
Implicit Constraints for Qualitative
Spatial and Temporal Reasoning

Jochen Renz
Research School of Computer Science

The Australian National University
Canberra, ACT, Australia
jochen.renz@anu.edu.au

Abstract

Qualitative information about spatial or temporal entities is
represented by specifying qualitative relations between these
entities. It is then possible to apply qualitative reasoning
methods for tasks such as checking consistency of the given
information, deriving previously unknown information or an-
swering queries. Depending on the kind of information that
is represented, qualitative reasoning methods might lead to
incorrect results, and it is a topic of ongoing research efforts
to determine when and why this occurs. In this paper we
present two possible explanations for this behaviour: (1) the
existence of implicit entities that we do not explicitly repre-
sent; (2) the existence of implicit constraints that have to be
satisfied, but which are not explicitly represented. We show
that both of these can lead to undetected inconsistencies. By
making these implicit entities and constraints explicit, and by
including them in the qualitative representation, we are able
to solve problems that could not be solved qualitatively be-
fore. We present different examples of implicit entities and
implicit constraints and an algorithm for solving them.

Introduction
A qualitative representation of spatial or temporal informa-
tion typically consists of a number of given spatial or tem-
poral entities and given qualitative relations between these
entities. Qualitative reasoning about such a representation
includes tasks such as deciding whether the given informa-
tion is consistent, inferring previously unknown informa-
tion from the given information, or answering queries about
the given entities and relations. The dominant approach for
qualitative spatial and temporal reasoning over the past 20+
years has been to use a qualitative spatial or temporal cal-
culus (Cohn and Renz 2008). Typically1, this is defined as
follows:

1. We take an infinite domain D that contains all possible
spatial or temporal entities of a particular type (usually
points, intervals or regions in a one, two, or three dimen-
sional space);

2. We define a finite set B of pairwise disjoint and jointly ex-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We will later discuss that this is not always the case.

haustive binary2 base relations over D, i.e., between any
pair of values of D exactly one base relation holds;

3. We determine the converse relation of each base relation
and the composition ◦ between any pair of base relations
(defined as R ◦ S = {(x, z)|∃y : (x, y) ∈ R and (y, z) ∈
S}), and only accept sets of base relations for which their
powerset 2B is closed under composition, intersection,
union and converse of relations.

Using these relations, spatial and temporal information can
be represented qualitatively by specifying a set Θ of con-
straints of the form xRy, where x, y are variables over D
and R ∈ 2B. Taking relations of 2B instead of only relations
of B allows us to specify indefinite information as a union
of possible base relations when it is not known which one
holds.

The most common reasoning problem is to determine
consistency of Θ, i.e., decide whether there is an instan-
tiation of each variable with values from D such that all
constraints are satisfied. Qualitative reasoning can then be
done by applying the so-called path-consistency operation
(Mackworth 1977), which takes a triple of variables x, y, z
and their constraints xRy, ySz, xTz ∈ Θ and replaces xTz
with the new constraint x(R ◦ S) ∩ Tz. This operation re-
moves base relations that cannot hold between x and z. If
we remove all base relations of a constraint, then Θ is incon-
sistent. Otherwise, we apply this operation to all triples of
Θ repeatedly until no base relations are removed any more,
in which case the resulting set Θ′ is path-consistent.

The limit of the path-consistency operation is reached
when all constraints consist of only one base relation. We
call this an atomic set of constraints. If there are still con-
straints with multiple base relations left, we can try path-
consistency again by selecting each of the base relations sep-
arately.3 This is usually done in a backtracking manner for

2Here we restrict our exposition to binary relations, but there
have also been calculi of larger arity in the literature.

3There is a significant amount of work on identifying tractable
subsets of qualitative calculi for which path-consistency decides
consistency (Renz 2007). Once such a tractable subset has been
identified, it is not necessary to test each base relation separately,
but rather unions of base relations that are part of the tractable sub-
set. This can considerably increase the efficiency of reasoning, but
has no immediate relevance to this paper.

509

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

all the different constraints (Van Beek and Manchak 1996).
But if we only have an atomic set of constraints left, it is
commonly accepted that nothing more can be done using
qualitative reasoning alone.

It is, therefore, considered to be one of the most important
questions in the area of qualitative spatial and temporal rea-
soning to determine if and when path-consistency decides
consistency for atomic sets of constraints of a given calcu-
lus. If we can prove that it does, then all is good and we can
do reasoning within the calculus using path-consistency and
backtracking. However, in cases where we can show that
path-consistency does not decide consistency for the base
relations of a calculus, this is often considered a set-back
and a demonstration of the limits of qualitative reasoning.

In this paper we show that qualitative reasoning is much
more powerful than using only path-consistency, and that
even in cases where qualitative reasoning seems to fail, there
is still much more qualitative reasoning that can be done. In
particular, we demonstrate that one of the main shortcom-
ings of the current standard way of qualitative representa-
tion and reasoning is that much of the readily available qual-
itative information is not being used (Section 3). There is
an abundance of implicit information available, in the form
of implicit spatial or temporal entities and in the form of
implicit qualitative constraints. We demonstrate that ignor-
ing this implicit information is the main reason why current
qualitative reasoning methods fail in some cases (Section 4).
We show that by making this implicit information explicit,
we can successfully apply qualitative reasoning methods to
cases that seemed impossible to solve using qualitative rea-
soning alone. We also introduce a new qualitative reason-
ing method that goes beyond the traditional path-consistency
method and which is not based on composition in the tradi-
tional sense (Section 5).

In the following section we give some more details on
qualitative spatial and temporal reasoning and present addi-
tional background information.

Qualitative Spatial & Temporal Reasoning
One of the main motivations of qualitative spatial and tem-
poral reasoning is the ability to represent information about
spatial or temporal entities without knowing all the exact
details about them. For example, we do not need to know
the exact shape and the exact location of an object in order
to represent information about it. It is usually enough to
know that the phone is on the desk in the study, rather than
knowing its exact coordinates and those of the desk. Dealing
with such everyday qualitative information requires qualita-
tive reasoning and, therefore, both qualitative representation
and qualitative reasoning are considered to be similar to the
way humans usually deal with spatial and temporal informa-
tion. The lack of exact details and the inherent vagueness of
qualitative information makes it very hard to represent this
kind of information in a quantitative way, using for exam-
ple a coordinate system. In the introduction we mentioned
that sometimes the limit of qualitative reasoning seems to
be reached and that other methods have to be used. But due
to this difficulty of adequately representing qualitative infor-
mation in an equivalent quantitative way, there are often no

y

x

y

EC(x,y)

x

y

TPP(x,y)

x y y x xy x y

EQ(x,y)PO(x,y)

x y

NTPP(x,y)

x

DC(x,y) TPP (x,y)-1 -1NTPP (x,y)

startsbefore/after meets overlaps finishes during equal

Figure 1: The eight base relations of RCC8 (top) and eight
of the 13 base relations of the Interval Algebra (bottom).
The remaining six base relations are the converse relations
of these.

alternative methods available and qualitative reasoning is all
we can do.

