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Abstract
Extracting important relations between biological com-
ponents and semantic events involving genes or proteins
from literature has become a focus for the biomedical
text mining community. In this paper, we review a sub-
graph matching-based approach proposed in our previ-
ous work for mining relations and events in the biomed-
ical literature. Our subgraph matching algorithm is for-
mally presented, along with a detailed analysis of its
complexity. We present three different relation/event ex-
traction tasks in which our approach has been success-
fully applied. Our approach is of considerable value in
extracting highly precise, binary relations when appro-
priate training data is available.

Introduction
Recent research in information extraction from the biomed-
ical literature has addressed automatically extracting im-
portant relations between biological components such as
protein-protein interactions and protein-disease associa-
tions, and semantic events involving genes or proteins in-
cluding gene expression, binding, or regulation events (Kim
et al. 2009; 2011). While a relation typically involves a pair
of entities with participating roles, linked by a semantic rela-
tion type, an event captures the association of multiple par-
ticipants of varying numbers and with diverse semantic roles
(Ananiadou et al. 2010). We will refer to events in this paper.

Automatic extraction of such relations or events has a
broad range of biological applications, ranging from support
for the annotation of molecular pathways to the automatic
enrichment of biological process databases. Since often re-
lations and events can serve as participants in other events,
the extraction of such nested event structures also facilitates
the construction of complex conceptual networks.

Graphs provide a flexible structure to represent a network
and naturally describe the interactions between its compo-
nents. Therefore, they are a powerful primitive for model-
ing relations and events. More recently, dependency graphs
from syntactic parsing, with their ability to capture long-
range dependencies, have shown an advantage in biological
relation extraction (Miyao et al. 2009). There are two pri-
mary approaches used to integrate dependency graphs with
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supervised machine learning methods for event extraction:
feature-based and kernel-based.

The feature-based approach encodes node tokens and
edge dependency types of variable depths of a dependency
graph as features to feed learning algorithms, and has been
extensively applied for event extraction (Björne et al. 2009).
However, these features do not fully capture the rich, struc-
tured information of a graph. The kernel-based approach
used in conjunction with Support Vector Machines (SVM)
is able to use that structure directly. The approach employs
a graph kernel, which directly calculates the similarity be-
tween two dependency graphs. Various graph kernels have
been proposed that compare two graphs according to differ-
ent characteristics. The shortest path kernel focuses on the
shared information on the shortest dependency path between
the constituent entities of a relation (Bunescu and Mooney
2005), while the all-paths graph kernel considers weighted
shared dependency paths of all possible lengths between
words (Airola et al. 2008). They have been applied to ex-
tracting protein-protein and drug-drug interactions (Tikk et
al. 2010; Thomas et al. 2011a).

Graph matching-based techniques that directly operate on
dependency graphs have also proven effective for informa-
tion extraction in the general English domain. A dependency
graph matching module was introduced to compute the text
relatedness between student answers and correct answers in
assisting the automatic grading of student answers (Mohler,
Bunescu, and Mihalcea 2011). Given dependency graphs of
question and answer sentences, a method was also proposed
to learn graph-based question answering rules by extracting
the maximum common subgraph of two graphs, which de-
termines the common information between a question and
a sentence containing an answer (Mollá 2006). These ap-
proaches achieved accuracy figures competitive with state-
of-the-art supervised methods.

In our previous work, we proposed a subgraph matching-
based approach to extract events from the biomedical liter-
ature (Liu, Blouin, and Keselj 2010). In this paper, we re-
view this approach and demonstrate its generalizability by
presenting three relation/event extraction tasks in which our
approach has been successfully applied. In the end, we sum-
marize the advantages of this approach. To the best of our
knowledge, it is the first graph matching-based approach for
extracting relations or events in the biomedical domain.
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Graph-based Event Extraction Method
Interactions among biological entities are characterized in
various contexts in the biomedical literature. The same bi-
ological processes are often expressed via diverse surface
forms in text (Ananiadou et al. 2010).

