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Abstract
In this paper we encode some of the reasoning methods used
in frame based knowledge representation languages in an-
swer set programming (ASP). In particular, we show how
“cloning” and “unification” in frame based systems can be
encoded in ASP. We then show how some of the types of
queries with respect to a biological knowledge base can be
encoded using our methodology. We also provide insight on
how the reasoning can be done more efficiently when dealing
with a huge knowledge base.

Introduction
The broader goal of our proposed research is to be able to
answer various kinds of questions with respect to knowl-
edge bases constructed by domain experts in particular do-
mains. Towards this effort we noticed that a large body of
such knowledge bases have been developed using frame
based representations (Fikes and Kehler 1985)1. Examples
of such knowledge bases include AURA (Chaudhri et al.
2009), EcoCyc (Karp et al. 2002) and RiboWeb (Altman et
al. 1999). A University of Texas site2 links to a large number
of these knowledge bases.

While the terms such as “object” and “oriented” are re-
ported to be first mentioned in late 1950s and early 1960’s
at MIT, and the terms “object” and “instance” were used by
Sutherland in 1960-61, the origin of frame based knowledge
representation is often attributed to Minsky’s 1975 work
(Minsky 1975) . In frame based KR, knowledge is organized
in chunks referred to as frames. Frames have slots which can
be filled with values or other frames. There are hierarchies
of frames and one frame may inherit the properties of an-
other frame based on this hierarchy. Most frame based for-
malisms include some procedurally expressed knowledge,
such as specification regarding how frames should be used
and how inheritance should be addressed. Thus, semantics
of frames are often specified operationally. Because of in-
built features, such as inheritance, frames allow concise rep-
resentation of knowledge. So, despite the statement in Hayes
(Hayes 1979) that said “most of frames is just a new syn-
tax for parts of first order logic”, to capture some of the

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See also http://www.cs.man.ac.uk/∼stevensr/onto/node14.html.
2http://www.cs.utexas.edu/∼mfkb/related.html

semantics of frames, such as inheritance, one needs addi-
tional axiomatization. This is also true with respect to De-
scriptions logics (DLs) (Baader et al. 2003), which although
capture many of the declarative aspects of frames do not au-
tomatically capture the procedural, operational and inbuilt
aspects. They (DLs) do have much richer mechanism to de-
fine new classes. There have also been many proposals that
combine frame based knowledge representation aspects with
rule based knowledge representation aspects. Example of
such formalisms are DLV+ (Ricca and Leone 2007) and FAS
(Alviano et al. 2008).

Some of the operational and inbuilt aspects of frames
have been logically formalized. The most common aspect
being the formalization of inheritance, logical formaliza-
tion of which has been given by many (Touretzky 1986;
Horty 1994). Of particular note is the work by Brewka
(Brewka 1987) that discuses the logic of inheritance in frame
systems.

However, these formalisms also do not address some of
the procedural reasoning mechanisms in many frame based
systems. In particular, none of them address the issue of
“cloning” and “unification” that we discuss in the following
paragraphs.

In this paper, while working towards our goal of answer-
ing various kinds of questions with respect to knowledge
bases constructed by domain experts in particular domains,
we first formalize the notion of cloning and unification that
were earlier presented in an operational manner, and not
precisely enough, in the frame based systems KM (Clark,
Porter, and Works 2004)3 and AURA (Chaudhri et al. 2009)
4. However, these notions make it easier for multiple domain
experts to work in parallel in representing knowledge using
frames. They also make the representation compact. Some
basic ideas and motivation behind them is as follows. Sup-
pose a group of domain experts were to describe the knowl-
edge about cells in a knowledge base as they go through the
chapters in a book about cells. In a frame based approach
each may consider describing a prototype cell with various
slots (for example, parts-of) and values. Many of those val-
ues, such as the various parts of cells (for example, nucleus,

3KM has been adopted by various projects, notably Project
Halo (Gunning and et 2010).

4AURA is also developed under Project Halo.
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mitochondria, etc.), may themselves be then described using
prototypes. Now depending upon the particular focus in a
chapter multiple domain experts may write multiple proto-
types for the same class, each focusing on a different facet of
knowledge about cells, with possible overlaps and conflicts.
The reasoning mechanism unifies these prototypes to obtain
a comprehensive view of the class. In addition the knowl-
edge base has class-instance membership facts and class-
superclass facts. Enhancement of an instance using “unifi-
cation” then refers to integrating it with the other instances
that it can clone from taking into account the cloning infor-
mation as well as inheritance. Thus while the idea of inher-
itance and prototypes make it easier to encode knowledge
concisely, and in parallel by multiple domain experts, the
reasoning mechanism must account for inheritance, cloning
and unification. In KM and AURA procedural modules are
written for that. In this paper we first give a formal definition
of unification using cloning and inheritance and then give an
Answer Set Programming (ASP) based implementation of
that. We then show how ASP can be used to answer several
different kinds of questions with respect to such a knowl-
edge base. In the process, we point out ways to make the
ASP based computation efficient and mention the impact of
that with respect to a large biological knowledge base.

Background
Answer Set Programs
We adopted Answer Set Programming (ASP) (Gelfond and
Lifschitz 1988) as our knowledge representation language
for the following reasons: (i) it is non-monotonic, has a sim-
pler syntax but yet is expressive; (ii) it has a strong theo-
retical foundation with many building-block results (Baral
2003); and (iii) it has several efficient solvers (Gebser et al.
2008; Niemelä and Simons 1997; Leone et al. 2006). An
ASP program is a collection of rules of the form:

a← a1, ... , am, not b1, ... , not bn

where a, a1, ..., am and b1, ..., bn are atoms. The rule
reads as “a is true if a1...am are all known to be true and
b1...bn can be assumed to be false”. The semantics of answer
set programs are defined using answer sets (earlier called
stable models). An entailment relation (|=) with respect to
answer set programs is defined as follows: A program Π en-
tails an atom p iff p is true in all the answer sets of Π.

