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Abstract

A large number of transients visit big cities on any given
day and they visit crowded areas and come in contact
with many people. However, epidemiological studies
have not paid much attention to the role of this sub-
population in disease spread. In the present work, we
extend a synthetic population model of Washington DC
metro area to include leisure and business travelers. This
approach involves combining Census data, activity sur-
veys, and geospatial data to build a detailed minute-by-
minute simulation of population interaction.
We simulate a flu-like disease outbreak both with and
without the transient population to evaluate the effect of
the transients on outbreak size and peak day in terms of
number of residents infected. Results show that there
are significantly more infections when transients are
considered. We also evaluate interventions like closing
big museums and encouraging use of hand sanitizers
at those museums. Surprisingly, closing museums does
not result in a significant difference in the epidemic.
However, we find that if the use of hand sanitizers re-
duces the infectivity and susceptibility to 80% or 60%
of the original values, it is as effective as closing muse-
ums for a few days or entirely eliminating the effect of
transients. If infectivity and susceptibility are reduced
to 40% or 20%, it reduces the number of resident infec-
tions over the period of 120 days by 10% and 13%.

Introduction
Influenza, also referred as flu, is an infectious disease that
spreads through air by coughs, sneezes or through con-
tact with contaminated surfaces. The Centers for Disease
Control and Prevention (CDC) estimated 24.7 million in-
fluenza cases annually based on 2003 population demo-
graphics (Molinari et al. 2007). It spreads as a seasonal flu
but could potentially result into a pandemic. Modern trends
like urbanization and increased travel provide further oppor-
tunities for the spread of infectious diseases. Governments
must be prepared with the strategies to mitigate the spread.
However, such contagious diseases spread through person
to person contact over a social contact network. In areas
like large cities, these networks can be very large and quite
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dense. This makes planning and responding for even a mod-
erate disease outbreak quite challenging due to the difficulty
of forecasting the epidemic spread, and finding and imple-
menting the right interventions to contain the epidemic.

Computational approaches to epidemiology involve mod-
eling the social contact network and exploring different out-
break scenarios and comparing various intervention strate-
gies. However the social contact network cannot be obtained
through traditional survey-based methods alone because of
its size and complexity. At the Network Dynamics and Sim-
ulation Science Lab (NDSSL), detailed, high fidelity, social
contact networks have been synthesized by combining data
from multiple sources, including the US Census, geospatial
data, the National Household Travel Survey, and others. Us-
ing these synthetic social contact networks, we conduct de-
tailed and large-scale simulations of disease outbreaks using
various high-performance computing softwares developed at
NDSSL.

In the present work we explore the impact of transient
populations—tourists and business travelers—on influenza-
like illnesses (ILI). A large number of transients visit big
cities through out the year, e.g., Washington DC has about
50000 transients including leisure travelers and business
travelers visiting on any day. They usually visit high traf-
fic areas in the city and come into contact with each other
and also with area residents and hence are expected to play
an important role in spreading disease. We extend the syn-
thetic population for the Washington DC Metro Area to in-
clude a transient population consisting of leisure and busi-
ness travelers. This population is constructed by combining
data from Destination DC1, the Smithsonian Institution and
other geospatial data.

We simulate disease outbreaks both with and without the
transient population to evaluate the effect of the transients on
the size of the outbreak and the time at which the epidemic
peaks using EpiSimdemics (Barrett et al. 2008), a high per-
formance computing software, developed at NDSSL.

Related Work
Traditional epidemiological study has relied on differential
equation based models (Hethcote 2000; Bailey 1975). They
are useful to estimate if an epidemic will occur, when will
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it occur, or peak infections. But this approach has some lim-
itations. It assumes that a population is divided into a few
sub-populations and there is uniform mixing within sub-
populations. In reality, mixing depends upon demographics
like age, social and economic background, travel patterns,
etc. Neither these models nor random graph models like the
Erdős-Rényi (Gn,p) model (Erdős and Rényi 1959) or the
preferential attachment model (Barabási and Albert 1999)
capture the complexity of human interactions which serves
as a basis for disease transmission.