Some well-known examples
The three best known and most widely studied qualitative
spatial and temporal calculi are the Point Algebra (PA) (Vi-
lain et al. 1990), the Interval Algebra (IA) (Allen 1983),
and the Region Connection Calculus RCC8 (Randell et al.
1992) (see Figure 1). The domain of the PA are the points
on a directed infinite line, its base relations are {<,=, >}.
The domain of the IA are convex intervals on a directed in-
finite line. Its base relations represent 13 different possi-
bilities how two intervals on a directed line can be topo-
logically related: before (b), after (bi), meets (m), met-by
(mi), overlaps (o), overlapped-by (oi), starts (s), started-
by (si), during (d), contains (di), finishes (f), finished-by
(fi), and equal (eq). The domain of RCC8 is the (regu-
lar) closed regions in an n-dimensional space. The 8 base
relations are the different possibilities how two region can
be related topologically: disconnected (DC), externally con-
nected (EC), partially overlap (PO), tangential proper part
(TPP), non-tangential proper part (NTPP), the converses
TPPI and NTPPI, and equal (EQ).

The IA is closely related to the PA as intervals can be
represented as a set of two endpoints and all the IA base
relations can be expressed as simple combinations of PA re-
lations over the four endpoints. For both of these calculi, it
is straightforward to compute the compositions between any
two base relations since all involved entities can be enumer-
ated. For both calculi, path-consistency decides consistency
for atomic sets of constraints. RCC8 is much more difficult
than IA and PA as there is no obvious way of formally repre-
senting the shape of an arbitrary region. This makes it very
difficult (if not impossible) to compute the compositions of
the RCC8 base relations. By identifying a counterexample,
it was found that RCC8 is actually not closed under compo-
sition, which violates point 3 in the introduction. As a con-
sequence, the concept of weak composition was introduced,
which is the smallest relation contained in 2B that contains
the actual composition of two base relations (Ligozat and
Renz 2004). Obviously, any calculus is closed under weak
composition.

Algebraic closure and how it can fail
One consequence of using weak composition instead of
composition in the definition of a calculus is that path-

510

consistency does not work any more as it requires com-
position. Path-consistency was, therefore, replaced by the
concept of algebraic closure, which is the same operation
as path-consistency, but uses weak composition instead of
composition (Ligozat and Renz 2004). For cases where the
actual composition can be computed, weak composition is
equivalent to composition, and hence, weak composition
and algebraic closure is always used nowadays. Even though
RCC8 uses weak composition instead of composition, it has
been shown that algebraic closure decides consistency for
atomic sets of constraints.

This raises the question of what difference it makes
whether we know the composition or only the weak com-
position of a calculus. It has been shown that the reason
for whether algebraic closure decides consistency for atomic
sets of constraint does not depend on whether we have com-
position or weak composition, but whether a calculus is
closed under constraints (Renz and Ligozat 2005). A set of
relations is not closed under constraints, if it is possible to
enforce non-overlapping subatomic relations. A hypotheti-
cal example of this would be if a set S of RCC8 constraints
enforces that a certain constraint xECy ∈ S only has solu-
tions where x connects to y along a line, and if another set
S ′ enforces that xECy only has a solution where x connects
to y at a single point. By considering S ∩ S ′ we would still
have xECy but it cannot be instantiated as it cannot connect
only along a line and only along a point at the same time.
Here, connecting along a line, and connecting at a point are
non-overlapping subatomic relations of the base relation EC.
In such a case, algebraic closure cannot detect the inconsis-
tency in general. But since algebraic closure decides consis-
tency for atomic sets of RCC8 constraints, our hypothetical
example is not possible for RCC8.

In this paper we will introduce an additional qualitative
method that has the potential to detect inconsistencies gen-
erated by non-overlapping subatomic relations.

Shortcomings of Current Representations –
Implicit Entities and Implicit Constraints

In this section we demonstrate the shortcomings of existing
qualitative spatial and temporal representations. For this we
identify implicit entities and implicit constraints.

Implicit spatial and temporal entities
We begin by formally defining the concept of an implicit
entity.

Definition 1 (Implicit, explicit and conditional entities)
Given a set Θ of spatial or temporal constraints xRy, where
x, y ∈ V are variables over a domain D, and R ∈ 2B is a
spatial or temporal relation over a set of base relations B.
We assume that D ⊆ Rn, i.e., it is not a set of symbols, but
a set of entities in an n-dimensional Euclidean spaceRn.

For a given consistent instantiation of Θ, we call each
entity inD that is explicitly referred to by a variable in Θ an
explicit entity, and refer to the set of all explicit entities as
E ⊆ D. An implicit entity is any entity that can be derived
from elements of E in a clearly defined way, for example by
union, intersection, set difference, complement, convex hull,

Figure 2: Some IA relations and their implicit entities, de-
picted using thin lines.

or other one-to-one, or many-to-one functions. We refer to
the set of all implicit entities as I ⊆ D∗, where D∗ is the
closure ofD under the functions we use to derive I. We note
that D∗ can contain elements of lower dimension than D.

To make implicit entities explicit means that we extend the
set of explicit variables V to V∗ by adding implicit variables
v ∈ VI that refer to particular implicit entities. Variables
in VI are dependent variables of V , since their instantia-
tion is determined by instantiations of variables of V using
a clearly defined one-to-one or many-to-one function. An
implicit variable that may be instantiated with the empty set
∅ is called a conditional variable (written as ẑ) and the cor-
responding entity a conditional entity.

Conditional entities can be interesting if they provide a
meaningful qualitative distinction, such as cases where the
conditional entity exists vs. cases where it does not exist.

Let us look at some examples for implicit entities. We
start with the Interval Algebra and the base relation starts.
Whenever the constraint xsy is satisfied, there must be two
explicit entities x = [xs, xe] and y = [ys, ye], where the
startpoints xs of x and ys of y are the same, while the end-
point xe of x is inside y before the endpoint ye of y. But
there is also an implicit entity z which is the interval [xe, ye]
from when x ends to when y ends (see Fig. 2, left). This
interval might never be used and never be referred to explic-
itly, but there is no denying the fact that this interval must
exist whenever xsy is satisfied.

