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Abstract

This paper presents a characterisation of and definitions for
the phenomenon of masking in the context of justifications
for entailments in ontologies. In essence masking is present
within a justification, over a set of justifications, or over a
complete ontology when the number of justifications for an
entailment does not reflect the number of reasons for that
entailment. Four types of masking are defined in this pa-
per: Internal Masking, Cross Masking, External Masking and
Shared Core Masking. The results of an empirical study are
presented which shows that the phenomenon of masking is
prevalent throughout ontologies with non-trivial entailments
in the NCBO BioPortal corpus. Out of 72 ontologies, 53 ex-
hibited some form of masking, with 9 ontologies exhibiting
internal masking, 23 ontologies exhibiting external masking,
and 53 ontologies exhibiting shared core masking.

1 Introduction
Many open source and commercial ontology development
tools such as Protégé, Swoop, The NeOn Toolkit and Top
Braid Composer use justifications (Kalyanpur 2006) as a
kind of explanation for entailments in ontologies. A jus-
tification for an entailment, also known as a MinA (Baader
and Hollunder 1995; Baader, Peñaloza, and Suntisrivaraporn
2007), or a MUPS (Schlobach and Cornet 2003) if specific
to explaining why a class name is unsatisfiable, is a minimal
subset of an ontology that is sufficient for the given entail-
ment to hold. More precisely, J is a justification for O |= η
if J ⊆ O, J |= η and for all J ′ ( J it is the case that
J ′ 6|= η. Justifications are a popular form of explanation
in the OWL world and, as the widespread tooling support
shows, have been used in preference to full blown proofs for
explaining why an entailment follows from an ontology.

However, despite the popularity of justifications, they suf-
fer from several problems stemming from their syntactic fo-
cus. Crucially, while all of the axioms in a justification are
needed to support the entailment in question, there may be
parts of these axioms that are not required for the entailment
to hold (Horridge, Parsia, and Sattler 2008) . For example,
consider J = {A v ∃R.B,Domain(R,C), C v D u E}
which entails A v D. While J is a justification for A v D,
and all axioms are required to support this entailment, there
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are parts of these axioms that are superfluous as far as the
entailment is concerned: In the first axiom the filler of the
existential restriction is superfluous, in the third axiom the
conjunct E is superfluous for the entailment.

Given that justifications are not minimal with respect to
their “parts” and thus with respect to their logical content,
it is possible for the cardinality of the set of justifications to
be different from the set of reasons for an entailment, that
is, justifications can mask the set of reasons. For example,
consider J = {A v ∃R.C u ∀R.C,D ≡ ∃R.C} which
entails A v D. Clearly, J is a justification for A v D.
It is also noticeable that there are superfluous parts in this
justification. Moreover, there are two distinct reasons why
J |= A v D, the first being {A v ∃R.C,∃R.C v D}
and the second being {A v ∃R.> u ∀R.C,∃R.C v D}.
The work presented in the paper describes how masking can
occur within a justification, over a set of justifications, and
over a set of justifications plus axioms outside the set of jus-
tifications. The main problems identified with masking are
(i) it can hamper understanding—not all reasons for an en-
tailment may be salient to a person trying to understand the
entailment, and (ii) it can hamper the design or choice of a
repair plan—not all reasons for an entailment may be ob-
vious, and if the plan consists of weakening and removing
parts of axioms it may not actually result in a successful re-
pair of the ontology in question.

2 Preliminaries
Description Logics This paper focuses on the Description
Logic SHOIQ. In general, Description Logics (DLs) are
characterised as being decidable fragments of First Order
Logic which have their own concise syntax. Rather than
providing a token introduction to DLs the interested reader
should look at a copy of the Description Logic Handbook
and refer to (Horrocks and Sattler 2007) for specific de-
tails of SHOIQ. In this paper, the symbols A and B are
used to represent class names, C and D (possibly complex)
SHOIQ concepts, R and S (possibly complex) SHOIQ
roles and a and b individual names. A SHOIQ ontology
consists of a set of axioms of the form C v D, R v S,
C(a) and R(a, b). The axiom C ≡ D is an abbreviation for
C v D andD v C. An ontologyO (or an axiom α′) entails
an axiom α if every model of O (resp. α′) is also a model
of α. O entails α is written as O |= α (resp. α′ |= α). An
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axiom α is weaker than an axiom α′ if both α′ |= α and
α 6|= α′.