More recently, large-scale agent-based disaggregated
models have been studied. They combine multiple datasets
to represent individuals along with interactions among them
to build a social contact network over which the disease
spreads. Ferguson et al. (Ferguson et al. 2005; 2006) eval-
uated the spread of the H5N1 flu virus over a social con-
tact network for Thailand and the spread of the flu in Great
Britain and the United States respectively. However their
approach does not consider much spatial detail. Germann
et al. (2006) and Longini et al. (2005) evaluate the spread
of the flu for the United States and Southeast Asia net-
works respectively. Their approach consists of hierarchical
groups (household, household cluster, neighborhood, and
entire community) and people have close and casual con-
tacts within these groups with varying contact rates. How-
ever interactions in the real world are quite different from
these templates.

At NDSSL, detailed synthetic social contact networks for
the United States have been generated, originally for trans-
portation modeling (Barrett et al. 2001), where nodes repre-
sent individuals and edges represent daily contact between
them. These networks are then used in agent-based simula-
tions to study process like disease spread (Barrett et al. 2010;
Bisset and Marathe 2009; Eubank et al. 2004) or social con-
tagion (Apolloni et al. 2009). The process involves five steps
(Barrett et al. 2001):

1. Generating Synthetic Population: This step disaggregates
the Census data using iterative proportional fitting to cre-
ate a set of synthetic individuals grouped into households
(Beckman, Baggerly, and McKay 1996). The generated
synthetic population returns the same marginal distribu-
tions as given in the Census data, and also preserves
anonymity of individuals because the generated synthetic
individuals do not correspond exactly to any real individ-
uals.

2. Locating Households: This step locates each synthetic
household into a housing location using data from the US
Census and street data from Navteq.

3. Assigning Activities: In this step, each individual is as-
signed a set of activities to perform during a day. Vari-
ous activity templates are created by using the National
Household and Travel Survey (NHTS) and the National
Center for Education Statistics (NCES). Each synthetic
household is matched to a survey a household based on
its demographics and individuals in synthetic household
are assigned the corresponding activities.

4. Locating Activities: An appropriate location (essentially
a building) is chosen for each activity for each individual

using a gravity model and Dun & Bradstreet location data.

5. Sublocation modeling and constructing social contact
network: Each location is subdivided into sublocations
(similar to rooms within a building). A person is assumed
to come in contact with all people present at the same
sublocation at the same time, which thus induces a social
contact network.

Very few studies have been done to understand the effect
of transient populations on epidemics. Ferguson et al. (2006)
model air travel for the United States and Great Britain but
they assume that tourists stay at hotels and do not travel
within the city and hence the only place they come in contact
with residents is at hotels. However, in big cities like Wash-
ington DC or New York, there are some popular tourism lo-
cations that many tourists visit and are highly crowded, e.g.
the National Air and Space Museum at Washington DC has
more than 80000 visits every day. Tourists come in contact
with many people, including residents and other tourists at
these places. We think such subpopulations serve as a con-
stant reservoir of infected people and susceptible people (as
there is a constant flux of new transients).

Most of the previous studies focus on pharmaceutical
(vaccine, antiviral etc.) and non-pharmaceutical (based on
social distancing, e.g. school closure, work closure etc.) in-
terventions (Ferguson et al. 2006; Germann et al. 2006;
Longini et al. 2005; Barrett et al. 2010; Bisset and Marathe
2009; Eubank et al. 2004). Since some tourist destinations
attract very large numbers of visitors each day, they present
a natural target for interventions. We evaluate two kinds of
interventions: closing major tourist destinations (the top four
museums at the Smithsonian Institution, in terms of numbers
of daily visits), and a “hand sanitizer” intervention, where
we assume that promoting sanitary habits at these locations,
such as the use of hand sanitizers, can reduce the spread of
the disease at these locations.

Next we describe the data and methodology used for gen-
erating the two transient subpopulations, after which we pro-
ceed to experiments.