There are similar implicit intervals for the other 12 base
relations of the IA. In general, every IA base relation xBy
uses between two and four distinct points out of the four
endpoints xs, xe, ys, ye of x and y. Any two of these points
define an interval. There are 6 intervals (3 ∗ 4/2) for the
base relations with 4 distinct endpoints, 3 interval (3 ∗ 2/2)
for the base relations with 3 distinct endpoints, and 1 interval
(2 ∗ 1/2) for the equal relation with 2 distinct endpoints (see
Fig. 2 for some examples)
Proposition 2 (Implicit entities of the Interval Algebra)

Given an atomic set Θ over the Interval Algebra.
Whenever a constraint xRy ∈ Θ is consistently instantiated
with two intervals [xs, xe] and [ys, ye], the four endpoints
xs, xe, ys, ye induce implicit intervals as follows:
• If R is one of b, bi, o, oi, d, di, then there are 4 distinct

endpoints that induce 4 unique implicit intervals.
• If R is one of m,mi, s, si, f, fi, then there are 3 distinct

endpoints that induce 1 unique implicit interval.
• If R = eq, there are only two distinct endpoints and no

implicit intervals.
Definition 3 Given an atomic set Θ over the Interval Alge-
bra and its variables V . We introduce a fresh implicit vari-
able v for each implicit interval induced by Θ as specified

511

in Proposition 2. We define VIA as the set that consists of V
and all implicit variables v.

Lemma 4 Given an atomic set Θ over the Interval Algebra
with variables V representing intervals. Let E be the set of
all endpoints corresponding to variables v ∈ V , i.e., E =
{vs, ve|v = [vs, ve] ∈ V}. VIA contains a variable referring
to each pair of endpoints ei, ej ∈ E.

Proof Sketch. Each e ∈ E belongs to one variable in V .
Any two variables x, y ∈ V form an atomic constraint in
Θ and there is a variable corresponding to each pair of end-
points from x and y either in VIA or on V .

We can also obtain implicit entities for RCC8. For all ex-
plicit entities x, we can define the boundary δx as an implicit
entity of x. For the constraint xPOy we get four implicit en-
tities4 that exist whenever xPOy is satisfied: z1 = x ∩ y,
z2 = x \ y, z3 = y \ x, and z4 = x ∪ y. For the PO relation
there is an interesting conditional enitity that can be useful
in distinguishing cases of PO relations. It is the intersection
of the boundary of x with the boundary of y: ẑ5 = δx ∩ δy
and allows us to distinguish between cases where it exists
and cases where it does not exist. For the TPP and TPPi re-
lations, the intersection of the boundaries of x and y is an
implicit entity as there must always be a non-empty inter-
section, i.e., z1 = δx ∩ δy. The second implicit entity is the
set difference between x and y, i.e., z2 = x \ y for TPPi and
z2 = y \ x for TPP. For the EC relation, the intersection of
the boundaries of x and y is also an implicit entity, but since
x and y only intersect at the boundaries, it is equivalent to
z1 = x ∩ y. The second implicit entity of EC is z2 = x ∪ y.
For the DC relation, the union is the only implicit entity,
while for NTPP and NTPPi the set differences are the only
implicit entities.

Note that some of these implicit entities of RCC8 are actu-
ally used in the definition of the 9-intersection model (Egen-
hofer and Franzosa 1991). Egenhofer and Franzosa consid-
ered the 9 possible intersections of the boundaries, interiors
and exteriors of two regions and defined relations according
to whether these intersections are empty or non-empty, lead-
ing to 29 potential relations. In the end, they grouped these
relations together to form 8 different base relations, similar
to the RCC8 relations. To the best of our knowledge, the
intersections corresponding to our implicit entities were not
used in the way and for the purpose we are proposing in this
paper.

Unless there is an explicit entity that happens to be equiv-
alent to an implicit entity, these implicit entities are never
considered when we do composition based qualitative rea-
soning in the way it has been done in the past 20+ years.
It is possible that while using qualitative reasoning, one or
more of these explicit entities become empty. This leads to a
contradiction which may be undetected by the existing qual-
itative reasoning methods. However, the more likely case is
that constraints that must hold for implicit entities are vio-
lated and that this leads to undetected contradictions.

4Note: In order to make our formalism easier to understand, we
are slightly abusing notation by writing statements such as x ∩ y
where x and y are variables over a domain, while ∩ is only defined
for domain values and not for variables.

Implicit relations and implicit constraints
Given the existence of implicit entities, it is clear that there
must be constraints between implicit entities, and between
implicit and explicit entities that are never considered by the
traditional qualitative reasoning methods. However, there
are also additional constraints between explicit entities that
have to be satisfied whenever a given constraint or a given
set of constraints is consistent. These additional constraints
are usually a consequence of the fundamental properties of
space and time and must hold for whatever spatial or tem-
poral domains we use. These constraints can be so simple
and obvious that we might forget to make them explicit. An
example of implicit constraints has been used by (Gerevini
and Renz 2002): If a region x is contained in a region y, then
xmust be smaller than y. x < y is an implicit constraint that
must be satisfied whenever xTPPy or xNTPPy are satis-
fied.

Definition 5 (implicit and conditional constraints) Given
a set Θ of spatial or temporal constraints over a domain
D ⊆ Rn and over a set of spatial or temporal relations 2B

as above. Given a set V∗ of variables over D∗, referring
to the implicit and explicit entities of Θ, where D∗ is
the closure of D under the relevant transformations. An
implicit constraint R(x1, . . . , xn), where x1, . . . , xn ∈ V∗
andR ⊆ D∗×nD∗ is a constraint between implicit entities,
between explicit entities, or between implicit and explicit
entities that is not part of Θ, but that has to be satisfied
whenever Θ is consistent. A relation R ⊆ D∗ ×n D∗ is
called an implicit relation if it is used as part of an implicit
constraint. A conditional constraint is similar to an implicit
constraint, but does not have to be satisfied whenever Θ is
consistent.

We give some examples for implicit constraints that use
the implicit entities we defined above. For the IA relation
starts and the constraint xsy, we discussed that there is one
implicit entity, the interval z between the endpoint of x and
the endpoint of y. Some obvious implicit constraints in this
case are xmz and zfy. Another implicit constraint is x ∪
z = y. Since we know that x and z do not overlap, we also
have the implicit constraint duration(x) + duration(z) =
duration(y), or in short x+ z = y.