Frame-based KR&R
In this paper we choose KM as our reference frame-based
formalism. The basic representational unit in KM is a frame
that contains slots and values, in which the values can be ei-
ther atomic or refer to frames. Frames are used to provide the
structured representation for classes and instance via slots
(Fikes and Kehler 1985). In KM classes and instances are
represented using the following format:

(every <class> has
(superclasses (<superclass1> ...

<superclassN>))
(<slot1> (<expr11> <expr12>...))
(<slot2> (<expr21> <expr22>...))...)

(<instance> has
(instance-of (<class1>...<classn>))
(<slot1> (<expr11> <expr12>...))
(<slot2> (<expr21> <expr22>...))...)

The slots in the frames normally represent attributes
of class/instance, or specify relations between class-class,
class-instance, and instance-instance. From the format we
can tell that “superclasses” and “instance-of” are two spe-
cial meaning slots for representing class and instance, re-
spectively. Some of the special meaning slots that are key
for representation and reasoning in KM are listed below:

• Superclasses: The slot “superclasses” in the < class >
representation specifies the superclasses of a class. The
superclass information constitute a hierarchy for all the
concepts defined in the knowledge base.

• Prototype-of: This slot defines prototype(s) of a class. A
prototype is a proto-typical instance of a class, which is an
instance that serves as a basis of a class. If A is a prototype
of class C, then the properties of A is true in all instances
of C, unless restricted otherwise via a prototype scope that
is specified.

• Instance-of: This slot defines instances of a class. An in-
stance can be either a proto-typical or a normal element
of a class. If A is an instance of class C, then A automat-
ically inherits all the inheritable slot values expressed in
the prototype of C, meaning A gets a copy of all the slot
values of Cp, where Cp is a prototype of C.

• Cloned-From: If a description of an instance A has in-
stance B in its slot named cloned from, then all the slot
values (aka attributes or properties) of B also become the
slot values of A. 5

A KM knowledge base is accessible via user posed
queries, and both the queries and the answers to those
queries are normally based on instances. The inference step
utilizes deterministic construction rules (Clark, Porter, and
Works 2004) to provide answers to queries, and has sev-
eral specialized reasoning modules to capture inheritance,
cloning and unification. Here we illustrate the reasoning pro-
cess with an example, slightly modified from examples in
(Clark, Porter, and Works 2004) :

(Vehicle1 has
(instance-of (Vehicle))
(prototype-of (Vehicle))
(has-engine ((a Engine with

(strength (*Powerful))
(fuel ((a Gas-type with
(combustibility (*Hi)))))))))

(every Car has
(superclasses (Vehicle)))

5This is the intuitive meaning, however there are cases when A
need to unify its values with B’s values, which is explained in the
next example.
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(Car1 has
(instance-of (Car))
(prototype-of (Car))
(has-engine ((a Engine with

(size (*Average))
(fuel ((a Gas-type with
(type (*Unleaded)))))))))

There are two instances: Vehicle1, Car1; and two classes:
Vehicle, Car. The “prototype-of” slots specifies that Vehi-
cle1 is a prototype of Vehicle, and Car1 is a prototype of
Car. The “superclasses” slot specifies that Vehicle is a su-
perclass of Car, which means Car will inherit from Vehicle,
which in turn means Car1 will clone from Vehicle1. 6 So
Car1 will obtain all the values of Vehicle1, ideally. However
Car1 already has an engine; if it directly clones another en-
gine from Vehicle1, then Car1 will have two engines, which
is not the desired result that makes intuitive sense. The more
intuitive way is for Car1 to keep its engine, but clone all the
other attributes(values) from Vehicle1’s engine. In this case,
Car1 still has one engine, but this engine will have the new
value “powerful”, illustrated as follows:

(Car1 has
(has-engine (a Engine with

(strength (*Powerful))
(size (*Average))
(fuel (?)))

For the slot “fuel”, we can see that both Car1’s engine and
Vehicle’s engine has “fuel”, so again we don’t directly clone
a second “fuel” for Car1’s engine, instead we let this fuel
obtain attributes from Vehicle1’s engine’s fuel, and we will
have the following result for Car1:

(Car1 has
(has-engine (a Engine with

(strength (*Powerful))
(size (*Average))
(fuel (((a Gas-type with

(type (*Unleaded))
(combustibility (*Hi)))))))

This whole process is called “cloning and unification”,
which is an important aspect of reasoning in KM. KM de-
fined it in a procedural way. As performing a full unifica-
tion is computationally expensive, only lazy unification is
allowed in KM. This means that instead of performing unifi-
cation for “fuel”, a symbol “&” is used to denote where the
unification need to be performed, so the fuel for Car1 will
look like:

(fuel (((a Gas-type with
(type (*Unleaded)))

& (a Gas-type with
(combustibility (*Hi)))))))

In this paper, we defined the “clone and unify” in a declar-
ative way, and allow the computation of full unification. In

6The rule is that when a class inherits from its superclasses, all
of the classes’ instances will clone from the superclasses’ proto-
types.

the next section we formalize the notion of a knowledge base
(KB), give the necessary reasoning modules for performing
“clone and unify”, and give detailed explanation of both.

Formal Definitions about a Frame Based
Knowledge Base

As we mentioned earlier, some of the aspects (such as “uni-
fication”) in frame based systems were not precisely defined
earlier. Since one of our main goal is to develop an ASP im-
plementation of reasoning with knowledge represented in a
frame based format and prove its correctness, in this section,
we first formally define various aspects of a frame based
representation. Our definitions are based on various frame
based systems and we made some simplifications to focus
on the main aspects, namely, cloning and unification. We
motivate some aspects of the definitions with examples and
present the direct translation of the knowledge represented
in a frame based format to ASP. (In the next section we give
the ASP rules that encode inheritance, cloning and unifica-
tion.)

