
Multivariate Time Series Classification with Temporal Abstractions

Iyad Batal
Department of Computer Science

University of Pittsburgh, PA
iyad@cs.pitt.edu

Lucia Sacchi and Riccardo Bellazzi
Dipartimento di Informatica e Sistemistica

University of Pavia, Italy
{lucia.sacchi, riccardo.bellazzi}@unipv.it

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh, PA
milos@cs.pitt.edu

Abstract

The increase in the number of complex temporal datasets col-
lected today has prompted the development of methods that
extend classical machine learning and data mining methods
to time-series data. This work focuses on methods for mul-
tivariate time-series classification. Time series classification
is a challenging problem mostly because the number of tem-
poral features that describe the data and are potentially useful
for classification is enormous. We study and develop a tem-
poral abstraction framework for generating multivariate time
series features suitable for classification tasks. We propose
the STF-Mine algorithm that automatically mines discrimina-
tive temporal abstraction patterns from the time series data
and uses them to learn a classification model. Our exper-
imental evaluations, carried out on both synthetic and real
world medical data, demonstrate the benefit of our approach
in learning accurate classifiers for time-series datasets.

Introduction

Data classification is an important machine learning problem
with a wide variety of applications. A number of classifica-
tion models and techniques have been proposed and applied
to the analysis of various dataset. These include methods
such as decision trees, Bayesian networks, nearest-neighbor
classifiers, or support vector machines. However, the suc-
cess of classification methods depends heavily on the quality
of data and data features used by the models. Consequently,
feature selection and feature construction methods in com-
bination with a classification model often determine the suc-
cess of the machine learning approach in extracting useful
and accurate classification models.

Advances in data collection and data storage technolo-
gies have led to emergence of complex multivariate datasets
where examples are not simple data points; but instead the
examples are traces of complex behaviors characterized by
time series. Take for example medical datasets. The pa-
tient’s electronic medical record provides complex temporal
characterization of the patient case, including the sequences
of lab values, observations, actions and related responses.

Complex temporal datasets pose numerous data-analysis
challenges. Perhaps the most critical is the problem of tem-
poral characterization of examples in data such that the most

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

salient features important for the classification task are pre-
served. As an example, consider a problem of building a
classifier to diagnose or predict the patient’s condition using
past patient’s data. Ignoring the temporal aspect of data, the
patient case can be relatively easily described using the most
recent set of values, e.g. “a low blood pressure”, or “a high
white blood cells count”. However, this information may be
limited in describing the patient’s state. For example, the
information important for the diagnosis may include sim-
ple trends, such as “increase in the blood pressure” or more
complex temporal patterns such as “low blood pressure fol-
lowing the prescription of a certain medication”. Clearly,
more complex temporal information may improve our abil-
ity to better diagnose the case. Similar temporal classifica-
tion tasks may arise in other domains with time series data
such as speech and gesture recognition, stock market analy-
sis, intrusion detection, or industrial plants monitoring.

The caveat of dealing with temporal information is that
there are many different temporal patterns to consider and
only a very small fraction of these may be useful for clas-
sification. Hence, techniques capable of identifying tempo-
ral features useful for classification are badly needed. The
objective of our work is to develop methods that let us au-
tomatically generate temporal features for classification of
multivariate time series data. To model many possible tem-
poral relations we adopt and rely on the temporal abstrac-
tions framework (Shahar 1997). The framework provides
a qualitative description of time series using value and trend
abstractions, and their combinations using temporal logic re-
lations.

To identify temporal abstraction patterns most useful in
predicting the class labels of the series we propose the STF-
Mine (Segmented Time series Feature Mine) algorithm. The
algorithm builds upon the Apriori algorithm (Agrawal &
Srikant 1994) used in frequent pattern mining and extends
it to the problem of mining frequent temporal abstraction
patterns. After identifying the most frequent temporal pat-
terns for each class, STF-Mine selects those patterns that are
highly discriminative for target classes, and uses them to de-
fine a new feature space for representing the temporal data.

