology specification language, the
EQL-Lite(UCQ) ontology query language, and the UL-Lite
ontology update language. We show that Lite-GOPSs enjoy
nice computational properties.

Light-weight ontologies, queries and updates
We start by recalling the DL DL-LiteA (Poggi et al. 2008),
the ontology query language EQL-Lite(UCQ) (Calvanese et
al. 2007a), and the update operators for DL ontologies de-
fined in (Lenzerini and Savo 2011).

The DL DL-LiteA The DL DL-LiteA (Poggi et al. 2008)
is a member of the DL-Lite family of tractable Description
Logics. DL-LiteA distinguishes concepts, which denote sets
of objects, from value-domains, which denote sets of (data)
values, and roles, which denote relations between objects,
from attributes, which denote binary relations between ob-
jects and values. The semantics of DL-LiteA is given in
terms of first-order logic interpretations, and the notions of
interpretation of DL-LiteA constructs and assertions, model
of an ontology, and entailment are given in the standard way.

For our purposes, a crucial aspect is that all the stan-
dard reasoning tasks are tractable in DL-LiteA: in particu-
lar, answering unions of conjunctive queries (UCQs) over a
DL-LiteA ontology is tractable with respect to the size of the
ontology. For further details on DL-LiteA we refer the reader
to (Poggi et al. 2008).

The ontology query language EQL-Lite(UCQ) Infor-
mally, EQL-Lite(UCQ) is the FOL query language with
equality whose atoms are epistemic formulas of the form
Kq, where q is a UCQ. Like FOL queries, such a language
allows for posing very expressive queries with arbitrary
negation and quantification: the difference lies in the pres-
ence of the epistemic operator, whose interpretation (based
on a minimal knowledge semantics) allows for preserving
the decidability of reasoning.

Formally, an EQL-Lite(UCQ) query is a possibly open
formula built according to the following syntax:

φ ::= Kq | x1 = x2 | φ1 ∧ φ2 | ¬φ | ∃x.φ

where q is a UCQ. Formulas without occurrences of K are
said to be objective.

In EQL-Lite(UCQ) , the modal operator is used to for-
malize the epistemic state of the DL ontology, according to
the minimal knowledge semantics (see later). Informally, the
formula Kφ should be read as “φ is known to hold (by the
ontology)”.

We interpret DL ontologies on interpretations sharing the
same infinite countable domain ∆, and we assume that the
language includes an infinitely countable set of disjoint con-
stants corresponding to elements of ∆, known as standard
names (Levesque and Lakemeyer 2001). A world is a FOL
interpretation over ∆. An epistemic interpretation is a pair
E,w, where E is a (possibly infinite) set of worlds, and w
is a world in E. The definition of when a sentence (i.e., a
closed formula) φ is satisfied in an epistemic interpretation
E,w, written E,w |= φ, is the usual one in modal logic S5
(see (Calvanese et al. 2007a)). Among the various epistemic
interpretations, only the ones that represent a minimal epis-
temic state of the DL ontology, i.e., the state in which the
ontology has minimal knowledge, are considered. Formally:
let O be a DL ontology (TBox and ABox), and let Mod(O)
be the set of all FOL-interpretations that are models of O.
Then a O-EQL-interpretation is an epistemic interpretation
E,w for which E = Mod(O).

A sentence φ is EQL-entailed by O, written O |=EQL φ, if
for every O-EQL-interpretation E,w we have E,w |= φ.
Observe that for objective formulas such a definition be-
comes the standard one, namely w |= φ for all w ∈
Mod(O), denoted by O |= φ.

Let φ be an EQL -query with free variables ~x, where the
arity of ~x is n ≥ 0, and is called the arity of φ. We will
use the notation φ[~c] to denote φ~x~c (i.e., the formula obtained
from φ by substituting each free occurrence of the variable
xi in ~x with the constant ci in ~c, where obviously ~x and ~c
must have the same arity). The certain answers to a query
φ[~x] over an ontology O are defined as follows:

ansEQL(φ,O) = {~c ∈ ∆× · · · ×∆ | O |=EQL φ[~c]}

As usual in the literature on query answering over DL on-
tologies (e.g., (Lutz 2008)), in the following we call data
complexity the complexity measured with respect to the size
of the ABox.

The following property, shown in (Calvanese et al.
2007a), states that answering EQL-Lite(UCQ) queries in
DL-LiteA is tractable with respect to data complexity.

442

Theorem 6 Answering domain independent
EQL-Lite(UCQ) queries in DL-Lite is in PTIME (in
particular, in AC 0) with respect to data complexity.