Frame-based KR focuses on two aspects: representing
classes and objects (or instances). For each class, the class
properties and hierarchy information are the key aspects.
Class properties will be inherited by all the objects that be-
long to it. Some frame-based KR formalisms provide special
mechanisms for this type of inheritance: creating a proto-
type of class A 7, namely Ap, and letting all instances of A
clone from Ap. As prototypes are special cases of objects,
we define them in a similar fashion, and we only define the
hierarchy information for classes themselves. We now start
with the definition of a Class Hierarchy Graph.

Definition 1: A Class Hierarchy Graph (GclassH ) is a
directed acyclic graph whose vertices are classes and whose
edges encode class-superclass relationship; i.e. if (C1, C2)
is a directed edge then C2 is a superclass of C1.

The ASP encoding of GclassH is a collection of facts of
the form: has(X, superclass, Y ), where X and Y are ver-
tices in the graph, and there is an edge from X to Y .

Definition 2: An Object Graph Gobj(O) (also denoted
simply by G(O)) that describes an object O consists of a
core object graph which is a directed graph whose vertices
are instances and whose edges are labelled by two types of
labels: non-inheritable and inheritable labels. For each ver-
tex in the core object graph, there is an edge in the object
graph from that vertex to a class; this edge is labelled with
instance of and specifies which class this instance belongs
to. Object Graphs are acyclic with respect to the inheritable
labeled edges.

The ASP encoding of Gobj(O) is a collection of all the
slot values of X in the form has(X,S, V ), in which the slot
S is the label of the edge connecting X to V.

An edge (X, Y) labelled by R means X R Y. For example,
an edge (X,Y) labelled by “instance-of” means that X is an
instance of Y.

7A class can also have multiple prototypes.
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Non-inheritable labels, such as {instance-of, prototype-
of, cloned-from, etc}, tend to describe the “relations” rather
than the “properties”. These labels are not to be transferred
from one object graph to another via cloning or inheritance.

Inheritable labels, such as {has-part, agent, etc} are the
ones that describe the properties of an instance, and may be
inherited or cloned by other instances.

The difference between an object graph describing a nor-
mal instance versus a prototype is based on whether the
graph contains an edge labelled with prototype of .

Another important label is cloned from, which means
that the current object obj c clones from another object. The
cloning process involves all the object graphs that obj c tran-
sitively clones from, and the outcome will be a new object
graph for obj c. This process is defined latter in this section.

Definition 3: A Knowledge Base is a collection of ob-
ject graphs, a class hierarchy graph, and a specification of
inheritable/non-inheritable labels (slot names).

Both object graphs and class hierarchy graphs are en-
coded using ASP facts of the form has(X,S, V ), in which
X can be either an object or a class, S is a slot name, and V
is the value for slot S. The inheritable slots are encoded as
inheritable(S).

We already identified several special meaning slots,
namely instance of , prototype of , cloned from, and
superclass. We will illustrate how these slots can be used
for defining other concepts that are useful for reasoning
about a KB.

Definition 4: Let KB be a knowledge base. Let x be an
instance and y1 ... yk+1 be classes. We say that x is a tc-
instance-of yk+1 if

(i) there is an object graph G obj in KB that has (x, yk+1)
as an edge labeled with instance-of, or
(ii) there is an object graph G obj in KB that has (x, y1)
an edge labeled with instance-of, and in the class hierar-
chy graph GclassH we have: for all i ∈ [1, k], (yi, yi+1)
is a superclass edge.

As a compact representation, Gobj(X) (also denoted as
G(X)) only contains instance-of edges connecting X to the
immediate class(es) that X belongs to. However, X also re-
cursively belongs to all the superclasses of the immediate
class(es). The above definition defines a transitive-closure
of the classes that an object X belongs to. Similarly, below
we define the tc cloned from relation which is a transitive
closure of the cloned from relation.

Definition 5: Let KB be a knowledge base. Let x1 ... xk+1

be instances. We say that x1 is tc-cloned-from xk+1 if
(i) G1, G2, .., Gk are object graphs in the KB, and for all
i ∈ [1, k], (xi, xi+1) is a cloned-from edge in Gi, or
(ii) there exists a class yk+1 such that x1 is a tc-instance-
of yk+1, and object graph Gk+1 contains (xk+1, yk+1) as
an edge labeled with prototype-of.

For G(X), after obtaining the set of instances {Y1, ..., Yn}
that X clones from, the next step will be for X to obtain all

the properties from those instances. However, the properties
of {Y1, ..., Yn} should not be directly added to X’s object
graph, but need to go through a merging process which is
referred to as unification (Clark, Porter, and Works 2004).
Definitions 6 and 7 define the unification process, and the
necessary relations needed in unification.

Definition 6: Let x and y be instances, the sets
{xc1...xcm} and {yc1...ycn} be all the classes that x and
y are tc-instances-of, respectively. We say that x subsumes y
if {yc1...ycn} ⊆ {xc1...xcm}, m ≥ n.

Definition 7: Given an object graph G(X) and a KB,
the cloned and unified enhancement of G(X) w.r.t the KB,
denoted by G∗KB(X), has the following properties. Let
{G(X1), G(X2), ...G(Xk)} be the set of object graphs that
G(X) clones from.

1. Base case: G∗KB(X) has all the inheritable edges and all
the vertices linked by those edges from G(X). The root
node for G∗KB(X) is still X , which is at level zero.

2. For each node V in G∗KB(X) at level N, an additional
node V ′ is a child of V if V ′ satisfies one of the following
conditions:

– (Vi, V
′) is an inheritable edge in object graph G(Xi)

for some i ∈ [1, k], V subsumes Vi (which is at level
N), and both of the common conditions are satisfied.