The rest of the paper is organized as follows. Section 2 ex-
plains our temporal abstraction methodology. We start by il-
lustrating how time series are converted into state sequences
using segmentation. Next, we give a formal definition of the
temporal abstraction patterns used in our work. After that,

344

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



we explain how the Apriori algorithm can be modified to
mine the frequent temporal patterns. Lastly, we explain our
criteria for selecting the discriminative temporal pattern that
will be used by the classifier. In section 3, we present the ex-
perimental evaluation of our approach. Finally, we conclude
in section 4.

Methodology

A time series is a series of observations over a period of time.
When the observed space is multidimensional, the time se-
ries becomes multivariate. Multivariate time series classi-
fication is a supervised learning problem aimed at labeling
multivariate series of variable length. In our approach, we
reduce this complex data to a simple feature-vector repre-
sentation by suitably transforming time series into vectors
of fixed length. After this transformation, we apply any of
the existing classification methods to learn and predict the
class of future time series examples.

In a nutshell, the proposed STF-Mine algorithm starts
from the raw time series and passes through different stages
of representation, which lead to the extraction of classifica-
tion features. STF-Mine takes as input pre-classified training
time series and it outputs a set of frequent and discriminative
patterns. These patterns are then used to map each example
into a Boolean vector and the classifier is trained on this new
representation.

Our methodology consists of the following steps:

1. Segment the time series to obtain a qualitative description
of each series.

2. Generate the frequent patterns from the segmented series
of each class.

3. Select the frequent patterns that are highly discriminative
between the classes.

4. Transform the data into a vector format, where the fea-
tures are the patterns extracted in step 3; then learn the
classifier on the transformed data.

The following subsections explain these steps in detail.

Qualitative Time Series Abstraction

In order to mine the frequent and discriminative patterns
from data, we first need to obtain a qualitative represen-
tation of the raw time series data. Given a multivariate
time series instance, the time series of each variable is con-
verted into a sequence of abstract states si, where each state
represents a property that holds during an interval [bi, ei].
The alphabet Σ represents all possible values for the states.
For example, temporal trend abstraction, which allows to
describe the time series in terms of its local trends, uses
Σ = {increasing, decreasing, steady}.

The transformation of the raw time series data to tempo-
ral abstractions is not straightforward and more than one
solution may exist. In this work, we use (1) value ab-
stractions (with values high, normal and low) and (2) trend
abstractions (with values increasing, steady and decreas-
ing) as basic temporal patterns. For trend abstractions, we
segment and label the series by using the sliding window
method (Keogh et al. 2003), which keeps expanding each

segment until its error exceeds a user-specified threshold.
The trend is then defined by the slope of the fitted segment,
where each of the three trend values (increasing, decreasing
and steady) corresponds to a different slope range.

Temporal Patterns

In order obtain a temporal description of the multivariate
data, basic temporal abstractions (extracted from each vari-
able in the previous step) are combined to form complex
temporal patterns. For example, a domain expert may want
to describe a pattern in a time series data such as: “an in-
crease in variable X is followed by a decrease in variable
Y ”. This is the idea behind the temporal abstraction frame-
work (Shahar 1997). To construct these more complex pat-
terns, we first need to specify the temporal relations between
state intervals.

Temporal relations: Allen’s temporal logic (Allen 1984)
describes the relations for any pair of intervals using 13 pos-
sible relationships; these relations are illustrated in Figure 1.

Figure 1: Allen’s interval relationships

However, we believe that patterns from noisy interval data
expressed using Allen’s interval relations may not be robust.
The reason for this is that most of the relations require equal-
ity of two or more interval end points. Thus, there is only a
slight difference between overlaps, finishes, equal and dur-
ing relations. In most real world datasets, information about
time is not very precise and imposing such restrictions on
the relations may hinder the discovery process. In addition,
the result of the segmentation step is usually not very pre-
cise and can create some time misalignment. Therefore, we
choose to model only two relationships: before and over-
laps, which we redefine as follows:

Given two states, A and B with intervals [a1, a2] and
[b1, b2]:

• A before B iff a2 <= b1

• A overlaps B iff a1 <= b1 and a2 > b1, i.e. A starts
before B and their intervals overlap.