It is of course one of the main features of the IA that we
do not consider the duration of intervals and that the IA base
relations they satisfy are independent of their durations. But
independent of this, and independent of the actual durations
of the intervals and whether we know them or not, these im-
plicit constraints have to be satisfied whenever the constraint
xsy is consistent. They represent some of the fundamen-
tal properties of time and space, and we often forget about
them in our qualitative representations. Similar implicit con-
straints hold for other IA relations.

Definition 6 (Implicit constraints of the Interval Algebra)
Given a set Θ of atomic constraints over the Interval Al-
gebra and the corresponding set of explicit and implicit
variables VIA. Each variable in VD = VIA \ V is a depen-
dent variable of two variables in V . The IA base relations
between two variables x, y ∈ V and all their common

512

dependent variables are clearly defined. We define ΘIA as
the set of all (explicit and implicit) IA constraints between
any two variables in V and their common dependent
variables. Note that ΘIA includes Θ.

In addition to IA constraints, we can also obtain implicit
size constraints (IS) of type x+yRz, with x, y, z ∈ VIA and
R a relative size relation of the set {<,>,=}. We obtain
such an IS constraint whenever xmy ∈ VIA and the rela-
tions between x and z and between y and z in VIA are the
following:

1. If xdz and (ydz or yfz) in ΘIA, then x+ y < z holds.
2. If xsz and ydz in ΘIA, then x+ y < z holds.
3. If xsz and yfz in ΘIA, then x+ y = z holds.
4. If zsx, zfx, zdx, zsy, zfy, or zdy in ΘIA, then x+y > z

holds.
5. If xoz and zoy or zfiy in ΘIA, then x+ y > z holds.
6. If xsz and zoy in ΘIA, then x+ y > z holds.

We define ΘIS as the set of all these implicit size constraints.

The same kinds of implicit constraints also hold for
RCC8. For the constraint xPOy, for example, using the
notations we introduced after Lemma 4, we get the im-
plicit constraint z1 ∪ z2 = x, or similarly volume(z1) +
volume(z2) = volume(x) (simplified just z1 + z2 = x).
In addition, we get the implicit constraints z1 + z3 = y,
x + z2 = z4 and y + z1 = z4. Note that for RCC8, we
have some implicit entities that are of lower dimension, and
we assume that any entity of lower dimension has a volume
of 0 when compared with entities of higher dimension. We
can specify similar constraints for the boundary of regions.
For example, the sum of all disjoint pieces of the boundary
cannot be larger than the whole boundary. An example for a
conditional constraint is ”z1 is a point” or ”z1 is a line” for
the RCC8 relation EC, as discussed in the previous section.

While we can specify implicit entities and implicit con-
straints for the IA and for RCC8, we cannot give an exam-
ple where they actually make a difference. This is because
for IA and for RCC8, algebraic closure decides consistency
for atomic sets of constraints and they are both closed under
constraints. We believe that this is the main reason why im-
plicit entities and implicit constraints have been ignored in
the past.

In the next section we analyse some calculi for which al-
gebraic closure does not decide consistency for atomic sets
of constraints. It turns out that implicit entities and implicit
constraints have a significant effect on these calculi.

When Implicit Entities and Implicit
Constraints Matter

We have seen in the previous section that implicit entities
and implicit constraints can be defined, but they do not have
an effect for calculi where algebraic closure decides con-
sistency. However, there are many calculi for which this
property is not satisfied. Some of these calculi are relatively
simple extensions or modifications of the ”big two”, the IA
and RCC8. In this section we have a closer look at two of
these calculi and try to understand why qualitative reasoning

fails for these calculi and how this relates to implicit entities
and implicit constraints. We start with a simple case.

The Containment Algebra
Our first example is the Containment Algebra (Ladkin
and Maddux 1994) which consists of 5 base relations
and is isomorphic to a subalgebra of IA. The 5 base
relations are equal(=), contains(c), contained-in(ci),
nonempty-intersection(n), and apart(a). They corre-
spond to unions of IA relations as follows:

= ≡ {eq} (1)
c ≡ {s, f, d} (2)
ci ≡ {si, fi, di} (3)
n ≡ {o, oi} (4)
a ≡ {b, bi,m,mi} (5)

The containment algebra does not distinguish between the
direction of intervals and does not consider the endpoint of
intervals when comparing them. As such it is very similar
to RCC5, the subalgebra of RCC8 that does not consider
the boundary of regions. While algebraic closure decides
consistency for atomic sets of RCC 5 constraints, it does
not decide consistency for the containment algebra, as the
following example demonstrates.
Example 7 Given the set of constraints in the containment
algebra Θ = {xny, ynz, xaz, wny,wax,waz}. Since x
and z both have a non-empty intersection with y, they must
overlap y from two different sides. w also overlaps y but is
apart from x and z. This is impossible as y only has two
different sides from which it can be overlapped. This incon-
sistency cannot be detected using algebraic closure.

This example is consistent for RCC5 since we do not have
the restriction that two entities can only overlap from two
sides. For the Containment Algebra, we get the same im-
plicit entities as for the Interval Algebra, which allows us
to distinguish the two sides of an interval. By adding the
implicit entities and the corresponding implicit constraints,
we can solve instances of the Containment Algebra. But
since algebraic closure decides consistency for the ORD-
Horn subset of IA (Nebel and Bürckert 1999) and since all
containment algebra relations are in ORD-Horn, we can also
detect inconsistency of the given example by converting it
into IA relations and running algebraic closure on the trans-
formed set.

INDU – Qualitative meets Quantitative
The INDU calculus has been introduced by (Pujari et al.
1999) and its complexity has been analysed by (Balbiani
et al. 2006). INDU is a straightforward and fairly sim-
ple extension of the IA. In addition to the 13 IA base rela-
tion, INDU also considers the relative durations of intervals.
Each interval can have a shorter, longer, or equal duration
with respect to any of the other intervals, which can be rep-
resented using the standard point algebra relations. INDU
consists of 25 base relations: for each of the IA base rela-
tions b, bi,m,mi, o, oi there will be 3 INDU base relations
of the form b<, b=, b>, for the other 7 IA base relations the

513

relative size of the intervals is fixed to < for s, f, d, to > for
si, fi, di and to = for eq. In addition, we have to consider
the implicit entities and implicit constraints that we already
have for the IA.

Definition 8 (Implicit INDU entities and constraints)
Given a set of INDU constraints Θ, and the corresponding
sets of IA constraints ΘI and the corresponding set of PA
constraints ΘP . Θ has the same implicit entities and the
same implicit IA and implicit size constraints as ΘI . In
addition to the existing PA constraints ΘP , we also get
implicit size constraints for Θ. All implicit and explicit size
constraints ΘPA we get for Θ are the following:

• If aRb ∈ ΘP , then add aRb to ΘPA

• If a + b < c or a + b = c in ΘIS , then add a < c and
b < c to ΘPA

The next lemma follows immediately from this definition.