Data Available
We generated an augmented synthetic population for the
Washington DC Metro Area, which combines a previously
generated resident population (the “base population” con-
sisting of 4.13 million people) with a transient population
consisting of tourists and business travelers. Demographic
data about transients were obtained from Destination DC.
We also used data from the the Smithsonian Institution about
daily numbers of visits to various Smithsonian museums. Fi-
nally, we used data from Dun & Bradstreet to identify places
that tourists visit, based on Standard Industrial Classification
(SIC) codes. The data sets used for generating the synthetic
population are listed in table 1. Since details about generat-
ing the base synthetic population are not novel to the present
work and are described elsewhere (Barrett et al. 2001), we
only describe in detail the methodology for generating the
synthetic transient population.

The methodology for generating the transient population
broadly follows that for generating the base population. We
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Used for data source
Base US population American Community Survey

National Center for Education Stat.
National Household Travel Survey
Navteq
Dun & Bradstreet

Transient population Destination DC
(additional) Smithsonian visit counts

Table 1: Datasets used for population generation.

first use demographic data to represent transient individuals
and transient parties (groups). Each transient party is placed
in a hotel which serves as their home for the period of the
visit. Each transient individual is then assigned activities to
perform during the day like staying in the hotel, visiting mu-
seums and other tourist destinations (or work activities, for
business travelers), going to restaurants, and various night
life activities. Each activity is represented by the type of ac-
tivity, the time each activity begins and ends, and the loca-
tion for the activity. A location is chosen for each activity
based on the type of activity using Dun & Bradstreet data.

Tourist Population
Generating Synthetic Tourists
The goal here is to combine various demographic distribu-
tions and represent synthetic tourist parties and individuals
with demographics drawn from these distributions. Accord-
ing to data from Destination DC, about 50000 visitors visit
Washington DC every day, 55% of these are leisure travel-
ers and the rest are business travelers. For adult, overnight
leisure travelers, they also provide distributions of age,
household income, party size, marital status and if the house-
hold has children. Here, age and marital status are individual
level demographics while household income and party size
are household (or party) level demographics, and hence they
need to be treated differently. These distributions are not in-
dependent of each other within a party i.e, a married couple
is more likely to travel together and hence we cannot sample
independently from the given distributions.

High Level View Our approach is simple: we assume a
small set of rules about party structure and then do sampling
without replacement from the given demographic distribu-
tions (since we know the total number of individuals to be
generated) in combination with these rules to generate the
tourist population.

We start by generating first party member (called house-
holder) by sampling age, marital status, income and party
size independently from the corresponding distributions and
then generate other party members in relation to the house-
holder. For example, if a party member is married then with
a certain probability his/her spouse will also be part of the
party and the age difference between them is assumed to
be within a certain range (±5 years in this case). All party
members should have same household/party level demo-
graphics, household income and party size. Whenever an

individual is assigned a demographic, the probabilities for
selecting various categories of that demographic is adjusted
to model sampling without replacement.

We also assign all individuals some other demographic
variables as assigned in the synthetic base population, e.g.,
sex (at random and in accordance with marital status) and
employee status record (esr) and occupation code (socp) (by
finding an individual with the closest income from the syn-
thetic population of Washington DC metro area and assign-
ing corresponding esr and socp codes).

For the present study most of these demographic details
are irrelevant because disease parameters are not chosen to
vary with demographic. However, that could be done in fu-
ture work, and the synthetic populations can also be used for
other studies where the demographic details are important.

Assigning hotels
We identified hotels and lodging locations within I-495 loop
area in Washington DC from Dun & Bradstreet (D&B) data.
D&B is a commercial data set that gives information about
business locations like longitude-latitude of buildings, num-
ber of employees (relative numbers), type of business etc.

Each tourist party is assumed to stay at a hotel, which
serves as their home location for the duration of the visit.
Taking into consideration that tourists prefer to stay near
downtown and each hotel has a capacity proportional to
number of employees there, a hotel location (i) is cho-
sen from the available pool with probability proportional to
num employees(i)× eδ×distance from white house.

Assigning Activities
Since we could not find any data about activity sequences
for tourists, we assumed a template for it, as illustrated in
figure 1. We assume that all individuals in a party travel to-
gether and hence have the same activity sequence and go
to the same locations. However within a location (building)
they may go to different sublocations (rooms). Each party’s
activity sequence contains information about the type of ac-
tivity and the start time and duration. Location and subloca-
tion are decided later.