Practically, in the definition of the before relation, we may
want to impose a restriction on the length of the gap between
a2 and b1. Later, we will see that this can be handled by
defining the sliding window size of the mining algorithm.

After defining the interval relationships: REL={before,
overlaps}, we can define the temporal pattern recursively
as follows:

• If X is a single state, then X is a temporal pattern.

345



• if X and Y are two temporal patterns, and rel ∈ REL,
then X rel Y is also a temporal pattern.

Using this simple definition, we see that a temporal pattern is
defined as sequence of states (intervals) related using tempo-
ral relationships. We denote each pattern by a pair of vectors
(S,R) where Si corresponds to the ith state of the pattern,
and Ri to the temporal relation between state Si and state
Si+1: Ri = rel(Si, Si+1) : rel ∈ REL. We define the
size of a pattern P to be the number of states it contains. If
size(P )=k, we say that P is a k-pattern. In our notation, the
symbol between brackets refers to the variable (time series)
from which the state has been extracted. To give an example,
assume that the data is two dimensional time series, where
each instance has two series X and Y . Assume we are us-
ing trend abstractions. An example of a temporal 2-pattern
could be: P=increase[X] before decrease[Y ], which corre-
sponds to an increase in variable X followed by a decrease
in variable Y .

Interesting patterns are usually limited in their temporal
extensions, i.e. we would not be interested in finding corre-
lations between events far away from each other. Hence, we
assume the user can specify the maximum pattern duration
that is of interest, which is known as the window size (w).
This w parameter serves as the width of the sliding window
which is moved along the state sequences. The algorithm
only considers the patterns that can be observed within this
window. If the user does not specify w, the algorithm treats
the whole time series as a single window. This case could be
of interest when the time series data are short.

Let T denotes a multivariate time series instance after it is
converted into a sequence of states, and E denotes the states
of T visible within w. We say that the pattern P (S,R) holds
in T within w, denoted as P ∈ (T, w), if there is an injective
mapping π from the states of P to the states of T such that:

∀i ∈ {1..size(P )−1} : Si = Eπ(i) and Si+1 = Eπ(i+1)

and Ri = rel(Eπ(i), Eπ(i+1))

We define the function exists(P, T,w) as:
exists(P, T,w) = 1 if P ∈ (T, w) for at least one
sliding window position of size w in T . Otherwise,
exists(P, T,w) = 0.

Now, we define the support of a temporal pattern P in a
time series database D using window size w as:

sup(P,D, w) =
∑

∀Ti∈D

exists(P, Ti, w)

In other words, the support of P is defined to be the number
of instances from D where P can be observed within the
window w.

Frequent Temporal Pattern Mining

In this section we describe the algorithm that mines
the frequent temporal patterns from the multivariate state
sequences (obtained using temporal abstraction). The
algorithm is based on the Apriori algorithm proposed
by (Agrawal & Srikant 1994) and is applied to each class
of examples separately.

The algorithm relies on the Apriori property to reduce the
search space. Let TP be the space of all temporal patterns
of arbitrary size. The Apriori property in this context can be
defined as:

∀P, Q ∈ TP, if P ⊆ Q ⇒ sup(P, D, w) ≥ sup(Q, D, w)
for any D, w

that is, the support of a pattern is always less than or equal
to the support of any of its subpatterns.

The frequent mining algorithm takes three inputs: 1) Dci
:

the set of all multivariate instances belonging to a specific
class (ci), 2) min sup: a user defined threshold on the sup-
port of frequent patterns and 3) w: the sliding window width
(the maximum pattern duration). The algorithm outputs all
temporal patterns Pj where sup(Pj , Dci , w) >= min sup.