The underlying assumption of our event extraction ap-
proach is that the contextual dependencies of each stated
biological relation or event capture a typical context where
events of such type are frequently occurring in the biomed-
ical literature. Our approach falls into the category of
instance-based reasoning (Alpaydin 2004). Specifically, the
key contextual structures are learned from each labeled pos-
itive instance and maintained as event rules in the form of
subgraphs. When compared against unseen text, rules are
generalized according to different matching criteria to iden-
tify instances in accordance with rules.

Figure 1 illustrates the overall architecture of our sub-
graph matching-based event extraction approach with three
core components highlighted. In line with most systems
(Björne et al. 2009; Airola et al. 2008), our approach focuses
on extracting relations or events that are expressed within
the boundaries of a single sentence, and those that require
information across sentences or articles are not considered.
In addition, it is assumed that biological entities involved in
the target event have been manually annotated or automati-
cally recognized by upstream procedures.

Rule Induction

Preprocessing

Sentence Matching

Postprocessing

Training data Testing data

Rule Set
Optimization

Figure 1: General Architecture of Event Extraction

Several standard preprocessing steps are first completed
on both training and testing data. These include sentence
segmentation and tokenization, Part-of-Speech tagging, and
syntactic parsing that produces dependency graphs for sen-
tences (Klein and Manning 2003).

Rule Induction Event rules are learned automatically us-
ing the following induction method. Starting with the depen-
dency graph of each training sentence, the shortest depen-
dency path in the undirected version of the graph between
certain participants of each annotated event is selected; in-
formation regarding their relationship is particularly likely
to be carried on this path (Bunescu and Mooney 2005). The
union of all such shortest paths is then computed. While the
dependencies of the path union is used as the graph rep-
resentation of the event, a detailed description records the
participants of the event, their semantic role labels and the

associated nodes in the graph. All the participating biologi-
cal entities are replaced with a single tag, e.g. “BIO Entity”.
As a result, each annotated event is generalized and trans-
formed into a generic graph-based rule. The rule induction
algorithm is elaborated in more detail in (Liu, Blouin, and
Keselj 2010).

Sentence Matching Event extraction from test sentences
is achieved by matching the obtained rules to each testing
sentence. Since rules and sentences all possess a graph rep-
resentation, event recognition becomes a subgraph matching
problem, to identify a subgraph isomorphic to a rule graph
within the graph of a testing sentence. The subgraph match-
ing problem in our work is defined as follows.

Definition 1. A rule graph Gr = (Vr, Er) is isomorphic
to a subgraph of a sentence graph Gs = (Vs, Es), denoted
by Gr

∼= Ss ⊆ Gs, if there is an injective mapping f : Vr →
Vs such that, for every directed pair of nodes vi, vj ∈ Vr, if
(vi, vj) ∈ Er then (f(vi), f(vj)) ∈ Es, and the edge label
of (vi, vj) is the same as the edge label of (f(vi), f(vj)).

We designed a subgraph matching algorithm to perform
this sentence matching task (Liu, Blouin, and Keselj 2010).
We present the formal algorithm and give a detailed analysis
of its complexity in the next section.

Rule Set Optimization Typical of instance-based reason-
ers, the accuracy of rules with which to compare an unseen
sentence is crucial to the success of our approach. Although
rules are induced from positively labeled events, when the
graph representation of a rule is detected in previously un-
seen text, the encoded contextual dependencies may not al-
ways contain a valid event. For instance, a Gene expression
rule encoding a dependency relation for “Tax expression”
should not produce a Gene expression event for the phrase
“Tax expression vector” even though they share a same de-
pendency, because “Tax expression” is used as an adjective
to describe “vector” in this context. Such matches result in
false positive events.

Therefore, we measured the accuracy of each rule ri in
terms of its prediction result via Eq.(1). Each rule is com-
pared against training sentences using the subgraph match-
ing approach, leaving out the sentence from which the rule
was learned. For rules that produce at least one prediction,
we ranked them by ACC(ri) and excluded the ones with a
ACC(ri) ratio lower than an empirical threshold, e.g. 1:4.
We assume that these rules will produce false positive pre-
dictions on unseen text if they are retained in the rule set.
Rules that do not make predictions are kept as they may po-
tentially contribute to the testing data.

