
Preface

Hybrid group autonomy, organizations and teams composed of humans, machines
and robots, are important to AI. Unlike the war in Iraq in 2002, the war in Afghanistan
has hundreds of mobile robots aloft, on land, or under the sea. But when it comes to
solving problems as part of a team, these agents are socially passive. Were the problem
of aggregation and the autonomy of hybrids to be solved, robot teams could accompa-
ny humans to address and solve problems together on Mars, under the sea, or in dan-
gerous locations on earth (such as, fire-fighting, reactor meltdowns, and future wars).
“Robot autonomy is required because one soldier cannot control several robots …
[and] because no computational system can discriminate between combatants and
innocents in a close-contact encounter.” (Sharkey, 2008)

Yet, today, one of the fundamental unsolved problems in the social sciences is the
aggregation of individual data (such as preferences) into group (team) data (Giles,
2011) The original motivation behind game theory was to study the effect that multi-
ple agents have on each other (Von Neumann and Morgenstern, 1953), known as
interdependence or mutual dependence. Essentially, the challenge addresses the ques-
tion: why is a group different from the collection of individuals who comprise the
group? That the problem remains unsolved almost 70 years later is a remarkable com-
ment on the state of the social sciences today, including game theory and economics.
But solving this challenge is essential for the science and engineering of multiagent,
multirobot and hybrid environments (that is, humans, machines and robots working
together). 

Bonito and colleagues (2010) explain why aggregating individual information for
human groups is unsolved: “What remains to be clearly elucidated, is how communi-
cation among members provides opportunities to make decisions that are not possible
by examining only individual competencies, abilities, and motivations.” We suspect
that if aggregation cannot be solved for human groups, it will be more difficult to solve
with AI for hybrid groups. 

Aggregating data from teams is not direct: unlike an object in physical reality, each
agent sees events in social reality while embedded in different locations; agents are dif-
ferentially collecting, sending or receiving information with other agents; and uncer-
tainty is a factor in these different information flows. 

For teams, we suspect that social uncertainty operates on two tracks. One is based on
measurement, the other on probability distributions over allowed states. The first
reflects physical characteristic of interdependence (bi-stability and multi-stability, for
example, two or more sides exist to every story), while the second reflects an incom-
plete knowledge about a system as its degrees of freedom increase. 

Hybrid agent teams must be able to report on their situation. Reports by humans are
often reduced to ordinal data (such as with Likert scales, say, from 1 to 6). But “[t]he
notion that modern economic theory can be founded on ordinal utility theory is an
error.” (Barzilai, 2010, p. 2) The problem was illustrated well for human agents when
no correlation was found between the productivity of organizations and the assess-
ments by managers (Bloom et al., 2007). Whether computational hybrid systems will
be afflicted by the same problem is an open question. 
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This AAAI Symposium has in mind an approach to the solution of the following,
nonexhaustive list of questions for hybrid teams: 

(1) What makes a group autonomous? (2) Is individual autonomy possible for a sin-
gle hybrid agent (Sharkey, 2008)? If so, can an autonomous individual agent be a social
member of a team? What else might be different? (3) Related to question 2, why are
hybrid agent reports of behavior not the same as observed behavior? (4) Why are
groups, unlike individuals (Wickens, 1992), able to multitask effectively (Ambrose,
2001) and, from an information theory perspective, more efficiently (Conant & Ashby,
1970)? (5) Human systems perform differently depending upon whether they are orga-
nized and controlled centrally or locally (see Ahiedh, 2009; Hayek, 1994). This ques-
tion addresses the theoretical perspective of information flow; for example, is informa-
tion about a hybrid organization's defenses transmitted with natural language better
than the information obtained from observing the same organization's performance
under a social perturbation (such as organizational volatility as a consequence of a
cyber-attack)? (6) As an alternative to question 4, is the rational construction of reality
derived competitively at the individual level different from the dynamic information
derived cooperatively at the organizational level? (7) Why isn't the production of
hybrid social autonomy a simple problem? (8) What would a mathematical model of
aggregation look like (Lawless et al., 2010)? Would such a mathematical model account
for social autonomy; the inability of an agent's reports to capture its behavior; and the
differences observed between the results obtained with the applications of game theory
to the toy problems favored by researchers (viz., normative solutions) versus the real
solutions found in the field made by autonomous organizations of humans (such as
Apple, Google)? 

General Comments

This symposium will bring together researchers interested in how aggregation for
humans, machines and robots can be applied directly to solve problems with AI more
efficiently or to address previously unsolved problems in other fields with AI. We pro-
vide three aspects of the same problem. 

First, in the hybrid social model, as opposed to the statistics of frequencies in tradi-
tional analyses, measurements collapse the interaction between say two hybrid agents
into two single-agent meaning states. That these two meaning states can be reported
separately necessarily loses the dynamic actor-observer information being exchanged
during an interaction. 

Second, one of the unsolved problems in social science is the social interaction
(Allport, 1962), long considered unsolvable with traditional psychology (Jones, 1990).
Scientists know that measuring human participants in an interaction changes their
thoughts and behavior (Carley, 2003). One speculation is that a computational model
which tracks bi-stable changes actually tracks non-commutative interdependencies in
human action and observation as believed by Bohr (1955) and Heisenberg (1958). This
means that researchers must find a way to instantiate "mutual awareness" among inter-
acting agents that then "collapses" into individual agent facts when "measured", but
consequently, losing social information (Wendt, 2005).

Third, organizational theory today is in a poor state (Pfeffer and Fong, 2005). Solving
the fundamental interaction problem in AI may be key to engineering computational
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multi-agent systems, multiple human-robot systems, and robot-robot or hybrid sys-
tems. It is possible that the interaction will be solved computationally with brute force,
but, we suspect, not efficiently.
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