The algorithm performs level-wise search in order to find
all frequent patterns. First, the set of frequent 1-pattern (sin-
gle state) is found by scanning the database. In the kth pass,
the candidates that missed the minimum support threshold
are removed and the candidate (k+1)-patterns are created
from the remaining frequent k-patterns. This procedure is
repeated until no more frequent patterns can be found. The
Apriori property guarantees that the algorithm will not miss
any frequent patterns.

Candidate Generation A candidate (k+1)-pattern is gen-
erated by joining two frequent k-patterns which share the
same k−1 states as a prefix. Let us assume that we are join-
ing the frequent patterns P1 and P2 to form the next level
candidates. Let us denote the last states of P1 and P2 as a
and b, respectively. The candidates generated from P1 and
P2 will be completely specified by the relation between a
and b. Since there are 4 possible relations that can relate
the two states (a before b, a overlaps b, b before a and b
overlaps a), joining P1 and P2 can potentially generate 4
possible candidates.

However, we do not have to generate all four candidates
in every join. For instance, if the last states a and b are ex-
tracted from the same series, then they cannot be related by
overlap relation. Besides, if the relation between a and the
common prefix is overlap and the relation between b and the
common prefix is related before, then we know that b should
start after a. Thus we do not generate the candidates where a
appears at the end. Furthermore, we can speed up the algo-
rithm by pruning some of the candidates that contain infre-
quent subpatterns. To better illustrate candidate generation
and pruning, we use the following example.
Example (Figure 2):
Let I , D, and S denote trend abstractions: increasing, de-
creasing and steady, respectively. Let b and o denote the
before and overlaps relations.

Assume we have the following three frequent 2-patterns:
P1=I[X] b D[Y ], P2=I[X] o I[Z], P3=I[Z] o D[Y ]. Since
only P1 and P2 share a common prefix, they can be joined
to generate the candidate 3-patterns. However, we know
that D[Y ] should appear after I[Z] in the generated pat-
terns. Thus, we only consider the two candidates C1=I[X]
o I[Z] o D[Y ] and C2=I[X] o I[Z] b D[Y ]. Because the
subpattern I[Z] b D[Y ] contained in C2 is not a frequent 2-

346



Figure 2: An example of candidate generation and pruning

pattern, C2 cannot be a frequent 3-pattern (according to the
Apriori property). However, we cannot prune the candidate
C1 since the relation between I[X] and D[Y ] is not speci-
fied (it could be either before or overlaps). Therefore, C1 is
the only candidate that survives the pruning stage.

Discriminative Pattern Selection

Our ultimate goal is to select temporal patterns (fea-
tures) that let us discriminate well among target time-series
classes. In other words, we seek patterns that are more fre-
quent in one class and less frequent in other classes.

So far our algorithm has extracted frequent patterns for
every class of time-series examples. However, if we keep
all of these frequent patterns as features and feed them into
the classification model, the high dimensionality can easily
cause the classifier to overfit the training data. To allevi-
ate the problem, we want to select only a small number of
temporal patterns which are good predictors of the class la-
bel. We use the Pearson’s chi-square (χ2) to select predictive
temporal patterns. χ2 test measures the correlation between
the pattern and class variable. We define the χ2 statistics for
pattern Pk as:

χ2(Pk) =
∑

c∈{C1,..Cj}

∑

p∈{Pk,P̄k}

(Pr(p, c) − Ex(p, c))2

Ex(p, c)

Pr(p, c) =
#(p, c)

N
, Ex(p, c) =

#(p)
N

∗ #(c)
N

In the equation, N is the total number of instances in the
dataset. The symbol # represents counts. For example,
#(Pk, Cj) is the number of instances from class Cj that
contain the pattern Pk and #(P̄k, Cj) is the number of in-
stances of Cj that do not contain Pk.