– V tc cloned from Vi, (Vi, V
′) is an inheritable edge

in the KB, and both of the common conditions given
below are satisfied.

– Vj is a node at level N in the object graph G(Xj) for
some j ∈ [1, k], V subsumes Vj (which is at level N),
Vj tc cloned from Vi, (Vi, V

′) is an inheritable edge
in the KB, and both of the common conditions below
are satisfied.

* Common conditions:

– V ′ is not subsumed by any other nodes that are at level
N + 1 in any of the object graphs beside G(Xi), if
G(Xi) has (Vi, V

′) as an inheritable edge.
– The label of the added edge (V, V ′) in G∗KB(X) is the

same as of the edge (V ′′, V ′) if we obtain V ′ via V ′′.

We illustrate the above definitions using Figure 1 and
Figure 2. In Figure 2, a, b, and c represent three classes,
and a1, b1, c1 are the corresponding instances/prototypes.
In Figure 1, subgraphs (1)(3)(5) represent the object graphs
G(a1), G(b1) and G(c1), and subgraphs (2)(4)(6) represent
the cloned and unified enhancements G∗KB(a1), G∗KB(b1),
and G∗KB(c1). Here the KB consist of:

1. the class hierarchy graph which specifies that a is a super-
class of b, and b is a superclass of c.

2. the object graphs for a1, b1, and c1, which are the proto-
types for class a, b, and c respectively. 8

8In Figure 2, the relations “a1 instance-of a” and “a1 prototype-
of a” are also part of the object graph for a1. We extract and put it
in a different graph for a simpler view.
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a1

hair1

head1

null1

skin1

body1

big1

red1 hair2

long1 hair1

has part has part

has part has cover has size

hasP has color has part

has length cloned from

c1

tail1

skin3

body3

fur3

hair3

has part has part

has cover

has part cloned from

has cover

skin2

c1

tail1

skin3

body3

fur3

hair3

has part has part

has cover

has part

has cover

leg2

has part

leg1

has part

head1

has part

hair1

has part

big1

has size

red1

long1 null1

has length hasP

has color

b1

leg1

skin2

body2

head1

has part has part

has cover cloned from

leg2

has part

(1)

a1

hair1

head1

null1

skin1

body1

big1

red1 hair2

long1 null1

has part has part

has part has cover has size

hasP has color has part

has length hasP

(2)

(3) b1

leg1

skin2

body2

hair1

has part has part

has cover

leg2

has part

big1

has size

red1 hair2

(4)

(5)
(6)

has part

head1

has part

has color has part

Figure 1: (1),(3),(5) are object graphs for a1, b1, and c1, and (2)(4)(6) are the cloned & unified enhancement of a1, b1, and
c1. The shaded nodes in the above graphs are: null1 in (2); head1, red1, hair2, big1 and hair1 in (4); and head1, big1, long1,
null1, red1, hair1, leg1 and leg2 in (6). The rest are white nodes.

cba
superclass superclass

c1b1a1

instance of
prototype of

instance of
prototype of

instance of
prototype of

Figure 2: The relations among a1,b1, and c1.

3. the specification that non-inheritable slots consist of
prototype of , instance of , and cloned from, and in-
heritable slots consist of the rest of the slots encoded in
the KB.

Obtaining G∗KB(b1)

We can conclude that b1 is a tc-instance-of class a us-
ing Definition 4, and that b1 tc-cloned-from a1 using Defini-
tion 5, hence G(b1) clones from G(a1). The white nodes in
G∗KB(b1) are directly from G(b1), and do not keep the non-
inheritable edge (body2, cloned from, head1). The shaded
nodes in G∗KB(b1) come from G(a1) when the nodes sat-
isfy the conditions listed in Definition 7. Let’s take body2
for example: we can infer that body2 subsumes body1 us-

ing Definition 69, (body1, big1) is an inheritable edge (with
label has-size) in G(a1), and big1 is not subsumed by any
node on the same level in G(b1) (see the first common con-
dition in Definition 7), so we can conclude that (body2, big1)
will be an edge in G∗KB(b1) with the same label “has-size”
(see the second common condition in Definition 7). On the
other hand, skin1 from body1 is not present in G∗KB(b1) be-
cause skin1 is already subsumed by skin2. The third node
“hair1” of body2 is obtained via the “cloned-from” relation
of body2 in G(b1).
Obtaining G∗KB(c1)

Similarly we can infer that c1 is tc-instance-of class a
and b, and c1 tc-cloned-from both a1 and b1, hence G(c1)
clones from both G(b1) and G(a1). Let’s take body3 for ex-
ample: we can infer that body3 subsumes both body1 and
body2; so ideally body3 will have big1, and neither have
skin1 nor skin2. As body3 subsumes body2 and body2 also
clones from head1, body3 will have hair1 from head1. If we
go deeper, we notice that skin3 subsumes both skin1 and
skin2, and in the next level hair3 subsumes hair1. The sub-
sume relation goes vertically and expands along a path in the
graph. This provides a hint for the declarative implementa-
tion which we’ll show in the next section.

Definition 8: We say that X has value V for an inheritable

9We use the name of the instance to reflect the class that it be-
longs to, so the relations such as (body1, instance-of, body) is not
drawn in the figures.
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slot S after cloning & unification with respect to a KB if
for some object Y in KB, G∗KB(Y ) has an inheritable edge
(X,V ) with label S.

ASP encoding of frame based reasoning
aspects

In this section we present the declarative ASP rules for rea-
soning over the knowledge base. From the previous section
we noticed several properties of the knowledge base. In par-
ticular, the representation of object is not self-contained. An
object graph describing an object X only records the most
specific properties of X, and will let X inherit from the su-
perclasses, or clone from other instances to obtain the gen-
eral properties. One of the fundamental reasoning task for
the KB is to retrieve the full properties for an object, which
can be used to answer the most fundamental question: What
is X?. The property acquiring process for an instance has the
following steps:

(i) Obtaining generalizations of the instance: Each in-
stance can have facts about inheritance in the following
form: has(Instance1, instance of, Class1), and each
class can have facts expressing superclass information:
has(Class1, superclass, Class2), which indicates that
Class2 is a superclass of Class1. Therefore Instance1 will
inherit from Class2 as well. Transitive closure rules are
needed to define this process.