Lemma 9 Given a set of INDU constraints Θ. Θ is consis-
tent if and only if ΘIA ∪ΘIS ∪ΘPA is consistent.

So INDU is essentially a combination of the IA with the
PA. The PA is one of the simplest algebras one can consider
and, intuitively, a combination of IA with PA should not be
too much harder than the IA alone. However, consider the
simple example of three intervals x, y, z where the INDU
constraints xs<z, xm>y, and yf<z hold. In this example,
the relative duration of x is larger than that of y, so the rela-
tive duration of x must be larger than half of the duration of
z. We could similarly enforce that the duration of x is less
than half of z:

Example 10 Given six variables x1, x2, y1, y2, z1, z2 and
the following inconsistent INDU constraints: (1) x1s<z1,
x1m>y1, y1f<z1 enforce that x1 is larger than y1. (2)
x2s<z2, x2m<y2, and y2f<z2 enforce that x2 is smaller
than y2, plus (3) x1b=x2 and z1b=z2 that connect the pre-
vious constraints. As a simple implementation shows, al-
gebraic closure does not detect that these constraints are
inconsistent.

This is an example that shows that INDU is not closed un-
der constraints and we cannot detect this contradiction using
the standard qualitative reasoning methods. But INDU is
even more expressive. In fact, we can express all standard
arithmetic operations over the rational numbers in INDU and
solve equations over the rational numbers by deciding con-
sistency of a set of INDU constraints.

INDU Arithmetic
Addition and subtraction can already be expressed in the IA
by using a triple of constraints xsz, xmy, and yfz. We
get x + y = z and z − x = y without even knowing
the lengths of the intervals. These are the implicit con-
straints we introduced earlier. Multiplication y = n ∗ x
can be obtained by concatenating n intervals with length
x, i.e, x1m=x2m= . . .m=xn, The interval y with x1s<y
and xnf<y is the result. Division y = x/m works equally
by dividing interval x into m intervals with equal length y:
y1m=ysm= . . .m=ym, y1s<x, ymf<x.

Figure 3: Constructing rational numbers using INDU

These operations alone are not very useful as we do not
know the length of any of the intervals. Also, we need to be
able to enumerate a certain number of intervals. However,
we can recursively generate intervals of any length ` where
` is a rational number and u1 is an interval of unit length 1
using the following algorithm.

Algorithm 11 (Construction of rational numbers) U is
the set of all unit length intervals, N the set of all integer
length intervals, I is the set of all intervals, C is the set of
INDU constraints over I, and u1 is the unit interval (see
Fig. 3). kmax is the maximum integer length up to which we
generate intervals.

1. U = {u1}, N = {n1}, I = {u1, n1}, C = {u1 = n1}
2. k := 2
3. While k < kmax do
4. We introduce two fresh intervals uk and nk as follows:

U := U ∪ {uk}, N := N ∪ {nk}, I := I ∪ {uk, nk}
C := C ∪ {uk−1m=uk, u1s<nk, ukf<nk},

5. For each interval ui ∈ U , we add two fresh intervals
xki and yki to I
and add the following constraints to C:

a. if i = 1, then we add xkis<uk and yki = xki,
b. if 1 < i ≤ k, add xki−1m=xki, ykis<uk,

and xkif<yki,
c. if i = k, then we add xkif<uk.

6. k:=k+1

After running this procedure, N contains an interval
with length k for every integer k < kmax, in particular
length(nk) = k. I contains an interval of length ` for every
rational number ` = n/m, where n and m are integers and
n < m. Then the interval ym,n has length `. If n > m, n
andm are integers and n/m = k+n′/m, where k and n′ are
integers and n′ < m, then we can get an interval of length
` by adding nk and ym,n′ . Note that the procedure works
without being able to count, it works purely symbolically by
comparing elements of sets. As such we can construct the
concept of rational numbers from INDU relations.

If we repeat this procedure up to a given maximum k-
value k = kmax − 1, then we denote the resulting sets of
intervals and constraints as Nk, Ik, Uk and Ck. In this case
the longest interval we get has length k and the smallest in-
terval length 1/k. While this procedure generates all rational
numbers systematically, we do not need all these intervals if
we only want to generate a certain rational number ` = n/m
represented by the interval ym,n. We only need the unit in-
tervals in Um plus the intervals xmi for 1 ≤ i ≤ m. We
call this set of intervals Gm, the intervals that generate ratio-
nal numbers over m. The corresponding set of constraints is
called GmC .

All intervals in I are to the right of u1, so we can now

514

represent any equation over the rational numbers using the
space to the left of u1. In order to have an interval x of ra-
tional length `, we can write the constraint xb=y` where y`
is the interval in our above defined structure that has length
`. We can combine these intervals using the addition, sub-
traction, multiplication and division constraints we defined
above and express any equation over the rational numbers.
Example 12 Consider the equation 1/3+1/7 = 1/2, which
is obviously wrong. The corresponding set Θ of INDU con-
straints should be recognized as inconsistent. Θ contains
the constraints xs<z, x{m<,m=,m>}y, and yf<z, where
x corresponds to 1/3, y to 1/7, and z to 1/2. This can be
represented as xb=y3,1, yb=y7,1 and zb=y2,1. In addition,
we have to add the consistent sets of constraints G3C , G7C , and
G2C to Θ, as otherwise we cannot enforce the desired lengths
of the intervals. It should be clear from example 10 that
even though Θ is inconsistent, the traditional INDU reason-
ing method will not detect the inconsistency.

As shown in Example 10, algebraic closure does not de-
cide consistency for atomic INDU constraints. This is not
very surprising, since INDU is so expressive, that it even
allows us to do arithmetic calculation over the rational num-
bers. However, despite this expressivity, and despite the
unavailability of algebraic closure as a sufficient qualitative
reasoning method, we can still solve INDU instances using
qualitative reasoning alone. In the next section we show how
we can make use of implicit entities and implicit constraints
and solve INDU using a simple qualitative reasoning algo-
rithm that is similar to algebraic closure.

