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Abstract

We present a system capable of automatically solving com-
binatorial logic puzzles given in (simplified) English. It uses
an ontology to represent the puzzles in ASP which is appli-
cable to a large set of logic puzzles. To translate the En-
glish descriptions of the puzzles into this ontology, we use a
λ-calculus based approach using Probabilistic Combinatorial
Categorial Grammars (PCCG) where the meanings of words
are associated with parameters to be able to distinguish be-
tween multiple meanings of the same word.

Introduction and Motivation
One of the long term goal of our research is to develop sys-
tems that can “comprehend” natural language text and be
able to answer questions based on that understanding and as-
sociated reasoning. The success of the recent Watson (Fer-
rucci et al. 2010) and Siri (Roush June 2010) systems has
brought a lot of attention towards such a research direction.
While Watson is very good at understanding the Jeopardy
clues and Siri is able to answer many factoid questions well,
our focus is on being able to do “deep reasoning” with natu-
ral language text. To elucidate our notion of “deeper reason-
ing with natural language text” we propose and consider the
following challenge problem: To develop a system that can
take as input natural language descriptions of combinatorial
puzzles1 (Press 2007) and solve them.

To solve such a puzzle one needs to be able to reason with
the multitude of clues in that puzzle; hence, we use the term
“deep reasoning”.

It is well known how to manually represent the clues of a
combinatorial puzzle in a knowledge representation and rea-
soning language such as Answer Set Programming (ASP)
(Baral 2003) so that one can use a corresponding reasoning
engine of that language, such as (Gebser et al. 2007) for
ASP, to solve the puzzle. Hence, to develop an automated
system to solve such puzzles, we need a way to automati-
cally translate the natural language text of the puzzle to a
representation in ASP or a similar language.
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1An example is the well-known Zebra puzzle.
http://en.wikipedia.org/wiki/Zebra Puzzle

Towards that goal in this paper we pick ASP as our knowl-
edge representation and reasoning language. To automati-
cally translate English description of puzzles to ASP rules,
we build up on the basic approach of translating English to
ASP (Baral, Dzifcak, and Son 2008) that is inspired by Mon-
tague’s work (Montague 1974) on using lambda calculus to
give semantics to natural language text.

The reason we do not directly use the approach in (Baral,
Dzifcak, and Son 2008) is that it requires that the ASP-λ
representations of various words be given a-priori. We be-
lieve that construction of such expressions by humans is not
scalable and is perhaps one of the important reasons Mon-
tague’s work (Montague 1974) has not yet led to large scale
natural language understanding systems with the exception
of work by Bos, such as in (Bos and Markert 2005).

We propose an approach2 of learning the ASP-λ represen-
tations of various words from training examples of puzzles
and their ASP translations and then using them in translat-
ing sentences to ASP rules. This approach, which we first
presented in (Baral et al. 2011), can be described using the
overall architecture given in Figure 1.

There are two parts of the system in Figure 1 which de-
pend on each other: (a) the part in the right of Figure 1 builds
a lexicon by learning the of ASP-λ representations of words
from training examples of sentences and their ASP represen-
tations and assigns them a weight so as to deal with multiple
ASP-λ representations of the same word and (b) the part in
the left uses the lexicon and translates natural language sen-
tences to ASP rules.

The translation (from English to ASP) system, given in
the left hand side of Figure 1, uses a Probabilistic Combina-
torial Categorial Grammars (PCCG) (Ge and Mooney 2005)
and a lexicon consisting of words, their corresponding ASP-
λ representations and associated (quantitative) parameters to
do the translation. Since a word may have multiple mean-
ings implying that it may have multiple associated ASP-λ-
Calculus formulas, the associated parameters help us in us-
ing the “right” meaning in that the translation that has the
highest associated probability is the one that is picked.

2The systems and approaches in (Zettlemoyer and Collins 2009;
Ge and Mooney 2009; Chen and Mooney 2011; Kwiatkowski et al.
2010; 2011) , which have some similarities with our approach, have
not been used in the context of ASP and it is not clear if they could
be used in the context of ASP.
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The learning system takes a given training set of sen-
tences and their corresponding ASP-λ-Calculus rules, and
an initial vocabulary (consisting of some words and their
meaning) and uses Inverse λ algorithms3 and Generaliza-
tion4 techniques to obtain the meaning of words which are
encountered but are not in the initial lexicon. Because of the
generalization step and because of the inherent ambiguity
of words having multiple meanings, one may end up with
a lexicon where words are associated with multiple ASP-
λ-Calculus rules. A parameter learning method is used to
assign weights to each meaning of a word in such a way that
the probability that each sentence in the training set would
be translated to the given corresponding ASP-λ-Calculus
rule (using the approach in the left hand side of Figure 1)
is maximized. The block diagram of this learning system is
given in the right hand side of Figure 1.