(ii) Obtaining what an instance clones from: Be-
sides inheritance, an instance can also obtain
some properties from other instances via cloning:
has(Instance1, clone from, Instance2). Similarly,
cloning can happen transitively, and we need to define the
rules for it.

(iii) The unification process: When inheriting or cloning
happens, an instance need to acquire information from
the other classes/instances. Each slot value of the instance
will not just be the one stated in its own frame, but will
be merged with all the acquired information. The merging
process is referred to as unification. This is a key aspect
that has not been formalized in the past literature.

Step I: Obtaining generalizations of an instance
When retrieving information for an instance, the first step
is to gather all classes that it belongs to. Here we discuss
the rules for obtaining multiple inheriting classes for an in-
stance. The slot “instance-of” directly encodes all the classes
(immediate class) to which an instance belongs to, and the
instance also recursively belongs to the immediate classes’
superclasses.
The rules i1 and i2 encodes instance of(X,Y ) which
means class Y is an immediate class of instance X .

i1: instance_of(X,Y) :-
has(X,instance_of,Y).

i2: instance_of(X,Y) :-
has(X,clean_instance_of,Y).

The rules i3 and i4 encodes tc instance of(X,Y ) which
means instance X transitively belongs to class Y . Rule i3

uses the immediate class as the base case. Rule i4 means
that if X is a tc instance of M , and Y is a superclass of
M , then X is also a tc instance of Y .

i3: tc_instance_of(X,Y) :-
instance_of(X,Y).

i4: tc_instance_of(X,Y) :-
tc_instance_of(X,M),
has(M,superclass,Y).

Step II: Obtaining what an instance clones from
Cloning is another mechanism that facilitates the reuse of
the existing knowledge frames, and avoids repeated encod-
ing of the same set of knowledge entries. Default cloning
refers to the case where the information encoded for a proto-
type is transferred to other instances of the same class. User-
defined cloning refers to the user specified facts of the form
has(X, cloned from, Y ). Both cases need to be taken into
account when deciding the set of instances the current in-
stance is cloning from.

The rules c1 and c2 encodes cloned from(X,Y ) which
means instance X directly clones from instance Y .

c1: cloned_from(X,Y) :- X!=Y,
has(X,cloned_from,Y).

c2: cloned_from(X,Y) :- X!=Y,
has(X,clone_built_from,Y).

The rules c3 to c5 encode tc cloned from(X,Y ) which
means instance X transitively clones from instance Y . Rule
c3 uses the direct cloning instance as the basic case. Rule c4
means X transitively clones from Y if it transitively clones
from M , and M directly clones from Y . Rule c5 takes into
account “prototypes”. For any instance X that is a mem-
ber of class M (immediately or transitively), X clones from
class M ’s prototype(s).

c3: tc_cloned_from(X,Y) :-
cloned_from(X,Y).

c4: tc_cloned_from(X,Y) :-
tc_cloned_from(X,M),
cloned_from(M,Y).

c5: tc_cloned_from(X,Y) :- X!=Y,
tc_instance_of(X,M),
has(Y,prototype_of,M).

Step III: The unification process
We now discuss the information acquiring process for an in-
stance after we know what this instance clones from. Recall
that we use the predicate inheritable(S) to specify the list
of slots that can be inherited by other instances.

When an instance is trying to obtain slot values (i.e. prop-
erties) from other instance(s), as we explained in the pre-
vious section, it can not simply append the values on top
of its own. To solve this issue, we first define the predicate
“may have” to stand for the slot values that an instance may
get via cloning. In the previous example, b1 may have two
bodies, two legs, and one head from cloning.

Rule m1 means that X may obtain the value V of slot
S from Y , when X clones from Y . We uses the predicate
“detailed cloned from” to include several different types of
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cloning, which will be elaborated later. Rule m2 means that
X may have the properties that it already has.
m1: may_have(X,S,V,Y) :- has(Y,S,V),

detailed_cloned_from(X,Y),
inheritable(S).

m2: may_have(X,S,V,X) :- has(X,S,V),
inheritable(S).

After having “may have”, we need to specify the cases
where an instance shouldn’t have a value. We use the pred-
icate “not to have” to denote such cases. From the previous
example we know that we only want b1 to have body2, and
not to copy body1 from a1. The justification is that b1 al-
ready has a property of the type “body”, so it doesn’t need
to acquire a new one.

Rule m3 defines the predicate “not to have”: Using it we
can conclude that b1 should not have body1 by reasoning
with rule m3 in the following way. b1 may have body2 from
b1, b1 may have body1 from a1, b1 clones from a1, and
body2 subsumes body1; so we conclude that b1 not to have
body1.
m3: not_to_have(X,S,V2) :-

may_have(X,S,V1,Y1),
may_have(X,S,V2,Y2),
detailed_cloned_from(Y1,Y2),
subsume(V1,V2),
Y1!=Y2, V1!=V2.

The above rule m3 uses the predicate “subsume” which
we explain and define (using ASP) below. The ASP encod-
ing of “subsume” captures the following: V 1 subsumes V 2
if V1 is more specific, i.e. V 1 belongs (immediately or tran-
sitively) to all the classes that V 2 belongs to. Rule s1 spec-
ifies the condition when V 1 doesn’t subsume V 2, that is, if
there exists a class C that V 2 belongs to, but not V 1.
s1: not_subsume(V1,V2) :- V1!=V2,

ins(V1), ins(V2),
tc_instance_of(V2,C),
not tc_instance_of(V1,C).