Notice that the entries which contribute the most to the χ2

value are those whose actual probabilities are very different
from the expected probability under the independence as-
sumption.

Finally, we rank all frequent patterns according to their
χ2 values and we select a small set of these patterns be the
features of our classifier.

Building the classifier

The purpose of this step is to convert the multivariate time
series data into a feature-vector format, in order to be used
with standard classification algorithms (such as SVM, Naı̈ve
Bayes, decision trees, or the linear discriminant analysis).

To do this, we map every instance Ti into a Boolean vec-
tor Vi of size equal to the total number of the temporal fea-
tures extracted in the previous step. Each element Vi,j in the
vector corresponds to a specific pattern Pj and its value is
set to 1 if Pj is present in Ti; and set to 0 otherwise. i.e.
Vi,j=exists(Ti,Pj ,w). These Boolean vectors are given to
the classifier to build the classification model.

Experimental evaluation
In this section, we present results of our approach on both
synthetic and real world data. We test the features extracted
by the STF-Mine algorithm using both Naı̈ve Bayes (NB)
and SVM (Vapnik 1995) with linear kernel. We use the Max-
imum likelihood approach for learning the parameters of the
NB model (Pedro & Pazzani 1997).

All the experiments follow a 20 fold cross validation
scheme. To eliminate any classification bias, the temporal
features are always selected from the training sets, that is,
features extracted in different folds may be different.

Synthetic dataset

We chose to first experiment with synthetic data because it
allows us to better understand the relationship between the
classification accuracy and the characteristic of the data. The
main objective of these experiments is to test the algorithm’s
ability to extract the classification features from state se-
quences (assuming the segmentation step was already done).

We chose to test the algorithm on a two dimensional
dataset, where every instance contains two variables X and
Y . Each of these variables is a sequence of 6 segments of
equal length. The states of the segments are defined from
the alphabet Σ={A,B,C,D,E}.

We test our algorithm for binary classification, so we de-
fine the two classes C1 and C2 and we generate 50 instances
from each of them. In the beginning, we randomly gener-
ate all the sequences in both classes from the 5 states. We
then define two patterns: P1=A[X] before B[Y ] with a gap
of zero between the two intervals (the segments touch each
other), and P2=B[X] before C[Y ]. These patterns will be
artificially injected in class C1 and C2, respectively. We de-
fine the injection probability for a pattern P in a specific
class to be the probability of injecting P in each instance of
that class.

We designed two sets of experiments:
1- First, the instances of C2 are randomly generated, and we
varied the injection probability of P1 in C1.
2- Second, we inject P2 in C2 with probability of 0.4 and
again we varied the injection probability of P1 in C1.

Because in the beginning the series of all instances are
generated randomly, the probability that any instance will
contain pattern P1 by chance is 0.2. The reason is that
the probability that P1 occurs at a specific position is
1/5*1/5 (since there are 5 different states for each segment).
There are 5 different slots where P1 can appear in the in-
stance (since there is 6 segments per variable). Therefore,
the probability that P1 occurs randomly in an instance is
5*1/5*1/5=0.2. The same random probability applies on P2.
Thus, we expect each of P1 and P2 to occur randomly in
about 20% of the instances.

347



Results:
For the reported results, we set the sliding window size (w)
to be two segments (we only count patterns that occur in
consecutive segments). We set min sup to be 25% of the
number of instances in the class. We select the top 10 pat-
terns (according to χ2) to be the features of the classifier.

Figures 3 and 4 show the accuracy of SVM and NB for
different injection probability of P1 in C1. Each graph has
two plots: one where the instances of C2 are random and
one where we inject P2 in C2 with probability 0.4.

Figure 3: SVM performance using different injection probabilities
of P1 in C1

Figure 4: Naı̈ve Bayes performance using different injection prob-
abilities of P1 in C1

From the graphs, we can notice a similar behavior for both
SVM and NB classifiers. As we expected, increasing the in-
jection probability results in a higher classification accuracy.