Reasoning with Implicit Constraints
In the previous section we demonstrated the expressiveness
of INDU and showed that even simple and obvious incon-
sistencies cannot be detected by the standard qualitative rea-
soning methods. In this section we show how implicit en-
tities and implicit constraints can be used to decide consis-
tency of INDU instances in a purely qualitative way.
Example 13 We first look at the initial INDU example 10. If
we consider the implicit constraints (1) x1+y1 = z1 and (2)
x2 + y2 = z2 together with the explicit constraints x1 = x2
and z1 = z2, then we can replace all x1 with x2 and all z1
with z2 and get (3) x2 + y1 = z2. By combining (2) and (3)
we get y1 = y2 and can replace all y1 with y2. The explicit
constraint x1 < y1 turns into x2 < y2 which is a contra-
diction to the explicit constraint x2 > y2. Note that we did
not do any actual arithmetic calculation, we only detect and
replace symbols that are equal. For this simple example we
did not need implicit entities, only implicit constraints.

The next example is more complex and demonstrates how
we can use implicit constraints and implicit entities for solv-
ing arithmetic equations.
Example 14 Solving example 12 is more complicated. We
first determine all implicit entities which effectively means
we introduce an interval between any two endpoints of in-
tervals in Θ. We then add to Θ all the applicable implicit
constraints for all implicit and explicit intervals. This in-
cludes normal INDU constraints, but also constraints of

type a + b = c. In particular, we get x + y = z, but
we also get this kind of equations for the three intervals
y3,1, y2,1 and y7,1. For example for y3,1 we have the inter-
vals x3,1, x3,2, x3,3, u3, plus the interval x23,1 that is formed
by x3,1 and x3,2 and the interval x23,2 formed by x3,2 and
x3,3. We know that y3,1 = x3,1 and xb=y3,1. The equations
for these intervals are x3,1+x3,2 = x23,1, x3,2+x3,3 = x23,2,
x23,1 + x3,3 = u3, x23,2 + x3,1 = u3. For y7,1 we get inter-
vals up to x77,1, and get for example x77,1 +x7,7 = u7. Using
the following transformations, we obtain that x + y = z is
inconsistent: 1. We know that x + x = x23,1, y + y = x27,1,
and z + z = u2 and from our assumption x+ y = z we get
(a) x23,1 + x27,1 = u2. 2. We know that x23,1 + x3,3 = u2 and
x27,1+y57,3 = u2 and using (a) we get (b) x3,3 = x27,1 and (c)
x23,1 = y57,3. 3. We know that x27,1 + x27,1 = x47,1 and using
(b) get (d) x3,3 + x3,3 = x47,1. 4. From x3,3 + x3,3 = x23,1
and (c) and (d) we get (e) x47,1 = x57,3 which is a contradic-
tion, since x57,3 = x57,1 which is larger than x47,1.

Again, we did not do any arithmetic calculation, but only
detected symbols that are equal by comparing a+b = cwith
a+d = c in which case we derive that b = d. In addition we
used the following rule: if a+ b = c, d+ e = f , a+ d = g,
b + e = h, and f + g = i, then g + h = i. We also replace
intervals that have the same length.

Before presenting a qualitative reasoning algorithm for
these types of implicit constraints, we prove how adding the
implicit entities and the implicit constraints affect a given set
of constraints.

Lemma 15 Given an atomic set Θ of IA constraints and the
corresponding set of (non-atomic) constraints ΘIA. After
applying the algebraic closure algorithm to ΘIA, the result-
ing set Θ′IA is atomic.

Proof Sketch. The set of endpoints used for instantiat-
ing variables in ΘIA is exactly the same as for those of Θ
since each implicit entity is defined via two explicit entities.
Whenever the exact base relation between an explicit and
an implicit interval is not known, we can take an explicit
interval with the same endpoint as the implicit interval and
resolve the ambiguity with respect to this endpoint via this
triple of intervals. The algebraic closure algorithm applies
this method recursively until all base relations have been
derived between all intervals. Once all relations between
implicit and explicit intervals have been derived, algebraic
closure will derive base relations between pairs of implicit
intervals as well.

We can now add the implicit size constraints ΘIS to ΘIA.

Lemma 16 Given an atomic set of IA constraints Θ, and the
corresponding sets ΘIA and ΘIS . Algebraic closure decides
consistency of ΘIA ∪ΘIS .

The previous lemma is trivial given that algebraic closure
decides IA atomic relations. We now outline the proof of
our main results that forms the basis for solving INDU in a
qualitative way. This result makes use of the fact that INDU
is equivalent to IA plus a set of relative size constraints.

515

Theorem 17 Given an atomic set of INDU constraints Θ
and the corresponding set of IA constraints ΘIA, the corre-
sponding set of PA constraints ΘPA and the corresponding
set of implicit size constraints ΘIS . If Θ is algebraically
closed, then Θ is consistent if and only if ΘPA ∪ ΘIS is
consistent.

Proof Sketch. From the previous lemma we know that the
implicit size constraints do not affect the interval constraints
and we assume that the implicit PA constraints do not affect
the IA constraints either. This is guaranteed by the algebraic
closure of Θ, otherwise it would be trivial to detect Θ as
inconsistent. If ΘPA ∪ ΘIS is inconsistent, it is clear that
Θ cannot be consistent. If ΘPA ∪ΘIS is consistent, we can
construct a consistent instantiation of Θ as follows:

1. Since ΘIA is consistent, we can compute a canonical so-
lution θ for it using only integers such that each succes-
sive integer belongs to at least one endpoint. It is clear
that some of the PA relations on the durations might not
be satisfied.

2. We can arbitrarily increase or decrease the distance be-
tween two conscutive endpoints a and b without affecting
consistency of ΘIA and by the previous lemma also with-
out affecting consistency of ΘIS . This changes the length
of intervals that include both a and b without affecting the
length of other intervals.

3. Since we consider all implicit intervals, each interval be-
tween the consecutive endpoints of θ has been consid-
ered. If ΘPA ∪ ΘIS is consistent, and therefore ΘPA

is consistent, there is an instantiation of durations to all
intervals between consecutive endpoints in θ that satisfies
ΘPA∪ΘIS . Likewise, all intervals consisting of multiple
of those intervals will satisfy ΘPA ∪ΘIS as well.

4. We can now adjust the duration of each interval between
consecutive endpoints in θ to the values that satisfy ΘPA∪
ΘIS . Since changing the length of intervals in θ does not
affect ΘIA, this will also satisfy ΘIA and is therefore a
consistent instantiation of Θ.