 

Activity Start time Duration 

Hotel 
Breakfast 
Tourism 
Lunch 
Dinner 
Night Life 
Travel 

12 am and after dinner/night life activity 
between 7 am to 10 am 
after breakfast, lunch or other tourism activity 
after noon 
after 6 pm 
after dinner 
between two activities 

Until breakfast 
30 mins to 1 hour 
30 mins to 30 hours 
1 hour to 1.5 hours 
1 hour to 2 hours 
1 hour to 3 hours 
0 mins to 1 hour 

Lunch Dinner Breakfast Hotel Hotel Tourism Tourism Night Life 

Travel 

Figure 1: Activity template for tourists.

Each party starts the day with a hotel activity. It is fol-
lowed by breakfast which could happen at the same hotel
(with 60% probability) or at some other location (with 40%
probability). Each tourism activity shown in figure 1 is di-
vided into one or more tourism activities with some travel
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time between them. Each party goes for lunch after 12 : 00
pm which is again followed by one or more tourism activi-
ties and then dinner. After dinner, with 50% probability they
go back to the hotel directly and stay for the rest of the day.
Otherwise they go for a night life activity and then back to
their hotel. Each pair of activities is separated by travel time
of 0 mins to one hour.

Locating Activities
We identified locations for tourism, eating, and night life ac-
tivities from D&B data. Tourism activity locations include
places like museums, art galleries, planetarium, historical
societies, and botanical and zoological gardens. Eating ac-
tivity locations include various restaurants and night life
activity locations include bars and pubs, night clubs, and
movie theatres.

Assuming that most of the transients to Washington DC
visit museums which are around the National Mall and plan
their trip around that area, we choose locations for all ac-
tivities based on the distance from the National Mall. Each
location has a capacity (again assumed to be proportional
to the number of employees at that location according to
D&B). Considering both of these factors, a location (i)
is chosen from the available locations for a given activity
type with probability proportional to num employees(i)×
eδ×distance from national mall.

The Smithsonian Institution provides data about daily
visit counts at various museums. To match the number of
visits in our synthetic population at museum locations with
these counts, we adjusted weights (number of employees)
from D&B data for these museums. However, the number
of transients is not sufficient to account for all the visits to
some museum locations. For example, the National Air and
Space Museum has about 80000 visits per day. So we ad-
justed the activities of some individuals in the base popu-
lation and routed them to these locations to match the visit
counts exactly. This also creates mixing between the tran-
sient and the base population, which is an important factor
in the spread of disease.

Sublocation Modeling
An activity location typically corresponds to a building and
sublocations correspond to rooms in the building. Subloca-
tion modeling involves deciding which room a person visits
and hence with whom he comes into contact.

All individuals in a party are assumed to meet each other
at the hotel and hence are assigned same sublocation.

For other locations, we follow the assumption made in
the creation of the base population (Barrett et al. 2001), that
sublocations have a capacity of 25 people, and that each per-
son, upon arriving at a location is assigned to a sublocation
where he remains for the duration of his activity at that lo-
cation.

In reality, people would come into contact with more than
25 people at major tourist venues like the National Air and
Space Museum and the National Museum of Natural His-
tory. Also, inside museums, they do not stay at the same
location during the entire period of their visit. They keep

moving from one exhibition to another. We therefore cre-
ate a simple stochastic process modeling movement between
sublocations at for the four biggest tourism locations - the
National Air and Space Museum (NASM), the National Mu-
seum of Natural History (NMNH), the National Museum of
American History (NMAH) and the National Art Gallery
(NAG). For these four locations, we decided the number of
sublocations by looking at their floor plans. While modeling
visits to these locations, a person’s visit is divided into the
interval of 5 to 15 minutes and a person keeps moving to dif-
ferent sublocations (chosen at random) within the location.

Business Travelers
The process used is similar to the synthetic tourist popula-
tion generation process.

Generating Synthetic Business Travelers
We could not find any demographic data for business travel-
ers. The only information available is that about 45% of the
transients are business travelers. We followed the same pro-
cedure as for generating tourists but with some assumptions.
Each business traveler is assumed to be by himself and hence
party size is assumed to be 1. Age is assumed to be between
18 to 70 years. Marital status is chosen from unmarried,
married, and divorced/widowed with equal probability. The
household income distribution is assumed to be Gaussian
with peak and standard deviation equal to the maximum and
average household income in Washington DC metro area re-
spectively.