A key aspect in being able to use the above approach is to
have an ontology of the puzzle representation that will allow
one to learn more general representation from given puzzle
encoding examples, and use it in new puzzle. In this regards,
we noticed that although there are many examples of puzzle
encodings in ASP, they were not amenable to be useful in
a learning based system where the system learns represen-
tations of words from given examples of puzzles and their
ASP code and then uses that to translate other puzzles. Con-
sidering that in our case the translation of English descrip-
tion of the puzzles into ASP is to be done by an automated
system and this system learns aspects of the translation by
going over a training set, we need to develop an ontology
of representing puzzles in ASP that is applicable to most
(if not all) combinatorial logic puzzles. This is one of the
main contributions of the paper. Some of the other contri-
butions of this paper are: We developed an overall system
that learns to solve combinatorial puzzles in English under
certain assumptions. We developed a system that learns to
translate simplified5 English to ASP. We developed a small
initial lexicon of words and their ASP-λ representations that
allows us to learn the representations of other words in puz-
zles and solve new puzzles using them. We identified some
of the background knowledge that is needed to be added to
the system.

Assumptions and Background Knowledge

With our longer term goal to be able to solve combinatorial
logic puzzles specified in English, as mentioned earlier, we
made some simplifying assumptions for this current work.
Here we assumed that the domains of puzzles are given (and
one does not have to extract them from the puzzle descrip-
tion) and focused on accurately translating the clues. We did

3They compute an expression F given ASP-λ-calculus expres-
sions G and H such that F@G or = H or G@F = H.

4This includes modifying a known ASP-λ-calculus expression
for other words of the same category(Baral et al. 2011).

5Our simplified English is different from “controlled” English
in that it does not have a pre-specified grammar. We only do some
preprocessing to eliminate anaphora and some other aspects.

a human preprocessing6 of puzzles to eliminate anaphora
and features that may lead to a sentence being translated
into multiple ASP rules. Besides translating the given En-
glish sentences, we added some domain knowledge related
to combinatorial logic puzzles. This is in line with the fact
that often natural language understanding involves going be-
yond literal understanding of a given text and taking into
context some background knowledge. We adopted a stan-
dard “Generate and test” approach in solving the puzzles.
The domain of the puzzle is used to generate all the possi-
ble solutions of the puzzle, which are then tested against the
constraints obtained from the clues by translating them into
ASP representation using our system that learns how to do
such translations.

Puzzle representation and Ontology
For our experiments, we focus on logic puzzles from (Press
2007; 2004; Dell 2005). These logic puzzles have a set of
basic domain data and a set of clues.

For example, a puzzle may have the domain data: 1,2,3,4
and 5 are ranks; earl, ivana, lucy, philip and tony are names;
earth, fire, metal, water and wood are elements; and cow,
dragon, horse, ox and rooster are animals.

Such domain data is encoded using the following format,
where etype(A, t) stores the element type t under the index
A, while element(A,X) is the predicate storing all the ele-
ments X of the type etype(A, type) under the index A. An
example of an instance of this encoding is given below.
index(1..n). % size of a tuple
eindex(1..m). % number of tuples

% type and lists of elements of that type,
% one element from each index forms a tuple
etype(1, type1).
element(1, el11). element(1, el12). ...
element(1, el1n). ...

For the given puzzle, the encoding would look like:
index(1..4).
eindex(1..5).

etype(1, name).
element(1,earl). element(1,ivana).
element(1,lucy). element(1,philip).
element(1,tony).
etype(2, element).
element(2,earth). element(2,fire).
element(2,metal). element(2,water).
element(2,wood). ...

In addition, to avoid permutations among the tuples, the
following facts are generated, where tuple(I,X) is the
predicate storing the elements X within a tuple I:
tuple(1,e11). ... tuple(1,e1n).

Using the above ontology clues are expressed as follows:
6The people doing the pre-processing were not told of any spe-

cific subset of English or any “Controlled” English to use. They
were only asked to simplify the sentences so that each sentence
would translate to a single clue.
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Figure 1: Overall system architecture

%Tony was the third person to have
%his fortune told.
:- tuple(I, tony), not tuple(I, 3).

%The person with the Lucky Element
%Wood had their fortune told fifth.
:- tuple(I, wood), not tuple(I, 5).

%Earl’s lucky element is Fire.
:- tuple(I, earl), not tuple(I, fire).

%Earl arrived immediately before
%the person with the Rooster.
:- tuple(I, earl), tuple(J, rooster),

tuple(I, X), tuple(J, Y),
etype(A, rank), element(A, X),
element(A, Y), X != Y-1.