Rule s2 negates rule s1 to obtain the cases when V 1 sub-
sumes V 2.
s2: subsume(V1,V2) :- V1!=V2,

ins(V1), ins(V2),
not not_subsume(V1,V2).

In s2 we use the predicate “ins(V)” to specify that V is
an instance. The following rule states what value X actually
obtains from cloning. X will have all the “may have” values
minus the “not to have” values.
h1: hasc(X,S,V) :- may_have(X,S,V,Y),

not not_to_have(X,S,V).

Thus, considering a1 and b1 of Figure 1 (1) and (3) we
obtain the following properties of b1 after unifying with a1:
hasc(b1, has_part, head1).
hasc(b1, has_part, body2).
hasc(b1, has_part, leg1).
hasc(b1, has_part, leg2).

This matches with the unified result for b1 in Figure 1
(4).

Subsequent Microcloning
The rules from the previous section leave one problem, how
will b1 get body1’s information? When b1 keeps body2 and
not body1, it also means that body2 is the instance that will
clone from body1. We use predicate “microclones” to denote
this type of cloning.

Example Let’s take a second look at Figure 1 (1) and (3),
we know that because b1 clones from a1 and body2 sub-
sumes body1, so b1 will only keep body2, and body2 will mi-
croclone from body1. In a similar fashion, when body2 mi-
croclones from body1, because again skin2 subsumes skin1,
so body2 only keeps skin2, but will let skin2 microlone from
skin1.

From the example we can tell that microcloning first hap-
pens when X doesn’t need to keep some value, but will let
its property to clone from that value. Microclone also hap-
pens recursively and will expand to the deepest level of the
object graph.

Rule r1 encodes the base case for microclones. If the sub-
sume relation holds as subsume(V 1, V 2), then value V 1
needs to acquire information from V 2. Rule r2 encodes the
transitive case for microclones.

r1: microclones(V1,V2,Y1,Y2) :-
may_have(X,S,V1,Y1),
may_have(X,S,V2,Y2),
tc_cloned_from(Y1,Y2),
subsume(V1,V2),
Y1!=Y2, V1!=V2.

r2: microclones(V1,V2,F1,F2) :-
may_have(X,S,V1,Y1),
may_have(X,S,V2,Y2),
microclones(Y1,Y2,F1,F2),
subsume(V1,V2),
Y1!=Y2, V1!=V2.

We now put together all the cases for clones us-
ing the predicate “detailed cloned from”. As we can see
from rules d1 to d3, this predicate transitively includes “
tc cloned from” and “microclones”. Recall that in the last
section both “may have” and “not to have” rely on this “de-
tailed cloned from” predicate; that is because when an in-
stance is deciding on what it may need to acquire informa-
tion from, it needs to take all the types of cloning into ac-
count, no matter if it is stated as facts or is derived.

d1: detailed_cloned_from(X,Y) :-
tc_cloned_from(X,Y).

d2: detailed_cloned_from(X,Y) :-
microclones(X,Y,F1,F2).

d3: detailed_cloned_from(X,Y) :-
detailed_cloned_from(X,Z),
tc_cloned_from(Z,Y).

Correctness of the ASP encoding
Definition 9 Given a knowledge base KB, the ASP pro-
gram ΠKB is the answer set program consisting of:
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(i) the following rules: i1 to i4 for instance of, c1 to c5
for clones from, m1 to m3 for may have, s1 to s2 for sub-
sumes, h1 for hasc (has property after cloning), r1 to r2
for microclones, d1 to d3 for detailed clones and
(ii) all facts of the form has(X,S, V ) that are either in
the class hierarchy graph, or in the object graphs and all
inheritable(S) facts.

Proposition 1 X is an instance of Y w.r.t a KB iff:

ΠKB |= tc instance of(X,Y )

Proposition 2 X is tc cloned from Y w.r.t a KB iff:

ΠKB |= tc cloned from(X,Y )

Lemma 1 X subsumes Y w.r.t. a KB iff:

ΠKB |= subsume(X,Y )

Theorem 1 X has value V for slot S after cloning and uni-
fication in a KB iff:

ΠKB |= hasc(X,S, V )

Proof (sketch): The proof is based on dividing ΠKB to sev-
eral strata. The bottom stratum (0) consists of the predi-
cates inheritable, ins, has, instance of , cloned from,
tc instance of and tc cloned from. The next stratum
(1) consists of the predicate not subsume. The next stra-
tum (2) consists of the predicate subsume. The next stra-
tum (3) consists of the predicate not to have, may have,
detailed clone from, and microclones. The next stratum,
the top one, consists of the predicate hasc. From this strati-
fication, we have that ΠKB is a stratified program and thus
it has a unique answer set. Now using the stratification we
can define each of the predicates, four of which are a sort
of transitive closure predicates. They are: tc instance of ,
tc cloned from, detailed clone from, and microclones.
Facts about them that is true in the answer set can be char-
acterized using the minimum number of iterations needed to
get them and this number matches with the shortest infer-
ence path with respect to the graphs of KB.

Efficient question answering for specific
question patterns

There are various kinds of questions one may pose to a
knowledge base. Some of those questions can be more ef-
ficiently answered by modifying some of the rules given in
the earlier section. This is similar to to the use of magic sets
in efficiently answering Datalog queries where Datalog rules
are transformed based on query patterns. In the following
we show how some rules can be modified for efficiency pur-
poses without sacrificing correctness for the specific kind of
queries.