Instance-level DL ontology update semantics We now
briefly recall the update operators for the evolution of DL
ontologies presented in (Lenzerini and Savo 2011). This ap-
proach has three key aspects. First, it concerns the so-called
instance-level updates to DL ontologies (De Giacomo et al.
2009). In fact, this approach only considers update oper-
ations corresponding to the assertion or retraction of sets
of ABox assertions, i.e., only the extensional component
(ABox) of the DL ontology is updated, while the intensional
component (TBox) is unchanged. Second, it proposes a se-
mantics for ontology updates which is closed with respect
to the DL language. This implies that, given a DL-LiteA on-
tology O, the result of any update operation can always be
expressed in terms of a DL-LiteA ontology O′. Finally, the
proposed semantics has nice computational properties.

In the following, we assume that the initial ontology O =
〈T,A〉 is a satisfiable DL-LiteA ontology. In other words,
we do not consider the evolution of unsatisfiable ontologies.
Also, we denote by clT (A) the T -closure of A, i.e., the set
of atomic ABox assertions that are entailed by 〈T ,A〉.

Let A′, F be ABoxes. Then, A′ accomplishes the inser-
tion of F into 〈T ,A〉 ifA′ is T -consistent, and 〈T ,A′〉 |= F
(i.e., F ⊆ clT (A′)). Similarly,A′ accomplishes the deletion
of F from 〈T ,A〉 if A′ is T -consistent, and 〈T ,A′〉 6|= F
(i.e., F 6⊆ clT (A′)). Then, we say that A′ accomplishes
the insertion (deletion) of F into (from) 〈T ,A〉 minimally
if A′ accomplishes the insertion (deletion) of F into (from)
〈T ,A〉, and there is no A′′ that accomplishes the insertion
(deletion) of F into (from) 〈T ,A〉, and has fewer changes
than A′ with respect to 〈T ,A〉.4

Let U = {A1, . . . ,An} be the set of all ABoxes ac-
complishing the insertion (deletion) of F into (from) 〈T ,A〉
minimally, and let A′ be an ABox. Then, 〈T ,A′〉 is the re-
sult of changing 〈T ,A〉 with the insertion (deletion) of F if
(1) U is empty, and 〈T , clT (A′)〉 = 〈T , clT (A)〉, or (2) U
is nonempty, and 〈T , clT (A′)〉 = 〈T ,

⋂
1≤i≤n clT (Ai)〉.

It is immediate to verify that, up to logical equivalence,
the result of changing 〈T ,A〉 with the insertion or the dele-
tion of F is unique. The result of changingO = 〈T ,A〉with
the insertion of F according to the above semantics will be
denoted by LS-assert(O, F). Moreover, the result of chang-
ing O = 〈T ,A〉 with the deletion of F according to the
above semantics will be denoted by LS-retract(O, F). No-
tice that, in the case where F is T -inconsistent, the result of
changing 〈T ,A〉 with both the insertion and the deletion of
F is logically equivalent to 〈T ,A〉 itself.

The following theorem (shown in (Lenzerini and Savo
2011)) summarizes the computational properties of the
above update operators.

Theorem 7 Let O = 〈T ,A〉 be a DL-LiteA ontology, and
let A′ be a DL-LiteA ABox. Then:

1. LS-assert(O,A′) can be computed in PTIME.

4We refer to (Lenzerini and Savo 2011) for further details on
this definition.

2. LS-retract(O,A′) can be computed in PTIME.

We point out that the above theorem is a very interesting
result, since it states that computing updates according to
the semantics above illustrated can be done in polynomial
time, although such a notion of updates does not boil down
to purely syntactic insertion/deletion operations.

From now on, we call UL-Lite the instance-level ontology
update language which consists of every formula of the form
Assert(F) or Retract(F), where F is a finite set of atomic
ABox assertions (i.e., a conjunction of ground atoms).

Lite-GOPS
We are finally ready to define Lite-GOPSs. A Lite-GOPS is
a GOPS as in Definition 1 under the following assumptions:
• the ontology language OL is DL-LiteA;
• the ontology query language QL is EQL-Lite(UCQ);
• the ontology update language UL is UL-Lite;
• the function ASK which provides the semantics for ontol-

ogy queries corresponds to the semantics for EQL queries
described above. More precisely, for every DL-LiteA
ontology O, and for every EQL-Lite(UCQ) query φ,
ASK (φ,O) = ansEQL(φ,O);
• the function TELL which provides the semantics for on-

tology updates corresponds to the semantics for ontology
update described in the previous section. More precisely:
– for every ontology update α of the form Assert(Γ),
TELL(O, α) = LS-assert(O, α);

– for every ontology update α of the form Retract(Γ),
TELL(O, α) = LS-retract(O, α);

• the conflict resolution strategy Φ admits a finite transfor-
mation.
We now show that answering verification queries over

Lite-GOPSs is decidable. We also identify some subclasses
of queries of the verification query language which can be
answered in polynomial time when evaluated over Lite-
GOPSs. It is immediate to verify that the chosen seman-
tics of ontology updates and the adoption of the DL-LiteA
language imply that updates have a finite evolution in Lite-
GOPSs. We have the following decidability and complexity
results.