We assigned other demographic variables i.e., sex, socp,
esr following the same process as for tourist population.

Assigning Hotels
Business travelers are assigned hotels the exact same way as
tourists.

Assigning Activities
Here also, since we could not find any data about the activity
sequences for business travelers, we assumed a template for
it. The activity sequence created contains information about
the type of activity and the start time and duration. Location
and sublocation choice are described in the next subsections.
The template for activities is as shown in figure 2.

 

 

Activity Start time Duration 

Hotel 
Breakfast 
Work 
Lunch 
Dinner 
Travel 

12 am and after dinner activity 
between 7 am to 9 am 
after breakfast and lunch 
between 11:30 am to 12:30 pm 
between 5 pm to 6 pm 
between two activities 

Until breakfast 
30 mins to 1 hour 
until lunch or dinner 
1 hour to 1.5 hours 
1 hour to 2 hours 
0 mins to 1 hour 

Lunch Dinner Breakfast Hotel Hotel Work Work 

Travel 

Figure 2: Activity template for business travelers.

Each business traveler starts the day at a hotel and hence
with hotel activity. It is followed by breakfast which could
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happen at the same hotel (with 60% probability) or at some
other location. After breakfast, he leaves for work and stays
there until lunch. After lunch, he goes back to work and stays
there until dinner. After dinner, he goes back to the hotel and
stays for the rest of the day. Here also, each pair of activities
is separated by a travel time of 0 mins to one hour.

Locating Activities
The process used to assign activity locations is quite similar
to that of tourists. Here we identified locations for work from
the D&B data (these are also used as work locations for the
base synthetic population) and eating (same as for tourists).
Activity locations are assigned the same way as for tourists.

Sublocation Modeling
For sublocation modeling, we follow the same process as
used for the base synthetic population.

Experiments
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Figure 3: Disease model.

We simulate a flu-like disease for Washington DC metro
area using EpiSimdemics, an interaction based high per-
formance computing simulation software for studying large
scale epidemics (Bisset et al. 2009). To evaluate the effect of
the transient population on disease spread, we simulate the
disease spread for 120 days both with and without the tran-
sient population. The disease model, represented as a Finite
State Machine (FSM), is as shown in Figure 3. Each node
represents a state and transition probabilities are as shown on
the edges. Each node label consists of the state name, num-
ber of days for which a person remains in this state, and the
probability of him infecting others. The histogram in the up-
per right corner shows the probability of being in the given
state versus the number of days for symptom1, symptom2,
symptom3, and asymptomatic states.

We derive the epidemic curves for multiple cases, like
considering only base population, base plus transient pop-
ulation, closing museums for a certain amount of time dur-
ing the epidemic, and using more hand sanitizers in the four
biggest museums. Each case is discussed in detail in follow-
ing paragraphs. We run 50 simulations for each case. Each
simulation takes one hour to 2.5 hours of computation. The
total computational effort is on the order of 600 compute
hours. Initial infections are the same for all cases. Only resi-
dents are initially infected so transients do not bring disease

to the city, they can get infected during their stay in the area
and infect others and leave at the end of their trips (5 days
in this case, which is the average trip length according to the
data from the Destination DC). They are replaced by new
incoming uninfected transients with exactly the same demo-
graphics.

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

Residents Residents + Tourists

Close Museums (5 days) Close Museums (14 days)

Day in Simulation 

Resident 
Population 
Currently 
Infected 
(percent) 

Figure 4: The fraction of residents currently infected vs. day
in simulation (average over 50 iterations).
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Figure 5: The fraction of residents infected cumulatively vs.
day in simulation (average over 50 iterations).