We choose two types of queries for illustration. For ques-
tions like “What is X?”, we are only interested in the in-
stances/prototypes that are related to class X , and for ques-
tions like “What is the difference between X and Y?”, we are

only interested in instances/prototypes related to X or Y . By
adding those instances of interest as a “search guidance” to
the previous encodings for instance-of/cloned-from, etc, we
can constrain the rules to search a much smaller knowledge
base and rule out a large number of irrelevant (to the query)
facts to maximize the efficiency. We now explain how to ob-
tain the instances/prototypes of interest, and how they are
applied to the previous encodings using the following defi-
nitions:

Definition 10: Let the question posed to the KB
be of the form Q(QID,QType,X1, X2...Xn), in which
QID and QType refers to the question ID and type, and
{X1, X2...Xn} is the list of concepts (classes) mentioned in
the question. Let the answer A to the question Q have the
form A(QID,QType,Ans), in which Ans is the answer to
Q.

From this notational definition we know that the question
“What is X?” has the form Q(QID,what is,X), and the
question “What is the difference between X and Y?”, has
the form Q(QID,what difference,X, Y ). QID can be a
unique number randomly assigned to the questions.

Ans can take forms of a constant (true/false questions),
a variable (compute slot values), or user-defined predicates
(for more general type of questions). We investigated several
types of questions and what the Ans will be for those types,
and will elaborate on this in the following section. In this
section we show how some of the rules can be modified for
efficiency without sacrificing correctness.

Definition 11: Given Q(QID,QType,X1, X2...Xn), we
define the “query-related-class” as “qrc(Q,C)”, which con-
tains all the Xi, and all Xi’s superclasses, i ∈ [1, n], and de-
fine the query-related-prototype as “qrp(Q,P)”, as the com-
bination of:

(i) all prototypes P all of the query-related-classes, and

(ii) all the instances/prototypes that P all clones from.

Rules qr1 to qr4 are used to infer qrc and qrp according to
the definition above. Rule qr1 is the pseudo encoding which
means that all classes in the question encoding will become
the query-related-class. Rule qr2 transitively includes all of
Xi’s superclasses, for i ∈ [1, n]. Rule qr3 and qr4 include
P all (see the definition) and P all’s clone-froms.

qr1: qrc(Q,Xi) :-
Q(QID, QType, X1, X2, ... Xn).

(for all 1<= i<= n)
qr2: qrc(Q,C) :- qrc(Q,M),

has(M,superclass,C).
qr3: qrp(Q,P) :- qrc(Q,C),

has(P,prototype_of,C).
qr4: qrp(Q,P) :- qrp(Q,X),

has(X,cloned_from,P).

We define the query-related-instances as “qri(Q,I)”,
which will be the constraint used for other rules so that only
the instances that are of interest is selected and reasoned
with.

Definition 12: “qri(Q,I)” contains:
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(i) all the query-related-prototypes from the previous def-
inition, and
(ii) all the inheritable nodes in the object graphs for the
query-related-prototypes.

Rules qr6 and qr7 encode the definition for qri(Q, I):

qr6: qri(Q,I) :- qrp(Q,I).
qr7: qri(Q,I) :- qri(Q,Y),

has(Y,S,I), inheritable(S).

Here we show how qri(Q, I) is applied to the other rules
as a filter or a constraint. We discussed the rule for “tc-
cloned-from” in section 3, which will compute for all the
instances in the KB. By applying the constraint to c1 and
making it c1′ (similarly to c2) the “tc-cloned-from” rules
will only compute the instances of interest.

c1’: cloned_from(X,Y) :- X!=Y,
has(X,cloned_from,Y), qri(Q,X).

In rule s2 where we compute the subsume relations be-
tween two instances, we need to constrain both instances us-
ing qri(Q, I). The resulting rule s2′ is as follows:

s2’: subsume(V1,V2) :-
qri(Q,V1), qri(Q,V2),
V1!=V2, inheritable(S),
not not_subsume(V1,V2).

After all the necessary constraints are applied to the rules
i1, i2, c1, c2, m1, m2 (all similar to c1′), and s1, s2 (all
similar to s2′), the resulting program is significantly more
efficient.

Query execution timings
We tested the rules on a corpus that contains 5180 classes,
32339 instances, 5673 entries in the class hierarchy graph,
and 198301 entries in the various object graphs. The run-
ning time with the efficient encoding is around 3 seconds
per question, while the earlier encoding ran for more than
two hours without giving an answer.

Correctness result
Definition 13 We define a program Π′KB w.r.t the Knowl-
edge base as the answer set program consisting of:

(i) all the rules in Definition 9 (i) substituted with the cor-
responding rules that have qri(Q, I) (as described in Def-
inition 12) as a constraint, and
(ii) all the facts as in Definition 9 (ii).

Theorem 2 Given a query Q, if qri(Q,X) is true then
X has value V for slot S after cloning and unification in a
KB iff:

Π′KB |= hasc(X,S, V )

Proof (sketch): The proof is similar to that of Proof of The-
orem 1, with one additional element, the use of qri(Q,X).
It is used in all the rules to focus the answer set of Π′KB on
instances that are related to the query. Hence, if for some X ,
qri(Q,X) is true, then the answer set of Π′KB has all the
necessary facts related to X .

Corollary 1 Given a query Q, if qri(Q,X) is true then

ΠKB |= hasc(X,S, V )

iff
Π′KB |= hasc(X,S, V )

Encoding of Question-Answering
The AURA system supports seven types of questions,
namely: computing a slot value, checking if an assertion
is true or false, identifying superclasses, comparing individ-
uals, describing a class, computing the relationship between
two individuals, and giving an example of a class. Our cur-
rent ASP based system can answer all the types of questions
that is supported by AURA. In this section, we show some of
the comparatively difficult ones. (We do not show the ASP
rules for “identifying superclasses” and “giving an example
of a class”, as they are straight forward.)
Describe a class: The most simple yet fundamental question
is: “What is X?”. There are two ways to answer this ques-
tion, (i) return the full list of properties for X, or (ii) return
the most distinguishable properties of X, in comparison to
its immediate superclass.