ACC(ri) =
#correct predictions by ri
#total predictions by ri

(1)

This performance-based evaluation leads to an optimized
rule set. It is incorporated into our event extraction frame-
work as this component substantially improves the precision
of the method (Liu, Komandur, and Verspoor 2011).

Finally, post-processing is performed to transform raw
sentence matching results into the required format accord-
ing to the event extraction task.
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Subgraph Matching Algorithm1

The subgraph matching problem is NP-complete (Garey and
Johnson 1979). Since on average there are about 24 words
in a sentence in the biomedical text (Kim et al. 2003), the
dependency graphs of rules and sentences involved in our
matching process are small. Therefore, we designed a simple
subgraph matching algorithm using a backtracking approach
(Liu, Blouin, and Keselj 2010). The main and the recursive
part of the algorithm are formalized in Algorithm 1 and 2.

Algorithm 1 Main algorithm
Input: Dependency graph of a testing sentence s, Gs = (Vs, Es)

where Vs is the set of nodes and Es is the set of edges of the
graph; a finite set of rules R = {r1, · · · , ri, · · ·}, where ri =
(ei, Gri). Gri = (Vri , Eri) is the dependency graph of ri.

Output: MR : a set of rules from R matched with s together with
the injective mapping

Main algorithm:
1: MR← ∅
2: for all ri ∈ R do
3: stri ← StartNode(Gri) //StartNode finds the start
4: //node stri of the rule graph Gri

5: STs ← {sts1 , sts2 , · · · , stsj , · · ·}
6: //STs : the set of start nodes of the sentence graph Gs

7: for all stsj ∈ STs do
8: create an empty stack σ and push (stri , stsj ) onto
9: the stack σ

10: IM← ∅ //IM : records of injective matches
11: //between nodes in Gri and Gs

12: call MatchNode(σ, rIM, Gri , Gs)
13: //rIM : reference of IM
14: if MatchNode returned TRUE then
15: MR← MR ∪ {ri with IM }
16: return MR

The backtracking ability of the algorithm allows the
matching process to recover from initial incorrect matches
and continue to proceed until the correct subgraph is identi-
fied. An example of the backtracking process when match-
ing a rule graph with a sentence graph is illustrated in Fig-
ure 2. The matches are highlighted by dotted lines.

The complexity of Algorithm 1 is exponential, as we
could expect since the problem of subgraph matching is
known to be NP-hard. However, we have observed that the
algorithm is relatively efficient in practice and we have suc-
cessfully run it on several event extraction tasks. We show
that this efficient performance in practice can be expected.
Let us assume that the sentence graph Gs and the rule graph
Gri have a total of n vertices and m edges, and the ver-
tex degree (number of adjacent edges) is always less than
or equal k. The main algorithm has two nested loops so it
calls the recursive part MatchNode O(|R| · n) times. When
calling MatchNode, the main source of inefficiency is the
occurrence of several edges with the same label, adjacent
to one node. This is more an exception in realistic depen-
dency parses than the rule. If we had two graphs with no
adjacent same-label edges, MatchNode would be called for

1The Java implementation of our algorithm is re-
leased as open source software that can be downloaded via
http://esmalgorithm.sourceforge.net/.

Algorithm 2 Recursive subroutine
Recursive subroutine: MatchNode(σ, rIMparent, Gri , Gs)
1: IMcurrent ← IMparent //assign IMparent from the
2: //parent level to the current IMcurrent

3: while stack σ is not empty do
4: pop node pair (vr, vs) from stack σ
5: if an injective match between vr and vs already exists
6: in IMcurrent then
7: do nothing
8: else if an injective match is possible between vr and
9: vs then

10: IMcurrent ← IMcurrent ∪ { the match between
11: vr and vs }
12: else
13: return FALSE
14: for all edges er adjacent to node vr in Gri do
15: let (vr, nr) be the edge er
16: for all edges es adjacent to node vs in Gs do
17: let (vs, ns) be the edge es
18: if er and es share same direction and label then
19: S← S ∪ ns //S : the set of candidate
20: //nodes for matching nr