δ–The Structural Transformation One of the most im-
portant requirements in this work is the ability to identify
the occurrence of a subconcept in some axiom—that is, the
notion of a subconcept with position. This is achieved us-
ing a structure preserving transformation function δ, which
removes the nesting of subconcepts by introducing fresh
names, and produces axioms that are “small” and “flat”. The
transformation δ, which is presented below, is essentially the
structural transformation which was originally described in
Plaisted and Greenbaum (Plaisted and Greenbaum 1986).

In terms of Description Logics, the transformation takes
a set of axioms S, and produces a different set of axioms
S ′ = δ(S) that, while not equivalent to S is equi-consistent
and equi-satisfiable to S. That is, S ′ is consistent if and
only if S is consistent, and a concept C is satisfiable with
respect to S ′ if and only if it is satisfiable with respect to S.
Moreover, any model I of δ(S) is also a model of S, and
any model of S can be extended into a model of δ(O) by
appropriate interpretation of the symbols that are in S ′ but
not in S.

In what follows a set of transformation rules that is used
in the definition of δ is presented. The set of rules is deter-
ministic. For a given ontology O, the left hand side of each
transformation rule matches an axiom in O, and either re-
places it with an axiom or a set of axioms that is defined by
the right hand side of the rule.
Definition 1 (SHOIQ Rewrite Rules for the Structural
Transformation δ)In the rewrite rules below, AC , AD and
ACi

are fresh concept names that are not in the signature
of O. The concepts C, D and Ci (1 ≤ i ≤ n) are either
complex concept expressions, concept names that are in the
signature of O, > or ⊥
T1 C ≡ D  {C v D, D v C}
R1 S ≡ R {S v R,R v S}
A1 C(a) {{a} v C}
A2 R(a, b) {{a} v ∃R.{b}}

G1 C v D  {AC v AD, C v AC , AD v D}

P1 AD v C1 u · · · u Cn  {AD v Ci | 1 ≤ i ≤ n,Ci 6= >}
P2 AD v C1 t · · · t Cn  {ACi v Ci | 1 ≤ i ≤ n}∪

{AD v AC1 t · · · tACn}
P3 AD v ¬C, C 6= ⊥ {AD v ¬AC , C v AC}
P4 AD v ∃R.C, C 6= > {AD v ∃R.AC , AC v C}
P5 AD v ∀R.C, C 6= > {AD v ∀R.AC , AC v C}
P6 AD v ≥ nR.C, C 6= > {AD v ≥ nR.AC , AC v C}
P7 AD v ≤ nR.C, C 6= ⊥ {AD v ≤ nR.AC , C v AC}

N1 C1 u · · · u Cn v AD  {Ci v ACi | 1 ≤ i ≤ n}∪
{AC1 u · · · uACn v AD}

N2 C1 t · · · t Cn v AD  {Ci v AD | 1 ≤ i ≤ n,Ci 6= ⊥}
N3 ¬C v AD , C 6= > {¬AC v AD, AC v C}

N4 ∃R.C v AD , C 6= ⊥ {∃R.AC v AD, C v AC}
N5 ∀R.C v AD , C 6= ⊥ {∀R.AC v AD, C v AC}
N6 ≥ nR.C v AD , C 6= ⊥ {≥ nR.AC v AD, C v AC}
N7 ≤ nR.C v AD , C 6= > {≤ nR.AC v AD, AC v C}

Rule T1 rewrites concept equivalence axioms into gen-
eral concept inclusion axioms. Rule R1 rewrites role equiv-
alence axioms into two role inclusion axioms. For the sake
of convenience, rules A1 and A2 rewrite ABox concept and
role assertions into TBox axioms using nominals. Rules
G1, P1− P7 and N1− N7 rewrite general concept inclusion
axioms into multiple axioms, flattening out all nested con-
cept expressions. They do this by introducing fresh names
for subconcepts and introducing “defining axioms” for these
fresh names.

Definition 2 (The Structural Transformation δ for
SHOIQ ) For a given set of SHOIQ axioms O,
O′ = δ(O) is the result of exhaustively applying the rewrite
rules given in Definition 1.