As we are interested in the effect of transients on the num-
ber of residents being infected, figure 4 shows the average
fraction of residents currently infected versus day in simula-
tion and figure 5 shows the average of fraction of residents
infected over 120 days versus day in simulation. The dis-
ease peaks about 7 days earlier and there are about 0.745%
more resident infections at peak when the transients are con-
sidered. Over the period if 120 days, 2.85% more residents
are infected. This is as expected as major tourist locations
like the National Air and Space Museum (NASM), the Na-
tional Museum of Natural History (NMNH), the National
Museum of American History (NMAH), and the National
Art Gallery (NAG) have about 40000 to 80000 visits (in-
cluding visits from residents and transients) per day. Table 2
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Location Residents Residents Museums Museums Hand Hand Hand Hand
only + closed closed sanitizer sanitizer sanitizer sanitizer

Transients for 5 days for 14 days prob 80% prob 60% prob 40% prob 20%
NASM 0.033413 0.067039 0.067036 0.066862 0.050779 0.038752 0.024469 0.002433
NMNH 0.028815 0.056805 0.056479 0.056117 0.042688 0.031852 0.015943 0.001745
NMAH 0.017859 0.031314 0.031088 0.031211 0.024012 0.016521 0.006404 0.000762
NAG 0.003242 0.007305 0.007267 0.007239 0.00403 0.001656 0.000459 0.000091

Table 2: The fraction of infections (residents + transients) at four major tourist locations (average over 50 iterations).

group sample size 1 2 3 4
Hand sanitizer 80% 50 0.021482
Hand sanitizer 60% 50 0.025398
Hand sanitizer 40% 50 0.032125
Resident only 50 0.034242 0.034242
Hand sanitizer 20% 50 0.037873 0.037873
Museums closed (14 days) 50 0.041905
Museums closed (5 days) 50 0.042007
Residents + Transients 50 0.04202
Significance 0.093 0.794 0.154 0.060

Table 3: Tukey’s HSD test to compare the fraction of residents currently infected at peak, for alpha = 0.05 and sample size =
50.

group sample size 1 2 3 4
Museums closed (5 days) 50 50.46
Museums closed (14 days) 50 51.58
Residents + Transients 50 53.22 53.22
Resident only 50 62.32 62.32 62.32
Hand sanitizer 80% 50 66.46 66.46
Hand sanitizer 60% 50 72.00
Hand sanitizer 20% 50 88.48
Hand sanitizer 40% 50 88.52
Significance 0.135 0.061 0.367 1.0

Table 4: Tukey’s HSD test to compare the day at which current resident infections peak, for alpha = 0.05 and sample size = 50.

group sample size 1 2 3
Hand sanitizer 80% 50 0.178632
Hand sanitizer 60% 50 0.207309
Hand sanitizer 40% 50 0.275303
Hand sanitizer 20% 50 0.313280 0.313280
Resident only 50 0.314311 0.314311
Residents + Transients 50 0.342675
Museums closed (14 days) 50 0.343243
Museums closed (5 days) 50 0.343936
Significance 0.350 0.057 0.265

Table 5: Tukey’s HSD test to compare the fraction of residents currently infected over 120 days, for alpha = 0.05 and sample
size = 50.
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Figure 6: The fraction of residents currently infected vs. day
in simulation (average over 50 iterations).

shows the average fraction of infections (residents+tourists)
that happen over the period of 120 days at these four loca-
tions for both the cases. The number of infections increases
by about two times when transients are considered. Also as
the transients stay for a short period of time and at the end
of their trips, new, uninfected, but susceptible transients re-
place them, there is almost constant number of susceptible
and infected people at these locations, making them promi-
nent sites for infection. Tables 3 and 4 compare the fraction
of the resident population infected at peak and the day at
which it peaks respectively, for different cases using Tukey’s
HSD test with significance level of 0.05. For the fraction of
resident population infected at peak, the case when only resi-
dents are considered falls into a different group from the case
when residents and transients both are considered. Hence,
the fraction of resident population infected at peak is statis-
tically significantly higher when transients are considered.
Although on average the peak is about 9 days earlier, both
cases fall into the same group and hence it is not statisti-
cally significant. Table 5 compares the fraction of the resi-
dent population being infected over the period of 120 days.
They are also not significantly different from each other.