21: for all ns ∈ S do
22: if an injective match between nr and ns

23: already exists in IMcurrent then
24: go to Line 14 and proceed with next edge er
25: else if an injective match is possible between
26: nr and ns then
27: σn ← σ //copy σ to a new stack σn

28: push (vr, vs, nr, ns) onto the stack σn

29: call MatchNode(σn, rIMcurrent, Gri , Gs)
30: //rIMcurrent : reference of IMcurrent

31: if MatchNode returned TRUE then
32: IMparent ← IMcurrent

33: //update IMparent using IMcurrent

34: return TRUE
35: return FALSE
36: IMparent ← IMcurrent

37: return TRUE

each pair of matchable nodes, which makes O(n) invoca-
tions. The nested loops iterate O(nk2) times. Since line 27
requires O(n) time to copy the stack, the total time would be
O(|R| · n3k2) time. However, if same-label adjacent edges
are present, the algorithm may backtrack to try to match each
edge with k possible edges in the other graph, which gives
O(kn) possible invocations of MatchNode, with the total
worst-case algorithm complexity O(|R| ·n2kn). In practice,
it only takes the algorithm less than a second to return the
results for each sentence.

When matching between graphs, various matching fea-
tures can be considered, resulting in different matching cri-
teria. The features include edge features (E) which are edge
labels and edge directions, and node features which are POS
tags (P) and all tokens (A), ranging from the least specific
matching criterion, E, to the much stricter criterion, A. For
each sentence, the algorithm returns all the matched rules
together with the injective mappings from rule nodes to sen-
tence tokens. Events are then extracted by applying the de-
scriptions of tokens in each matched rule (e.g. role labels) to
the corresponding tokens of the sentence.
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Figure 2: Example of Backtracking Process (a) initial injec-
tive matches (b) wrong matches detected (c) backtracking
to the A node (d) correct matches found

The subgraph matching algorithm can also be used to de-
termine isomorphism relationships between rules by exam-
ining whether the graph representations of rules are sub-
graph isomorphic to each other according to a matching cri-
terion. Although duplicate events produced by isomorphic
rules will be removed eventually via post-processing, keep-
ing only graphically unique rules can significantly reduce
the size of the rule set to be matched, thus improving the
overall efficiency of the event extraction.

Application of Graph-based Event Extraction
In this section, we demonstrate three successful biomedi-
cal applications of our event extraction approach: BioNLP
shared tasks, Protein-Residue association detection and
Protein-Protein interaction identification.

BioNLP Shared Tasks The two BioNLP shared tasks fo-
cused on the recognition of biological events particularly on
proteins in the literature with the gold protein annotation
given (Kim et al. 2009; 2011). When a biological event is
described in text, it can be recognized by the event type, the
event trigger, and one or more event arguments.

For each gold event, the shortest dependency path con-
necting the event trigger to each event argument is extracted
when learning event rules from training sentences. For com-
plex events such as regulation events that take a sub-event as
an argument, the shortest path is extracted so as to connect
the trigger of the main event to the trigger of the sub-event.
The resulting rules are categorized into different event types.

Figure 3 presents a simple example of the event extraction
process by matching an event rule to a sentence to extract a
Positive regulation event in the sentence. The matching cri-
teria in the example, “E+P”, require that edges be matched if
they share the same direction and edge label while nodes be
matched as long as the POS tags of the tokens are identical.

Positive_regulation:(acceleration-2/NN)
Theme:(BIO_Entity-1/NNP) Cause:(BIO_Entity-6/NNP)  <==
prep_by(BIO_Entity-1/NNP, BIO_Entity-6/NNP);
prep_of(acceleration-2/NN, BIO_Entity-1/NNP)

Input:

Event rule:

Sentence:

Interferons inhibit activation of STAT6 by interleukin 4
in human monocytes by inducing SOCS-1 gene expression.