HIT dataset

Heparin-induced thrombocytopenia (HIT) is a transient pro-
thrombotic disorder induced by Heparin exposure with sub-
sequent thrombocytopenia and associated thrombosis. HIT
is a condition that is life-threatening if it is not detected and
managed properly. The presence of HIT is tested by a spe-
cial lab assay: Heparin Platelet Factor 4 antibody (HPF4).

Our objective in this experiment is to automatically learn
from the data when an HPF4 test should be ordered for a
patient under Heparin. In other words, given a specific point
in time of a specific patient, which we refer to as the anchor
point, we want to detect whether this patient start to exhibit

the HIT symptoms, which requires an order of HPF4. One
of the challenges in this type of medical data is that the lab
results are usually not regularly sampled in time!

For our experiments, we include 220 patients for which
the HPF4 test was ordered and set the anchor point to be
the time HPF4 was ordered. We then choose 220 patients
treated by Heparin, but who did not have an HPF4 test to
be the controls. We set the anchor point randomly by the
arrival of new platelet result, a key feature used in the HIT
detection. We mix the cases and controls and test whether
STF-Mine can help us deciding if HPF4 should be ordered
for a specific patient at a specific point in time.

For every patient, we consider the platelet counts and the
Hemoglobin test time series to extract the classification fea-
tures. We consider two types of temporal abstractions: trend
abstractions (increase, decrease, steady) and value abstrac-
tion (low, normal, high). The value abstractions are defined
by the normal value range for the lab test. For platelets, the
normal range is [156−369]∗109. For Hemoglobin, the nor-
mal range is [12.9−16.9]. Figure 5 shows a synthetic platelet
series and the corresponding trend and value abstractions.

Figure 5: An example illustrating trend and value abstractions

Using the two abstractions, we obtain 4 state sequences
from the platelets and hemoglobin series. So, we can see
our data as a 4 dimensional data. Temporal pattern can be
created across all of these dimensions. An example of a tem-
poral pattern is: “decrease[platelets] overlaps low[platelets]
before steady[hemoglobin]”.

Results:
In this task, the recent values are the most important for clas-
sification. Thus, we consider the patient’s data for the last 5
days before the anchor point. We set the window size to be
5 days, i.e. we extract the patterns from the whole 5 days
data without sliding a window. We set min sup to 10%, and
again select the top 10 patterns for classification.

Since the vast majority of time series classification meth-
ods (Rabiner 1989; Bengio 1995; Xi et al. 2006) can only
handle regularly sampled time series, we compare our ap-
proach against the baseline classifier that uses only the last
two values of Platelets and Hemoglobin.

Using STF-Mine features, we were able to achieve an
SVM accuracy of = 0.7944 and an NB accuracy of 0.7822.
Figure 6 compares the ROC curves of the SVM classifier
obtained using our temporal features with the baseline SVM

348



classifier. This ROC is the average of all the ROCs obtained
from the 20 folds. It can be seen that the temporal features
improve the quality of the classification model as compared
to using only the most recent values.

Figure 6: Comparing the ROC of SVM using the STF-Mine fea-
tures and using the last two values of platelets and Hemoglobin

For significance test on the differences in AUCs, we run
20 folds cross validation 3 times. The p-value obtained was
p=0.0083 for the independent t-test and p=0.12 for the cross-
validation corrected t-test by (Nadeau & Bengio 2003).

We have obtained similar results when baseline and tem-
poral features were tested with the Naı̈ve Bayes classifiers
(the AUC for baseline features was 0.76, and for the STF-
Mine features it was 0.84). All these suggest the two sets
of features differ in their classification performance and our
temporal features are beneficial for the classification task.