Theorem 8 Answering verification queries over Lite-
GOPSs is decidable.

Proof. First, it is immediate to verify that updates have a
finite evolution in Lite-GOPSs. Thus, from Theorem 6, The-
orem 7, and Theorem 5, the thesis follows.

Theorem 9 Answering verification queries over Lite-
GOPSs under the rif:forwardChaining conflict resolu-
tion strategy is in EXPTIME with respect to data complexity.

Proof (sketch). The thesis follows from Theorem 1, Theo-
rem 6 and Theorem 7.

We now show a tractability result for reasoning over Lite-
GOPSs. In particular, we prove that reasoning over GOPSs
is tractable for verification queries without fixpoints. We say

443

that a verification query is simple if it does not contain fix-
point operators.

Theorem 10 Answering simple verification queries over
Lite-GOPSs is in PTIME with respect to data complexity.

Proof (sketch). The key property on which the proof is based
is that it is sufficient to build a small (polynomial) part of the
transition system. In particular, if k is the size of the simple
verification query (actually k should represent the maximum
nesting level of the modalities), then it is sufficient to build
the paths of the transition system that start at the initial state
and have a length less than or equal to k.

Now, the number of outcoming edges from a state for
the same production rule p is polynomial with respect to
data complexity, since there is only a polynomial number of
ground substitutions for the free variables of p, consequently
the number of outcoming edges from a state is polynomial.
This in turn implies that the number of the above paths of
length ≤ k is polynomial with respect to data complexity
(since k does not depend on the size of the ABox), therefore
this portion of the transition system can be built in polyno-
mial time.

Thus, from Theorem 1 it follows that the evaluation of
the query over such a polynomial model is polynomial with
respect to data complexity, which implies the thesis.

Conclusions
In this paper we have presented generalized ontology-based
production systems (GOPSs), which constitute a very gen-
eral framework for the combination of ontologies and pro-
duction rules. The GOPS approach is based on a func-
tional specification of ontologies, which views ontologies as
knowledge bases which can be accessed through a query ser-
vice and an update service. In this way, the semantics of the
execution of production rules over ontologies is straightfor-
ward, and fully relies on the semantics of queries and up-
dates over ontologies. Then, we have defined an expressive
language for formalizing verification tasks over GOPS spec-
ifications, and have shown that typical static analysis tasks
can easily be expressed through such a language. Moreover,
we have studied the computational properties of reasoning in
the framework of GOPSs, providing very general sufficient
conditions for undecidability and decidability of reasoning.
Finally, we have analyzed a specific combination of ontolo-
gies and production rules, called Lite-GOPSs. We have es-
tablished decidability and complexity results for reasoning
in such a class of GOPS, showing that Lite-GOPSs consti-
tute a very good trade-off between the complexity of reason-
ing and the expressive power of the ontology component of
the GOPSs.

This approach can be further extended in several direc-
tions. First of all, in a way analogous to Lite-GOPSs, other
notable specific combinations of ontologies and production
rules can be defined and studied within the GOPS frame-
work. Then, it would be very interesting to further extend the
GOPS framework, by adding other forms of production rules
beyond those considered in the RIF-PRD specification. Fi-
nally, it would also be interesting to extend this approach to

more powerful verification languages. For instance, it would
be very easy to extend V(QL) to allow for the presence of
free variables.

Acknowledgments
We thank the anonymous reviewers for their precious com-
ments. The work presented in this paper has been funded by
the European project ONTORULE – Ontologies meet busi-
ness rules (ICT-231875).