Subgraph matching:

acceleration-2/NNBIO_Entity-1/NNPBIO_Entity-6/NNP
prep_ofprep_by

BIO_Entity-7/NNP
(interleukin 4)

BIO_Entity-5/NNP
(STAT6)activation-3/NN

prep_byprep_of
inhibit-3/VBP

Extracted event:

Positive_regulation:(activation)  Theme:(STAT6)
Cause:(interleukin 4)

Injective mapping:

acceleration-2/NN (trigger)             activation-3/NN

Rule                                   Sentence

BIO_Entity-1/NNP  (Theme)               STAT6

BIO_Entity-6/NNP  (Cause)               interleukin 4

dobj

Rule graph

Segment of sentence graph

Figure 3: Biological Event Extraction Process

We applied our event extraction approach to both shared
tasks. Table 1 reports the best performance by our approach
on the testing set of the GENIA Event (GE) task of BioNLP-
ST 2011, which subsumes the testing data of BioNLP-ST
2009. It is evaluated by the primary metric of the tasks via
the official online evaluation.

Event type Rec.(%) Prec.(%) F(%)
Gene expression (1002) 62.08 89.24 73.22
Transcription (174) 39.08 81.93 52.92
Protein catabolism (15) 53.33 100.00 69.57
Phosphorylation (185) 61.08 88.28 72.20
Localization (191) 31.94 95.31 47.84
[SVT-TOTAL] (1567) 55.65 88.98 68.47
Binding (491) 25.66 61.46 36.21
[EVT-TOTAL] (2058) 48.49 84.22 61.55
Regulation (385) 20.00 42.54 27.21
Positive regulation (1443) 31.32 57.00 40.43
Negative regulation (571) 24.87 40.11 30.70
[REG-TOTAL] (2399) 27.97 50.53 36.01
[ALL-TOTAL] (4457) 37.45 66.41 47.89

Table 1: GE results of “E+P*+A*” on testing set by “Ap-
proximate Span /Approximate Recursive Matching”

The graph matching criteria “E+P*+A*” requires that the
edge features (E), the relaxed POS tags (P*) and the lemma-
tized forms of all tokens (A*) be exactly the same. The re-
laxed POS allows the plural form of nouns to match with the
singular form, and the conjugations of verbs to match with
each other. Lemmatization is performed by the BioLemma-
tizer (Liu et al. 2012) on every pair of node tokens to be
matched to allow tokens that share a same lemma to match.

Our subgraph matching-based event extraction method
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clearly shows an overall superior precision over all the par-
ticipating teams of BioNLP-ST 2011, of which only three in-
dividual systems achieved a precision in the 60% range. Par-
ticularly, the precision of five simple events that only involve
a trigger and a theme is approaching 90%, nearly 9% higher
than that of the best performing system. This indicates that
event rules automatically learned and optimized over train-
ing data generalize well to the unseen text. Whenever the
graph representation of a rule is detected in testing data,
the rule has the ability to identify precisely a correspond-
ing event. Considering that the precision outperforms the
system relying on manually developed patterns (Kilicoglu
and Bergler 2011), it indicates that learned rules can be even
more accurate than human-coded rules.

However, the overall performance is limited by the lower
coverage. While 55.7% of simple events are captured, the
recall of more complex events such as Binding and regula-
tion events are much lower. This suggests that the lexical in-
formation and syntactic dependencies expressed in rules are
not sufficient enough to cover more complex event contexts
where multiple participants are involved. These events often
require a long dependency path from trigger to arguments.

One way to improve recall is to enrich the rule set
with rules learned via distant supervision to help cover di-
verse event contexts. Distant supervision automatically cre-
ates training instances by heuristically matching the exist-
ing knowledge to corresponding text (Craven and Kumlien
1999). Next, we present two applications that integrate dis-
tant supervision into our relation extraction framework.

Protein-Residue Association In three-dimensional pro-
tein structures, the appearance of certain amino acid residues
at key structural positions plays a central role in protein
function, for instance enabling ligand or substrate binding.
For proteins of therapeutic importance, identifying these
protein residues as potential targets is a key early step in
drug design. Text mining has been shown to play an impor-
tant role in such protein function prediction (Verspoor et al.
2012). Our event extraction approach was applied to extract
protein-residue associations embedded in the biomedical lit-
erature (Ravikumar et al. 2012).