δ-Transformation Axiom Forms Applying the structural
transformation δ to a set of axioms S results in a set of small
flat axioms δ(S). Each axiom in δ(S) is of one of the forms
shown in Definition 3, where the symbols N∗, P∗, and A
represent concept names, R a SHOIQ role, o an individual
name, and n a positive integer. Each concept name Pc rep-
resents a positive occurrence of some subconcept C in the
original set of axioms, with an axiom of the form Pc v C
“defining” that occurrence. Each concept name Nc repre-
sents a negative occurrence of some subconcept C in the
original set of axioms, with each axiom of the form C v Nc
“defining” that occurrence.
Definition 3 (SHOIQ δ-transformation axiom forms)
For a set S of SHOIQ axioms, each axiom α ∈ δ(S) must
be one of the forms, where the symbols N∗, P∗, and A rep-
resent concept names, R a SHOIQ role, o an individual
name, and n a positive integer:

A1 N1 v P1

P1 Pc v P1 t · · · t Pn

P2 Pc v ¬N1

P3 Pc v {o}
P4 Pc v A

P5 Pc v ∃R.P1

P6 Pc v ∀R.P1

P7 Pc v ≥ nR.P1

P8 Pc v ≤ nR.N1

N1 N1 u · · · uNn v Nc

N2 ¬N1 v Nc

N3 {o} v Nc

N4 A v Nc

N5 ∃R.N1 v Nc

N6 ∀R.N1 v Nc

N7 ≥ nR.N1 v Nc

N8 ≤ nR.P1 v Nc
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O1 trans(R)

SHOIQ Syntactic Isomorphism Intuitively, an axiom
α′ is syntactically isomorphic to another axiom α′′ if there
is an injective renaming ρ of the signature, with > and ⊥,
of α′ so that ρ(α′) is structurally equal to α′′. For example,
α′ = A v ∃R.B is isomorphic to α′′ = F v ∃S.B, since
A and R in α′ can be renamed to F and S respectively, to
make α′ structurally equal to α′′. Definition 4 captures what
it means to be isomorphic for an axiom that occurs in the set
of axioms δ(S) where S is a set of SHOIQ axioms. Note
that structural equality is used as the ordering of conjuncts in
a conjunction and disjuncts in a disjunction is unimportant
here.

Definition 4 (SHOIQ δ-Isomorphism) Two SHOIQ
axioms, α′ and α′′ are δ-isomorphic if α′ and α′′ are both
of one of the forms given in Definition 3, and there is a
injective renaming of each N ′ ∈ signature(α′) ∪ {>,⊥}
into a name N ′′ ∈ signature(α′′) ∪ {>,⊥}.

Laconic Justifications Laconic justifications centre
around the notions of superfluity and weakness. Roughly
speaking, a justification J for an entailment η is laconic
if: (1) J does not contain any axioms that contain any
sub-concept occurrences (i.e. sub-concepts at specific posi-
tions) that are superfluous for η, and (2) J does not contain
any sub-concept occurrences that could be weakened while
preserving η. More precisely (where O? is the deductive
closure of O),

Definition 5 (Laconic Justification) Let O be an ontology
such thatO |= η, J is a laconic justification for η overO if:

1. J is a justification for η in O?

2. For every Jδ ( δ(J ) it is the case that Jδ 6|= η

3. For each α ∈ δ(J ) there is no α′ such that
(a) α |= α′ and α′ 6|= α (α′ is weaker than α)
(b) α′ is δ-isomorphic to α
(c) δ(J ) \ {α} ∪ {α′} is a justification for η in (δ(O))?

Non-Trivial Entailments Finally, the empirical study,
which is described later in the paper, uses the notion of non-
trivial entailments, which are defined as follows:

Definition 6 (Non-Trivial Entailments) Given an ontol-
ogy O and entailment η such that O |= η, η is a non-trivial
entailment if O \ {η} |= η.

Intuitively, an entailment η is non-trivial if it is either not as-
serted in O (i.e. η 6∈ O), or, there are multiple justifications
for O |= η (one of which is {η}).

3 Intuitions Behind Masking
This paper characterises and defines four important types of
masking: Internal Masking, Cross Masking, External Mask-
ing and Shared Core Masking. The intuitions behind these
types of masking are explained below.

Internal Masking Internal masking refers to the phenom-
ena where there are multiple reasons within a single justifi-
cation as to why the entailment in question holds. An exam-
ple of internal masking is shown below.

O = {A v B u ¬B u C u ¬C} |= A v ⊥
There is a single regular justification for O |= A v ⊥,
namelyO itself. However, within this justification there are,
intuitively, two reasons as to why O |= A v ⊥, the first
being {A v Bu¬B} and the second being {A v Cu¬C}.
Cross Masking Intuitively, cross masking is present
within a set of justifications for an entailment when parts of
axioms from one justification combine with parts of axioms
from another justification in the set to produce new reasons
for the given entailment. For example, consider the follow-
ing ontology.