We now present a qualitative algorithm for deciding
whether ΘPA∪ΘIS is consistent. Note that it is straightfor-
ward to solve this in polynomial time using either standard
linear programming methods (for example using Khachian’s
linear programming algorithm (Khachian 1979)) or using
the Horn method presented by Balbiani et al (Balbiani et
al. 2006) who proved that deciding atomic INDU relations
is tractable. But this is not the point of our paper. We want
to show that it can be solved purely qualitatively by making
the implicit entities and implicit constraints explicit. We will
only use constraints of type a + bRc (from ΘIS) and aRb
(from ΘPA), that is, we have a system of linear inequalities
with at most 3 variables per inequality, where all variables
are non-negative and all coefficients are 1. Most importantly,
and this is what makes the method qualitative, we will only
use known implicit and explicit entities and will not do any
arithmetic calculation.

Algorithm 18 (LI3-consistency) Given an a-closed atomic
set of INDU constraints Θ over the variables V and the cor-
responding a-closed sets of implicit and explicit constraints
ΘIA, ΘIS and ΘPA over the implicit and explicit variables
VI . We set Σ = ΘIS , σ = ΘPA, and VW = VI and
complete both Σ and σ, i.e., we add a + b{<,>,=}c to
Σ for all triples a, b, c ∈ VW that are not yet in Σ, and add
a{<,>,=}b to σ for all pairs a, b ∈ VW that are not yet in
σ.

1. For all a, b ∈ VW do: If a = b ∈ σ, then σ-add(a = b);
2. For all a, b, c ∈ VW do:

If a > c, a = c, b > c, or b = c in σ, then Σ-add(a+ b > c);
3. Change := true;
4. While Change = true do:
5. Change := false;
6. For all a, b, c, d ∈ VW do:

i. If (a+ b = c), (a+ bRd) ∈ Σ, then σ-add(cRd);
ii. If (a+ b < c), (a+ b > d) ∈ Σ,

then σ-add(c > d);
iii. If (a+ b = c), (a+ dRc) ∈ Σ,

then σ-add(dRb);
iv. If (a+ b < c), (a+ d > c) ∈ Σ,

then σ-add(b < d);
v. If (a+ b = c) ∈ Σ and dRb ∈ σ,

then Σ-add(a+ dRc);
vi. If (a+ b = c) ∈ Σ and cRd ∈ σ,

then Σ-add(a+ bRd);
vii. If (a+ bRc) ∈ Σ and dRb ∈ σ,

then Σ-add(a+ dRc);
viii. If (a+ bRc) ∈ Σ and cRd ∈ σ,

then Σ-add(a+ bRd);
7. Return ”LI3-consistent”;

The different add functions are defined as follows:

• σ-add(aRb):
i. When aRb is added to σ, we intersect it with the exist-

ing constraint aSb ∈ σ. If T = R∩S = ∅, then return
”inconsistent”;

ii. If R = {=}, we remove b from VW and consecutively
remove each occurrence bRc or cRb of σ for all c ∈
VW and respectively add aRc or cRa to σ. Likewise,
we consecutively remove each b + cRd, c + bRd, or
c+ dRb from Σ for all c, d ∈ VW and respectively add
a + cRd, c + aRd, or c + dRa to Σ; Change := true;
Return;

iii. If T = R ∩ S 6= S, then replace aSb with aTb and
bS−1a with bT−1a in σ; Change := true;

iv. If T ⊂ {>,=}, then Σ-add(a + c > b) for all c ∈
VW \ {a, b};

v. If T = {<}, then Σ-add(b + c > a) for all c ∈ VW \
{a, b};

• Σ-add(a+ bRc):
i. When a + bRc is added to Σ, we intersect it with the

existing constraint a + bSc ∈ Σ. If R ∩ S = ∅, we
return ”inconsistent”.

ii. If T = R∩S 6= S, then we replace a+bSc with a+bTc
in Σ; Change := true;

516

iii. If T ⊂ {<,=}, then σ-add(a < c) and σ-add(b < c);

The LI3-algorithm works similar to the algebraic closure
algorithm and computes the relations a+ bRc (and aSb) for
all triples (and pairs) of implicit and explicit entities a, b, c
until no further changes can be made and no inconsistency
occurs. It is purely qualitative and operates only on the ex-
isting entities.

Since Θ is atomic, each constraint in Σ and σ can be
changed at most once (from R = {<,>,=} to either
{<}, {>}, or {=}. Therefore, the algorithm terminates af-
ter at most n3 loops, where n = |VI |. By using a weighted
queue of changed triples similar to the algebraic closure al-
gorithm, the performance of the algorithm can be improved.

Theorem 19 The LI3-Consistency Algorithm decides con-
sistency of sets of atomic INDU constraints.

Proof Sketch. We prove by induction over the number
n of different endpoints that Algorithm 18 computes the
strongest constraint a + bRc for each triple of intervals
a, b, c ∈ VI that is entailed by Θ. Base case: The algo-
rithm includes all possible inferences for four intervals, i.e.,
for the base case of up to n ≤ 8 endpoints, which occurs if
four explicit intervals have no endpoint in common. In cases
where the explicit intervals have some points in common, we
can transform any situation with up to 8 different endpoints
to an equivalent situation where those endpoints are taken
up by the 4 explicit intervals. This is because we only look
at atomic constraints and always know all IA base relations
between all explicit and implicit intervals as of Lemma 15.

Induction step: We now assume that the strongest con-
straints are obtained for n = k different endpoints and show
that they are also inferred for n = k+ 1 different endpoints.
For a new endpoint, we get k new implicit or explicit inter-
vals between the new endpoint and the other k endpoints.
Since we know all the basic IA relations, we can derive
the size relations between the new intervals. Any other un-
known size relations can be obtained by using at most four
intervals, which is covered by the base case. Since we know
the strongest implied size constraint for any k endpoints, it
follows that the newly derived constraints will also be the
strongest.

If the algorithm terminates and returns ”inconsistent”,
then clearly Θ cannot be consistent. If it returns ”LI3-
consistent”, then we have obtained the strongest implicit size
constraints that can be inferred from Θ. Therefore, we have
a partial order on the sizes of intervals in VW according
to σ, and can now assign values starting from the small-
est intervals and fix values of larger intervals according to
the constraints in Σ. None of these assignments will con-
tradict σ ∪ Σ as otherwise they would not be the strongest
constraints. It follows that ΘIS ∪ ΘPA is consistent, and
because of Theorem 17, Θ will be consistent too.

The proof we sketched above works because Lemma 15
guarantees that we know all IA base relations between all
implicit and explicit intervals. Consequently, for any three
endpoints we have the three intervals that can be formed us-
ing these endpoints and get an IS constraint of type a+b = c.
This gives us any intermediate intervals and information

about their sizes that we need to compute the strongest im-
plicit size constraints. In cases where Θ is not atomic, we
cannot guarantee that the LI3-Consistency algorithm com-
putes the strongest IS constraints and we might only get an
approximation.