Instead of manually curated annotations, sentences that
contain high confidence protein-residue relationships were
prepared via distant supervision using Protein Data Bank
(PDB) as the biological knowledge source. Sentences in
which at least a protein and an amino acid co-occur were
selected from abstracts of the primary references for the
PDB entries. These sentences are further filtered to retain
only those that contain physically validated relationships,
i.e., the protein-residue co-occurrence can be substantiated
by a physical match of the particular residue to the men-
tioned protein according to its PDB record. For the sen-
tence “CTP binding affects the conformation of Arg80, and
the Arg80 conformation in the UPRTase-UMP-CTP com-
plex leaves no room for binding of the substrate PRPP.”, the
protein-residue pair (UPRTase-Arg80) is validated via the
PDB entry “1xtv”, with PMID-15654744 as the primary ci-
tation. Association rules are then induced from these sen-
tences by extracting the shortest paths connecting associa-

tion arguments.
Our approach achieved a 80% F-score in extracting

protein-residue associations (Ravikumar et al. 2012) from
the Nagel corpus, in which proteins and amino acid residues
are pre-annotated (Nagel et al. 2009), with a 72% recall and
a 90% precision, surpassing previously published methods.
Distant supervision helps to relax the reliance of rule in-
duction on the curated annotation. Taking advantage of a
much broader set of training instances, more rules are reli-
ably learned to cover diverse relation contexts, thus improv-
ing the coverage of our approach.

Protein-Protein Interaction Protein-protein interactions
(PPI) form the basis for a vast majority of cellular processes,
including signal transduction and transcriptional regulation.
The study of these interactions is fundamental to the under-
standing of biological systems. Literature-based PPI identi-
fication has been an active research area for the biomedical
text mining community.

Our method was successfully adopted to serve as the ba-
sis for extracting protein-protein interactions (Thomas et al.
2011b). Distant supervision is performed to create training
sentences for the generation of rules. A database of PPIs,
IntAct, is used against all sentences in Medline and PMC
with proteins automatically tagged and normalized to select
those sentences containing any of the protein-protein pairs.
Instead of ranking rules, a set of rule generalizers and filters
is proposed to systematically optimize the rule set.

When evaluated on five benchmark PPI corpora (AIMed,
BioInfer, HPRD50, IEPA, and LLL), our approach achieves
a comparable performance to state-of-the-art machine
learning-based PPI extraction methods. In particular, it ob-
tains the second best F-score among all evaluated ap-
proaches on the largest PPI corpus BioInfer. This confirms
the effectiveness of distant supervision in our approach.

Conclusion
In this paper, we have reviewed a subgraph matching-based
event extraction approach, and demonstrated its generaliz-
ability via three successful applications of event extraction
in the biomedical domain. This approach has a number of
advantageous features.

First, characterized by a high precision, our approach is
a preferable choice when accurate information about bio-
logical processes is emphasized. It works particularly well
on extracting binary relations (including events containing
only two participants) with training data where biological
entities of the target relation are pre-annotated. Second, the
coverage of the approach can be effectively increased by in-
tegrating distant supervision. Meanwhile, rules learned from
co-mentions of pairs of entities known to interact are not
prone to over-fitting to an annotated training corpus, thus
more generalizable across different datasets (Thomas et al.
2011b). In contrast, most state-of-the-art machine learning
methods for relation extraction show large performance dif-
ferences depending on whether or not the evaluation and
training instances are taken from the same corpus (Tikk et
al. 2010). Third, our approach is easily adapted to different
event extraction tasks. Its generalizability has been demon-
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strated via three biomedical applications with various re-
quirements and diverse contexts. The task-specific adapta-
tion only involves specifying the type of the targeted rela-
tion, e.g. protein-residue association, and is therefore triv-
ial. Moreover, existing ontological resources can be natu-
rally applied to the matching process between graph nodes
to improve the overall event extraction performance. Fourth,
analyzing extraction errors of the approach is more straight-
forward compared to SVM-based supervised learning meth-
ods as a wrong match can be pinpointed to the specific rule
producing it and then corrected.