O = {A v B u ¬B u C
A v D u ¬D u ¬C} |= A v ⊥

There are two justifications for O |= A v ⊥, namely
J1 = {A v Bu¬BuC} and J2 = {A v Du¬Du¬C}.
However, part of the axiom in J1, namely A v C may com-
bine with part of the axiom in J2, namely A v ¬C to pro-
duce a further reason: J3 = {A v C,A v ¬C}.
External Masking While internal masking and cross
masking take place over a set of “regular” justifications for
an entailment, external masking involves parts of axioms
from a regular justification combining with parts of axioms
from an ontology (intuitively the axioms outside of the set
of regular justifications) to produce further reasons for the
entailment in question. Consider the example below,

O = {A v B u ¬B u C
A v ¬C} |= A v ⊥

There is just one justification for O |= A v ⊥, however, al-
thoughA v ¬C intuitively plays a part in the unsatisfiability
of A it will never appear in a justification for O |= A v ⊥.
When O is taken into consideration, there are two salient
reasons for A v ⊥, the first being {A v B u ¬B} and the
second being {A v C,A v ¬C}
Shared Core Masking Finally, two justifications share a
core if after stripping away the superfluous parts of axioms
in each justification the justifications are essentially struc-
turally equal. Consider the example below,

O = {A v B u ¬B u C
A v B u ¬B} |= A v ⊥

There are two justifications for O |= η, J1 = {A v
Bu¬BuC} andJ2 = {A v Bu¬B}. However, J1 can be
reduced to the laconic justification {A v B u¬B} (since C
is irrelevant for the entailment), which is structurally equal
to J2. With regular justifications, it appears that there are
more reasons for the entailment, when in fact each justifica-
tion is precisely the same reason.
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Masking Due to Weakening The above intuitions have
been illustrated using simple propositional examples. How-
ever, it is important to realise that masking is not just con-
cerned with Boolean parts of axioms. Weakest parts of ax-
ioms must also be taken into consideration. For example,
consider

O = {A v ≥ 2R.C

A v ≥ 1R.D

C v ¬D} |= A v ≥ 2R

There is one regular justification for O |= A v ≥ 2R
namely, J1 = {A v ≥ 2R.C}. However, there are intu-
itively two reasons for this entailment. The first is described
by the justification obtained as a weakening of J1, and is
J2 = {A v ≥ 2R}. The second is obtained by weak-
ening the first axiom in O and combining it with the sec-
ond and third axioms in O to give {A v ≥ 1R.C,A v
≥ 1R.D,C v ¬D}. Of course, any form of masking can
be due to weakening.

4 Masking Defined
With the above intuitions and desiderata in mind the notion
of masking can be made more concrete. In the spirit of la-
conic justifications, the basic idea is to pull apart the ax-
ioms in a justification, set of justifications and an ontology,
compute constrained weakenings of these parts (inline with
the definition of laconic justifications), and then to check for
the presence and number of laconic justifications within the
set of regular justifications for an entailment with respect to
these parts and their weakenings.

Parts and Their Weakenings First, it is necessary define
a function δ+(S), which maps a set of axioms S to a set
of axioms composed from the union of δ(S) with the con-
strained weakenings of axioms in δ(S). The weakenings of
axioms are constrained in accordance with Definition 5(3).
For an axiom α ∈ δ(S), a weakening α′ of α is contained
in δ+(S) only if α′ is of the same form as α—i.e. α′ is
δ-isomorphic to α.

Definition 7 (δ+) For a set of SHOIQ axioms, S,

δ+(S) := δ(S) ∪ {α | ∃α′ ∈ δ(S) s.t.

α′ |= α and

α 6|= α′ and

α′ is δ-isomorphic to α}

Lemma 1 (δ+justificatory finiteness) For a finite set of
axioms S, the set of justifications for an entailment in δ+(S)
is finite.

Next, a function which filters out laconic justifications for
an entailment from a set of all justifications for the entail-
ment is defined in Definition 8.
Definition 8 (Laconic Filtering) For a set of axioms S |=
η, laconic(S, η) is the set of justifications for S |= η that are
laconic over S.
It should be noted that because of Lemma 1, the set of justi-
fications laconic(δ+(S), η) is finite.

Masking Definitions With the definition of δ+ and the
definition of laconic filtering in hand, the various types of
masking can now be defined.
Definition 9 (Internal Masking) For a justification J for
O |= η, internal masking is present within J if∣∣laconic(δ+(J ), η)∣∣ > 1

Theorem 1 Internal masking is not present within a laconic
justification.