Generic modules and background knowledge
Given the puzzle domain data, we combine their encod-
ings with additional modules responsible for generation and
background knowledge. The following rules are responsible
for generation of all the possible tuples, where we assume
that all the elements are exclusive.

1{tuple(I,X):element(A,X)}1.
:- tuple(I,X), tuple(J,X),

element(K,X), I != J.

In addition, a module with rules defining
generic/background knowledge is used so as to pro-
vide higher level knowledge which the clues define. For
example, a clue might discuss maximum, minimum, or
genders such as woman. Thus rules defining concepts and
knowledge such as maximum (max), minimum, within
range, sister is a woman and others are added. For example,
the concept “max” is encoded as:

notmax(A, X) :- element(A, X),
element(A, Y), etype(A,numerical),
X != Y, Y > X.

max(A, X) :- not notmax(A,X),
element(A,X),
etype(A,numerical).

Extracting relevant facts from the puzzle clues
A sample of clues with their corresponding representations
was given earlier. Let us take a closer look at the clue “Tony
was the third person to have his fortune told.”, encoded as
:- tuple(I, tony), not tuple(I, 3). This encoding specifies
that if “Tony” is assigned to tuple I , while the rank “3” is
not assigned to the tuple I , we obtain False. Thus this ASP
rule limits all the models of it’s program to have “Tony”
assigned to the same tuple as “3”. One of the questions
one might ask is where are the semantic data for “person”
or “fortune told”. They are missing from the translation
since with respect to the actual goal of solving the puzzle,
they do not contribute anything new or relevant. The fact
that “Tony” is a “person” is not relevant. With this encod-
ing, we attempt to encode only new and relevant informa-
tion with regards to the solutions of the puzzle. This is to
keep the structure of the encodings as simple and as gen-
eral as possible. In addition, if the rule would be encoded as
:- person(tony), tuple(I, tony), not tuple(I, 3)., the fact
person(tony) would have to be added to the program in or-
der for the constraint to give it’s desired meaning. However,
this does not seem reasonable as there is no apparent rea-
son to add it (outside for the clue to actually work), since
“person” is not part of the domain data of the puzzle.

Translating Natural language to ASP
To translate the English descriptions into ASP, we adopt
the approach in (Baral et al. 2011). This approach uses
Inverse-λ computations and generalization techniques to-
gether with learning. However for this paper, we had to
adapt the approach to the ASP language and develop an
ASP-λ-Calculus. An example of a clue translation us-
ing combinatorial categorial grammar (Steedman 2000) and
ASP-λ-calculus is given in table 1.

The overall learning algorithm
The input to the overall learning algorithm is a set of pairs
(Si, Li), i = 1, ..., n, where Si is a sentence and Li its cor-
responding logical form. The output of the algorithm is a
PCCG defined by the lexicon LT and a parameter vector
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ΘT . As given by (Baral et al. 2011), the parameter vector
Θi is updated at each iteration of the algorithm. It stores
a real number for each item in the dictionary. The overall
learning algorithm is given as follows:
• Input: A set of training sentences with their corresponding de-

sired representations S = {(Si, Li) : i = 1...n} where Si are
sentences and Li are desired expressions. Weights are given an
initial value of 0.1.
An initial feature vector Θ0. An initial lexicon L0.

• Output: An updated lexicon LT+1. An updated feature vector
ΘT+1.

• Algorithm:

– Set L0

– For t = 1 . . . T
– Step 1: (Lexical generation)
– For i = 1...n.
∗ For j = 1...n.
∗ Parse sentence Sj to obtain Tj

∗ Traverse Tj

· apply INV ERSE L, INV ERSE R and
GENERALIZED to find new ASP-λ-calculus
expressions of words and phrases α.

∗ Set Lt+1 = Lt ∪ α
– Step 2: (Parameter Estimation)
– Set Θt+1 = UPDATE(Θt, Lt+1)

• return GENERALIZE(LT , LT ),Θ(T )

To translate the clues, a trained model was used to trans-
late these from natural language into ASP. This model in-
cludes a dictionary with ASP-λ-calculus formulas corre-
sponding to the semantic representations of words. These
have their corresponding weights.

Evaluation
To evaluate the clue translation, we manually selected
800 clues. Standard 10 fold cross validation was used.
Precision measures the number of correctly translated
clues, save for permutations in the body of the rules, or head
of disjunctive rules. Recall measures the number of cor-
rect exact translations, F -measure is the harmonic mean of
Recall and Precision.