References
Airola, A.; Pyysalo, S.; Björne, J.; Pahikkala, T.; Ginter,
F.; and Salakoski1, T. 2008. All-paths graph kernel
for protein-protein interaction extraction with evaluation of
cross-corpus learning. BMC Bioinformatics 9 Suppl 11:s2.
Alpaydin, E. 2004. Introduction to Machine Learning. MIT
Press.
Ananiadou, S.; Pyysalo, S.; Tsujii, J.; and Kell, D. B. 2010.
Event extraction for systems biology by text mining the lit-
erature. Trends in Biotechnology 28(7):381–390.
Björne, J.; Heimonen, J.; Ginter, F.; Airola, A.; Pahikkala,
T.; and Salakoski, T. 2009. Extracting complex biological
events with rich graph-based feature sets. In BioNLP ’09:
Proceedings of the Workshop on BioNLP, 10–18. Associa-
tion for Computational Linguistics.
Bunescu, R. C., and Mooney, R. J. 2005. A shortest path
dependency kernel for relation extraction. In Proceedings of
the conference on Human Language Technology and Empir-
ical Methods in Natural Language Processing, 724–731.
Craven, M., and Kumlien, J. 1999. Constructing biolog-
ical knowledge bases by extracting information from text
sources. In Proceedings of the Seventh International Con-
ference on Intelligent Systems for Molecular Biology, 77–86.
AAAI Press.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co.
Kilicoglu, H., and Bergler, S. 2011. Adapting a general
semantic interpretation approach to biological event extrac-
tion. In Proceedings of the BioNLP Shared Task 2011 Work-
shop, BioNLP Shared Task ’11, 173–182. Association for
Computational Linguistics.
Kim, J.-D.; Ohta, T.; Teteisi, Y.; and Tsujii, J. 2003. Genia
corpus - a semantically annotated corpus for bio-textmining.
Bioinformatics 19(suppl. 1):i180–i182.
Kim, J.-D.; Ohta, T.; Pyysalo, S.; Kano, Y.; and Tsujii, J.
2009. Overview of BioNLP’09 shared task on event extrac-
tion. In Proceedings of BioNLP Shared Task 2009 Work-
shop, 1–9. Association for Computational Linguistics.
Kim, J.-D.; Pyysalo, S.; Ohta, T.; Bossy, R.; Nguyen, N.; and
Tsujii, J. 2011. Overview of BioNLP shared task 2011. In
Proceedings of BioNLP Shared Task 2011 Workshop, 1–6.
Association for Computational Linguistics.

Klein, D., and Manning, C. D. 2003. Accurate unlexicalized
parsing. In ACL ’03: Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics, 423–430.
Association for Computational Linguistics.
Liu, H.; Christiansen, T.; Baumgartner, W. A.; and Verspoor,
K. 2012. Biolemmatizer: a lemmatization tool for morpho-
logical processing of biomedical text. Journal of Biomedical
Semantics 3(3).
Liu, H.; Blouin, C.; and Keselj, V. 2010. Biological
event extraction using subgraph matching. In Proceedings
of the 4th International Symposium on Semantic Mining in
Biomedicine (SMBM-2010).
Liu, H.; Komandur, R.; and Verspoor, K. 2011. From
graphs to events: A subgraph matching approach for infor-
mation extraction from biomedical text. In Proceedings of
BioNLP Shared Task 2011 Workshop, 164–172. Association
for Computational Linguistics.
Miyao, Y.; Sagae, K.; Saetre, R.; Matsuzaki, T.; and Tsu-
jii, J. 2009. Evaluating contributions of natural language
parsers to protein–protein interaction extraction. Bioinfor-
matics 25(3):394–400.
Mohler, M.; Bunescu, R.; and Mihalcea, R. 2011. Learning
to grade short answer questions using semantic similarity
measures and dependency graph alignments. In Proceedings
of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies - Volume
1, 752–762. Association for Computational Linguistics.
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