Let O |= η and J1, . . . ,Jn be the set of all justifications
for O |= η. Cross masking and External masking are then
defined as follows:
Definition 10 (Cross Masking) For two justifications Ji
and Jj , cross masking is present within Ji and Jj if∣∣laconic(δ+(Ji ∪ Jj), η)∣∣ >(∣∣laconic(δ+(Ji), η)∣∣+ ∣∣laconic(δ+(Jj), η)∣∣)
Definition 11 (External Masking) External masking is
present if

∣∣laconic(δ+(O), η)∣∣ > ∣∣laconic(δ+(i=n⋃
i=1

Ji), η)
∣∣

Definition 12 (Shared Cores) Two justifications Ji and
Jj for O |= η, share a core if there is a justifica-
tion J ′i ∈ laconic(δ+(Ji), η) and a justification J ′j ∈
laconic(δ+(Jj), η) and an injective renaming ρ of terms not
in O such that ρ(J ′i ) = J ′j .

5 Masking in the Field
The first part of this paper has focused on pinning down
the various notions of masking and making these notions
more precise in terms of definitions. The second part de-
tails a study examining the prevalence of masking in real
ontologies. Ontologies for the study were obtained from
the NCBO BioPortal. Due to limited space, algorithms
and optimisations for examining masking, corpus descrip-
tion/makeup, and experimental procedure are not presented
here. A detailed presentation and discussion may be found
in (Horridge 2011). The BioPortal ontology repository was
accessed on the 12th March 2011. A total of 218 OWL
compatible (OWL and OBO) ontology documents were pro-
cessed. For each ontology, non-trivial entailments that
were direct subsumptions between concept names, and di-
rect class assertions between concept names and individual
names were computed. There were 72 ontologies that con-
tained non-trivial entailments of this form. For each entail-
ment, regular and masked laconic justifications were com-
puted and the numbers compared.

Figure 1 shows the mean number of regular and laconic
justifications per entailment per ontology. Figure 2 shows
a bubble plot that depicts entailments where the number of
regular justifications does not equal the number of masked
justifications, and so gives some idea of masking over the
whole BioPortal corpus. The x-axis shows the number of
regular justifications and the y-axis shows the number of
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Figure 1: Mean number of regular and masked justifications
per entailment
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Figure 2: The Effect of Masking – Ratios of regular justifi-
cations to masked justifications

masked justifications. The size of the bubbles reflects the
number of entailments with a particular ratio of regular to
masked justifications. For example, the large bubble in
the lower left corner represents entailments which have two
regular justifications but only one masked justification, of
which there are 5,447 entailments.

As can be seen from Figure 1 and Figure 2 the phenomena
of masking, be it internal, external or shared core masking
is prevalent throughout the ontologies in the BioPortal cor-
pus. Most of the ontologies (53 in total out of 72) exhibit
some kind of masking. Specifically, there are 9 ontologies
that exhibit internal masking, 23 ontologies that exhibit ex-
ternal masking, and 53 ontologies that exhibit shared core
masking.

The bubble plot in Figure 2 shows where the vast majority
of masking cases lie1—shared core masking dominates, with
plenty of entailments that have between 2 and 10 regular jus-
tifications but between only 1 and 5 masked laconic justifi-
cations. However, there are also plenty of examples of ex-
ternal masking, with some of them being quite extreme. For

1It should be noted that Figure 2 is a log-log plot and any bub-
bles which lie at a distance from the diagonal centre line represent
fairly large differences.

example, the small bubbles that occur in the upper middle of
Figure 2 represent entailments that have around 14-18 reg-
ular justifications but around 400 and 500 hundred masked
laconic justifications.

6 Conclusions
This paper has presented and defined justification masking.
In essence, masking is a phenomenon that results in the
number of justifications for an entailment not reflecting the
number of reasons for an entailment. Four specific types of
masking have been defined in terms of the cardinality of un-
derlying reasons for the target entailment: Internal masking,
Cross-masking, External masking, and Shared-Core mask-
ing. There is strong evidence to suggest that each type of
masking occurs for non-trivial entailments in real world on-
tologies. Each has significant implications for understand-
ing entailments whether from a direct user perspective (e.g.,
debugging rogue entailments) or indirect (e.g., presenting
metrics about amount of logical content). External masking
and Shared-Core masking are especially striking. External
masking shows that justifications do not always capture all
axioms which are relevant to an entailment. Shared-Core
masking shows that presenting justifications to users can re-
sults in significant wasted effort as the user is presented with
prima facie more reasons than there in fact are.
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