To evaluate the puzzles, we used the following approach.
A number of puzzles were selected and all their clues
formed the training data for the natural language module.
The training data was used to learn the meaning of words
and the associated parameters and these were then used to
translate the English clues to ASP. These were then com-
bined with the corresponding puzzle domain data, and the
generic/background ASP module. The resulting program
was solved using clingo, an extension of clasp (Gebser et
al. 2007). Accuracy measured the number of correctly
solved puzzles. A puzzle was considered correctly solved
if it provided a single correct solution. If a rule provided by
the clue translation from English into ASP was not syntacti-
cally correct, it was discarded. We did several experiments.
Using the 50 puzzles, we did a 10-fold cross validation to
measure the accuracy. In addition, we did additional experi-
ments with 10, 15 and 20 puzzle manually chosen as training

data. The C&C parser (Clark and Curran 2007) was used to
obtain the majority of the syntactic categories. The back-
ground knowledge for the 50 puzzles contained 62 different
ASP facts and rules, with the puzzles having 17.6 clues on
average (880 total).

Results
The results are given in tables 2 and 3. The “10-fold” corre-
sponds to experiments with 10-fold cross validation, “10-s”,
“15-s” and “20-s” corresponds to experiments where 10, 15
and 20 puzzles were manually chosen as training data re-
spectively.

Precision Recall F-measure
87.13 85.86 86.49

Table 2: Clue translation performance.
Accuracy

10-Fold 27/50 (54%)
10-s 21/40 (52.5%)
15-s 23/35 (65.71%)
20-s 25/30 (83.33%)

Table 3: Performance on puzzle solving.
The results for clue translation to ASP are comparable

to translating natural language sentences to Geoquery and
Robocup domains in (Baral et al. 2011), and used in similar
works such as (Zettlemoyer and Collins 2007) and (Ge and
Mooney 2009). Our results are close to the values reported
there, which range from 88 to 92 percent for the database
domain and 75 to 82 percent for the Robocup domain.

Conclusion and Future work
In this paper we presented a learning based approach to solve
combinatorial logic puzzles in English. Our system uses an
initial dictionary and sample puzzles in simplified English
and their ASP representations to learn how to translate new
puzzles (given in simplified English) to ASP and solve them,
where the unique answer set of the translated ASP program
corresponds to the solution of the puzzle. In the process it
may use some general knowledge modules. Our system used
results and components from various AI sub-disciplines in-
cluding natural language processing, knowledge representa-
tion and reasoning, machine learning and ontologies as well
as the functional programming concept of λ-calculus. There
are many ways to extend our work. The simplified English
limitation might be lifted by better natural language process-
ing tools and additional sentence analysis. We could also ap-
ply our approach to different types of puzzles. A modified
encodings might yield a smaller variance in the results. Fi-
nally we would like to submit that solving puzzles given in a
natural language could be considered as a challenge problem
for human level intelligence as it encompasses various facets
of intelligence that we listed earlier. In particular, one has to
use a reasoning system and can not substitute it with sur-
face level analysis that is often used in information retrieval
based methods.

For future work, we would like to add additional back-
ground knowledge which can be found in different puzzles.
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Earl’s lucky element is fire.
NP/NP NP/NP NP (S\NP )/NP NP
NP/NP NP (S\NP )/NP NP
NP (S\NP )
NP (S\NP )

S
Earl’s lucky element is fire.

λx.(x@earl) λx.x λx.x λx.λy. : −tuple(I, x), not tuple(I, y). fire
λx.(x@earl) λx.x λx.λy. : −tuple(I, x), not tuple(I, y). fire

earl λx. : −tuple(I, x), not tuple(I, fire).
earl λx. : −tuple(I, x), not tuple(I, fire).

: −tuple(I, earl), not tuple(I, fire).

Table 1: CCG and λ-calculus derivation for “Earl’s lucky element is fire.”

Our current modules only covered the puzzles we used for
evaluation, however many new puzzles may require differ-
ent background knowledge. For example, geographical in-
formation or locations of world cities are required in order
to solve some of the other puzzles. In this work, we assumed
that the domain of the puzzle is given for each puzzle. How-
ever, it might be possible to extract this information from
the actual clues and the puzzle’s accompanying story. Such
system would then be able to automatically generate the do-
main of a puzzle, while the presented system can be used
to translate the clues. Another limitation of the presented
work is that the clues had to be manually pre-processed by
humans to get rid of anaphoras. This can be avoided by pro-
grams that can preprocess anaphora and can split the clues
in a such a way that the presented system can learn from
them. With such improvements in place, the system could
be made fully automatic. It could then just be given a set of
puzzles with ASP solutions, and it would learn from it and
then be able to solve new puzzles without any human inter-
vention. That is our goal and we propose it as a challenge
to the community.
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