Conclusion

Time series classification is becoming more and more im-
portant with the explosive increase in the number of time se-
ries databases. Traditional approaches for time series analy-
sis and classification either use simple data features ignoring
the temporal aspect of data or rely on hand-built temporal
features defined a priori by a domain expert. However, vast
amounts of data often prevent the expert from being able to
grasp all possible patterns in the data. We have developed
a new method that adopts the temporal abstraction frame-
work to extract temporal features critical for the classifica-
tion task. Our methodology integrates two powerful data
mining paradigms: frequent patterns mining and inductive
classification to solve the complex time series classification
problem. An advantage of our methods is that it can work
with irregularly sampled temporal datasets.

Many research issues related to our methodology remain
open and may be further refined in the future. For exam-
ple, our current approach trims the frequent patterns mined
for different classes only after the frequent pattern genera-
tion process is complete. A more efficient solution may be
possible by interleaving the feature generation and discrim-
inative feature filtering steps.

Acknowledgements

This research was supported by the grant 1R21LM009102-
01A1 from the National Library of Medicine.

References

Agrawal, R., and Srikant, R. 1994. Fast Algorithms for
Mining Association Rules in Large Databases. In Proceed-
ings of VLDB.
Agrawal, R., and Srikant, R. 1995. Mining sequential pat-
terns. In Proceedings of ICDE.
Agrawal, R.; Faloutsos, C.; and Swami, A. 1993. Efficient
Similarity Search in Sequence Databases. In Foundations
of Data Organization and Algorithms.
Allen, F. 1984. Towards a general theory of action and
time. Artificial Intelligence, 23:123-154.
Antunes, C., and Oliveira, A. 2001. Temporal Data Min-
ing: an Overview. In Proceedings of Workshop on Tempo-
ral Data Mining (KDD).
Bengio, Y. 1995. Neural Networks for Speech and Se-
quence Recognition. In Intl. Thomsom publishing Inc.
Das, G.; Lin, K.; Mannila, H.; Renganathan, G.; and
Smyth, P. 1998. Rule Discovery from Time Series. In
Proceedings of ACM SIGKDD.
Hoppner, F. 2001. Discovery of Temporal Patterns. Learn-
ing Rules about the Qualitative Behaviour of Time Series.
In Proceedings of PKDD.
Keogh, E. J., and Pazzani, M. 1998. An Enhanced Repre-
sentation of Time Series Which Allows Fast and Accurate
Classification, Clustering and Relevance Feedback. In Pro-
ceedings of ACM SIGKDD.
Keogh, E.; Chu, S.; Hart, D.; and Pazzani, M. 2003. Seg-
menting Time Series: A Survey and Novel Approach. In
Data Mining in Time Series Databases. World Scientific.
Lesh, N.; Zaki, M.; and Ogihara, M. 1999. Mining Fea-
tures for Sequence Classification. In Proceedings of ACM
SIGKDD.
Liu, B.; Hsu, W.; and Ma, Y. 1998. Integrating Classifica-
tion and Association Rule Mining. In Proceedings of ACM
SIGKDD.
Morchen, F. 2006. Time Series Knowledge Mining. Ph.D.
Dissertation, Philipps-University Marburg.
Nadeau, C., and Bengio, Y. 2003. Inference for the gener-
alization error. Machine Learning, 52:239281.
Pedro, D., and Pazzani, M. 1997. On the Optimality of the
simple Bayesian Classifier under zero-one Loss. In Ma-
chine Learning.
Rabiner, L. R. 1989. A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition. In IEEE.
Sacchi, L.; Larizza, C.; Combi, C.; and Bellazzi, R. 2007.
Data mining with Temporal Abstractions: learning rules
from time series. In Data Mining Knowledge Discovery.
Shahar, Y. 1997. A Framework for Knowledge-Based Tem-
poral Abstraction. Artificial Intelligence, 90:79-133.
Vapnik, V. 1995. The nature of statistical learning theory.
In Springer-Verlag New York.
Xi, X.; Keogh, E.; Shelton, C.; Wei, L.; and Ratanama-
hatana, C. 2006. Fast time series classification using nu-
merosity reduction. In Proceedings of ICML.

349