The first way provides a direct answer, and can be ob-
tained by using the object graph G′obj(X) and obtaining a
list of facts of the form hasc(X,S, V ) from it. However, it
has the downside of returning a long list of properties which
does not specify the unique properties that X has and its su-
perclasses do not.

The second way is better in a sense that only the unique
properties of X are returned. In this approach one needs to
compare X with its superclasses and return the differences.

We use the following rule to find X’s immediate super-
class(es) (also referred to as “most-specific-class”):
msc(X, MSC) :-

has(X, superclass, MSC).

We then define that the unique properties of X as the ones
that X has but the MSC doesn’t, and we use the following
predicate to denote it
diff(X, MSC, S, V, h1).

The detailed encoding of this predicate is given below under
the heading of question type III: “Class differences”.
Class similarities: This is another fundamental type of
question, which asks for the similarities between two
classes. For example, “What are the similarities between
prokaryotic cell and eukaryotic cell?” To answer, we intro-
duce the predicate sim(X,Y, S, V ) to stand for the same
value V of the same slot S shared by two instances X and Y.
The rules for this predicate are as follows:

sim(X,Y,S,V) :-
hasc(X,S,V), hasc(Y,S,V1),
V==V1, X!=Y.

sim(X,Y,S,V) :-
hasc(X,S,V), hasc(Y,S,V1),
X!=Y, V!=V1,
tc_cloned_from(V,V1),
tc_cloned_from(V1,V).
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We say two values are the same if either they have the
same name, or they clone from each other.10

Class differences:
Here we discuss how to answer questions like: “What

are the differences between prokaryotic cell and eukaryotic
cell?” To answer, we define “difference” as: What instance
X has but Y doesn’t, and vice versa. We use the predicate
diff (X,Y, S, V,H) to stand for: X has V for S but not Y if
H=h1, and Y has V for S but not X if H=h2. We introduce
H to represent which one of X and Y holds the value V.

diff(X,Y,S,V,h1) :- X!=Y,
hasc(X,S,V), not sim(X,Y,S,V).

diff(X,Y,S,V,h2) :- X!=Y,
hasc(Y,S,V), not sim(X,Y,S,V).

Computing a slot value: This is a common type of ques-
tions, and a representative example is What is the agent of
adhension-of-water (X)?. We can think of this question as a
one-hop search of the slot value A given an instance X and a
slot name S. So the answer is A if the relation hasc(X,S,A)
holds.

We consider another example of the question: What chem-
ical bond is the agent of adhension-of-water (X)?, in which
more properties (as constraints) are posed in the question.
The answer to this question is A if the following rela-
tions hold: hasc(X,S,A), tc instance of(A, P1), P1 = chemi-
cal bond.

We use P1 to denote the additional property, and accord-
ing to the question the answer A must be a “chemical bond”.
The answer is “hydrogen bond” which is both the agent of
X, and is a subclass of chemical bond.
Check if an assertion is true or false: Such a question
is asking whether an assertion of the form (X,R,Y) is true
or not. For example, “Is it true that an animal cell is a eu-
karyotic cell?” is asking whether (animal cell, is-a, eukary-
otic cell) is true or not.

So the answer to the question is true if we can conclude
h(X,R, Y ).
answer(Q, true) :- h(X,R,Y).

The rules to infer h(X,R, Y ) need to be added according
to the content of the question. For this example, we add the
following rule, which means that X is-a Y holds if Y is an
ancestor of X.
h(X,R,Y) :- ancestor(X,Y), R = is_a.

In addition we have the rules:

ancestor(X, A) :-
has(X, superclass, A).

ancestor(X, A) :-
ancestor(X, M),
has(M, superclass, A).

The following rule returns false when we cannot con-
clude that the answer is true.

10There exist cycles caused by the clone-from relation in KB.
However, it may not always be correct that X is the same as Y if X
clones from Y and Y clones from X. Here we just point out that the
logic rules can easily accommodate different conditions.

answer(Q, false) :-
not answer(Q,true), question(Q).

Compute relationship between two individuals: We use
an example to illustrate this type of questions: “What is
the relationship between photosynthesis and cellular respi-
ration?” The ideal answer would be: the result of cellular
respiration is the raw material for photosynthesis. Hence the
question is looking for the same values shared by different
slots of the two instances. We define the predicate “relation”
to entail this meaning:

relation(X,SX,Y,SY,V) :-
hasc(X,SX,V), hasc(Y,SY,V1),
V==V1, X!=Y, SX!=SY.

relation(X,SX,Y,SY,V) :-
hasc(X,SX,V), hasc(Y,SY,V1),
tc_cloned_from(V,V1),
tc_cloned_from(V1,V),
X!=Y, SX!=SY.

This encoding is similar to sim(X,Y, S, V ), with an ad-
ditional constraint that the slot names have to be different.

Conclusion and Future Work
Similar to AI planning where there is somewhat of a mis-
match in terms of research planners (mostly not HTN based)
and industrial planners (mostly Hierarchical Task Network
- HTN (Sacerdoti 1974) based) there seems to be a mis-
match between KR logics and the formalisms used in large
knowledge bases. A large number of the latter seem to use
frame based representation while there is comparatively less
theoretical research (outside of DL) on frame based repre-
sentation. Some exceptions include DLV+, FAS and F-logic
(Kifer and Lausen 1989). In this paper we show how an-
swer set programming can be used to encode some proce-
dural reasoning mechanisms in frame based systems, in par-
ticular “cloning” and “unification”. We then show that those
ASP encodings can be further enhanced with appropriate fil-
ters for making answer finding query (pattern) driven, as in
Magic Sets (Bancilhon, Sagiv, and Ullman 1986). Thus we
show how to answer various kinds of questions with respect
to large knowledge bases constructed by domain experts in
particular domains in a reasonable amount of time. In the fu-
ture we plan to explore answering other kinds of questions,
such as Why and How questions with respect to such large
knowledge bases.
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