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.
Baral, C., and Lobo, J. 1995. Characterizing produc-
tion systems using logic programming and situation cal-
culus. http://www.public.asu.edu/˜cbaral/
papers/char-prod-systems.ps.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007a. EQL-Lite: Effective first-order query
processing in description logics. In Proc. of the 20th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2007), 274–279.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007b. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3):385–429.
Calvanese, D.; Kharlamov, E.; Nutt, W.; and Zheleznyakov,
D. 2010. Evolution of DL-Lite knowledge bases. In Pro-
ceedings of the Ninth International Semantic Web Confer-
ence (ISWC 2010), volume 6496 of Lecture Notes in Com-
puter Science, 112–128. Springer.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In Proceedings of the Seventeenth ACM SIGACT SIGMOD
SIGART Symposium on Principles of Database Systems
(PODS’98), 149–158.
Cangialosi, P.; De Giacomo, G.; De Masellis, R.; and Rosati,
R. 2010. Conjunctive artifact-centric services. In Proceed-
ings of the Eighth International Joint Conference on Service
Oriented Computing (ICSOC 2010), volume 6470 of Lec-
ture Notes in Computer Science, 318–333. Springer.
Damasio, C. V.; Alferes, J. J.; and Leite, J. 2010. Declar-
ative semantics for the rule interchange format production
rule dialect. In Proceedings of the Ninth International Se-
mantic Web Conference (ISWC 2010), 798–813.
de Bruijn, J., and Rezk, M. 2009. A logic based approach to
the static analysis of production systems. In Proceedings of
the Third International Conference on Web Reasoning and
Rule Systems (RR 2009), 254–268.
De Giacomo, G.; Lenzerini, M.; Poggi, A.; and Rosati, R.
2009. On instance-level update and erasure in description
logic ontologies. Journal of Logic and Computation, Special
Issue on Ontology Dynamics 19(5):745–770.

444

de Sainte Marie, C.; Hallmark, G.; and Paschke, A. (editors)
2010. RIF production rule dialect. W3C Recommendation,
http://www.w3.org/TR/rif-prd/.
Emerson, E. A. 1996. Model checking and the mu-calculus.
In Descriptive Complexity and Finite Models, 185–214.
Glimm, B. 2011. Using sparql with rdfs and owl entailment.
In Reasoning Web 2011, volume 6848 of Lecture Notes in
Computer Science, 137–201.
Kowalski, R., and Sadri, F. 2009. Integrating logic pro-
gramming and production systems in abductive logic pro-
gramming agents. In Proceedings of the 3rd International
Conference on Web Reasoning and Rule Systems, RR ’09,
1–23. Springer-Verlag.
Lenzerini, M., and Savo, D. F. 2011. On the evolution of the
instance level of DL-Lite knowledge bases. In Proceedings
of the Twentyfourth International Workshop on Description
Logic (DL 2011), volume 745 of CEUR Electronic Work-
shop Proceedings, http://ceur-ws.org/.
Levesque, H. J., and Lakemeyer, G. 2001. The Logic of
Knowledge Bases. The MIT Press.
Levesque, H. J. 1984. Foundations of a functional approach
to knowledge representation. Artificial Intelligence 23:155–
212.
Levy, A. Y., and Rousset, M.-C. 1998. Combining Horn
rules and description logics in CARIN. Artificial Intelli-
gence 104(1–2):165–209.
Liu, H.; Lutz, C.; Milicic, M.; and Wolter, F. 2006. Updating
description logic ABoxes. In Proc. of the 10th Int. Conf. on
the Principles of Knowledge Representation and Reasoning
(KR 2006), 46–56.
Liu, H.; Lutz, C.; Milicic, M.; and Wolter, F. 2011. Foun-
dations of instance level updates in expressive description
logics. Artif. Intell. 175(18):2170–2197.
Lunardhi, A. D., and Passino, K. M. 1995. Verification of
qualitative properties of rule-based expert systems. Applied
Artificial Intelligence 9(6):587–621.
Lutz, C. 2007. Inverse roles make conjunctive queries hard.
In Proceedings of the Twentieth International Workshop on
Description Logic (DL 2007), volume 250 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/,
100–111.
Lutz, C. 2008. The complexity of conjunctive query answer-
ing in expressive description logics. In Proceedings of the
Fourth International Joint Conference on Automated Rea-
soning (IJCAR 2008), volume 5195 of Lecture Notes in Ar-
tificial Intelligence, 179–193. Springer.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. Journal on Data Semantics X:133–173.
Raschid, L. 1994. A semantics for a class of stratified pro-
duction system programs. J. Log. Program. 21(1):31–57.
Rezk, M., and Nutt, W. 2011. Combining production sys-
tems and ontologies. In Proceedings of the Fifth Inter-
national Conference on Web Reasoning and Rule Systems
(RR 2011), 287–293.

Rosati, R. 2007. The limits of querying ontologies. In
Proceedings of the Eleventh International Conference on
Database Theory (ICDT 2007), volume 4353 of Lecture
Notes in Computer Science, 164–178. Springer.
Sirin, E., and Parsia, B. 2007. SPARQL-DL: SPARQL query
for OWL-DL. In Proc. OWLED 2007.

445