Conclusions
There are numerous examples of qualitative spatial or tem-
poral calculi where the standard qualitative reasoning meth-
ods fail. There have been attempts to explain this behaviour,
but it is largely unclear when and why this happens, how
it can be avoided and what can be done about it. Due to
the significance of being able to guarantee correct qualita-
tive reasoning results, this is one of the major challenges in
the field.

In this paper we take up this challenge, offer an explana-
tion and propose a possible solution to this important prob-
lem. Our goal in this paper is not to present a method that
works for all qualitative spatial or temporal calculi – not
even algebraic-closure does that. Our goal is not to present
the fastest (nor even an efficient) algorithm to solve INDU –
there are other known algorithms that can do that, and this is
also why we do not optimize our algorithm, do not analyse
it or prove its complexity, and do not empirically evaluate it.

We do have several goals in this paper. One goal is to
demonstrate that implicit entities and implicit constraints ex-
ist and are typically ignored. We show this for a number of
well-known calculi. One goal is to show that implicit entities
and implicit constraints can be responsible in cases where
existing qualitative reasoning methods fail and we give two
examples where this is the case.

One goal is to show that by making implicit entities and
implicit constraints explicit and by adding them to the qual-
itative representation, we can potentially solve problems
qualitatively that could not be solved qualitatively before.
We give two example where this is possible. For the sim-
ple Containment Algebra it is possible but not necessary.
The second example is INDU, which seems to be a rela-
tively simple extension of the Interval Algebra, but which
turns out to be so expressive that it can even encode arith-
metic over the rational numbers – and therefore seems like a
highly unlikely candidate for being able to be solved qualita-
tively. Despite this, we show that by making implicit entities
and implicit constraints explicit, we can solve INDU qual-
itatively using a novel qualitative reasoning algorithm that
works similar to algebraic closure.

Our final goal is to show that qualitative reasoning can
be much more powerful than previously thought. We want
to show that a failure of algebraic closure for atomic con-
straint networks is not the end of qualitative reasoning, but
that there is much more that can be done.

We believe that we have reached our goals in this paper
and hope that the analysis of implicit entities and implicit
constraints will become the new standard in qualitative spa-
tial and temporal reasoning research. We believe that such
an analysis will be essential for two of the main challenges in
this research area: (1) for the integration of different calculi
in order to form more expressive and more useful represen-

517

tations, and (2) for the analysis of calculi where algebraic
closure fails.

INDU is a good example where integrating two well-
behaved calculi leads to difficulties and we expect that the
same will happen for many other combinations of calculi.
One example that demonstrates the benefit of making im-
plicit constraints explicit is our most recent work on devel-
oping a qualitative representation for video analysis (Cohn
et al. 2012). In that paper we show that by using the im-
plicit intervals of the Interval Algebra, we can obtain a com-
pact and very comprehensive qualitative representation that
integrates a number of different calculi. Regarding the sec-
ond challenge, there are not many constructive results avail-
able yet and the problem remains largely unsolved. While
in some cases we can fall back to quantitative methods, we
expect that this is not always possible due to the difficulty
of adequately representing qualitative information quantita-
tively.

In addition to working on these challenges, future work
includes analysing the use of implicit entities and constraints
for non-atomic relations and developing an implicit repre-
sentation for existing calculi for which qualitative reasoning
gives incorrect results. Our long term goal is to obtain stan-
dard algorithms for dealing with different kinds of implicit
entities and implicit constraints, ideally something similar to
algebraic closure. Since the LI3-consistency algorithm deals
with some fundamental properties of space and time that are
likely to affect other calculi as well, it might serve as a good
starting point for future analysis.

Acknowledgements
This research was supported under Australian Research
Council’s Future Fellowships funding scheme (project num-
ber FT0991917).

References
J. F. Allen. 1983. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM 26(11):832-843.
P. Balbiani, J-F. Condotta, G. Ligozat. 2006. On the Consis-
tency Problem for the INDU Calculus. Journal of Applied
Logic, 4(2): 119-140.
A. G. Cohn, J. Renz and M. Sridhar. 2012. Thinking Inside
the Box: A Comprehensive Spatial Representation for Video
Analysis. Proceedings of KR’12.
A. G. Cohn and J. Renz. 2008. Qualitative Spatial Repre-
sentation and Reasoning. Handbook of Knowledge Repre-
sentation, Elsevier, 551-596.
M. J. Egenhofer, R. D. Franzosa. 1991. Point Set Topologi-
cal Relations. International Journal of Geographical Infor-
mation Science, 5, 161-174.
A. Gerevini and J. Renz. 2002. Combining Topological
and Size Constraints for Spatial Reasoning. Artificial Intel-
ligence, 137(1-2):1-42.
L. G. Khachian. 1979. A Polynomial Time Algorithm for
Linear Programming. Soviet Math. Dokl., 20:191-194.
P. B. Ladkin and R. D. Maddux. 1994. On Binary Constraint
Problems. Journal of the ACM 41(3):435-469.

G. Ligozat and J. Renz. 2004. What Is a Qualitative Cal-
culus? A General Framework. Proceedings of PRICAI’04,
53-64.
A. K. Mackworth 1977. Consistency in Networks of Rela-
tions. Artificial Intelligence 8(1):99-118.
B. Nebel and H.-J. Bürckert. 1995. Reasoning about Tem-
poral Relations: A Maximal Tractable Subclass of Allen’s
Interval Algebra. Journal of the ACM 42(1): 42-66.
A. K. Pujari, G. V. Kumari and A. Sattar. 1999. INDU: An
Interval and Duration Network. In Proceedings of AusAI’99,
291-303.
D. A. Randell, Z. Cui and A. G. Cohn. 1992. A Spatial
Logic based on Regions and Connection. Proceedings of
KR’92, 165-176.
J. Renz. 2007. Qualitative Spatial and Temporal Reason-
ing: Efficient Algorithms for Everyone. Proceedings of IJ-
CAI’07, 526-531.
J. Renz and G. Ligozat. 2005. Weak Composition for Qual-
itative Spatial and Temporal Reasoning. In Proceedings of
CP’05, 534–548.
P. van Beek and D. W. Manchak 1996. The Design and Ex-
perimental Analysis of Algorithms for Temporal Reasoning.
Journal of Artificial Intelligence Research 4:1-18.
M. Vilain, H. A. Kautz, and P. van Beek. 1990. Constraint
Propagation Algorithms for Temporal Reasoning: a Revised
Report. Readings in qualitative Reasoning about Physical
Systems, 373-381, Morgan Kaufmann.

518