One way to reduce the infections is to apply social dis-
tancing measures like closing schools, work places etc.,
which reduces mixing and hence infections. Here, as we are
interested in reducing the impact of transients, we apply in-
terventions where we close the four big museums for a few
days when the number of infections reaches a threshold. We
assume that when museums are closed tourists go to other
tourist locations and residents visiting these museums con-
tinue their other activities. We simulate two cases:

1. When the current number of infections (resi-
dents+transients) reaches 50000, we close these museums
next day for 5 days. As shown Figure 4, the disease peak
is delayed by 3 days and there are about 0.42% less
infections at peak when museums are closed. Over
the period if 120 days, about 1.42% less residents are
infected. However they are not statistically different. The
fraction of infections (as in table 2) that happen at the
four big museums are slightly less.

2. When the current number of resident infections reaches
50000, we close these museums next day for 14 days.
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Figure 7: The fraction of residents currently infected vs. day
in simulation (average over 50 iterations).

Though not statistically significant, the fraction of resi-
dent population infected at peak and the fraction of resi-
dent population being infected over the period of 120 days
are surprisingly slightly higher than the case when muse-
ums are not closed. The number of infections also peak a
couple of days earlier. This could be because in this case,
we close museums the day after the number of current
resident infections as opposed to the number of current
infections (residents + transients) in the first case, reach
50000. This causes one day (on average) of delay in clos-
ing museums which may be too late to close as disease has
already spread a lot. Another reason could be that when
museums are closed, transients go to some other places
and probably distribute to a larger area and hence spread
disease more.
We also evaluate a scenario where people are encouraged

to use hand sanitizers at the four big museums. As data about
how much infectivity and susceptibility are reduced by ap-
plication of hand sanitizers is unavailable, we did a series of
experiments assuming that the use of hand sanitizers reduces
infectivity and susceptibility to 20%, 40%, 60%, and 80% of
the original values (effective only inside the four museums).
We assume that 50% of the people going to these places use
hand sanitizers. Results are as below:

1. If the use of hand sanitizer reduces the infectivity and the
susceptibility to 80% of the original value, then as shown
in figure 7 the peak is slightly less (though not signifi-
cantly) than the case when museums are closed for 5 days
and the peak is also delayed by 11 days which is statisti-
cally significant (Table 4). The total number of infections
over 120 days are also significantly less.

2. If the use of hand sanitizer reduces the infectivity and
the susceptibility to 60% of the original value, then the
peak and the total number of infections over 120 days are
slightly less (not significantly) than the case when tran-
sient population is not considered. The peak is also de-
layed by 18 days which is statistically significant.

3. If the use of hand sanitizer reduces the infectivity and
the susceptibility to 40% of the original value, then the
peak reduces by 0.73% from the base case. The fraction
of infections over 120 days are reduced by 10%. The peak
is also delayed by about 40 days. The results are signifi-
cantly better than all the cases discussed so far.
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4. If the use of hand sanitizer reduces the infectivity and the
susceptibility to 20% of the original value, then the peak
reduces by 1.14% from the base case. The fraction of in-
fections over 120 days are reduced by 13.58%. The peak
is also delayed by about 50 days. This is significantly bet-
ter than all the other cases.

Also as expected, the use of hand sanitizer reduces the num-
ber of infections at the four big museums (Table 2).

Conclusion
In summary, including the transient population makes
a significant difference in epidemic estimation. How-
ever, the most commonly recommended non-pharmaceutical
intervention—social distancing—surprising does not show
a statistically significant effect at reducing the outbreak. In
this case, it seems that locations where a lot of mixing occurs
are better thought of as presenting opportunities for reduc-
ing disease spread by promoting sanitary behavior such as
the use of hand sanitizers. When we apply this intervention,
depending on the efficacy of the behavior, we can make a
significant difference to the peak and the cumulative num-
ber of infections, as well as the day of the peak.

There is much room for further work. We speculate that
transients have an effect on the epidemic because they are a
source of susceptible people that is constantly replenished.
This can be examined analytically using a differential equa-
tion based model as well. The intervention policies that we
have studied can be examined more systematically to deter-
mine optimal strategies. For example, it may turn out that
there is a museum closure strategy that does produce a sta-
tistically significant difference.

Models like these can also be used for policy recommen-
dations, for example to promote the use of hand sanitizers
in museums. That in turn offers the opportunity to conduct
field experiment to validate our model against actual epi-
demic and intervention data.
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