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Abstract
Current efforts aim to incorporate knowledge from clinical
practice guidelines (CPGs) into computer systems using so-
phisticated interchange formats. Due to their complexity,
such formats require expensive manual formalization work.
This paper presents a preliminary study of using natural lan-
guage processing (NLP) to automatically formalize CPG rec-
ommendations. We developed a CPG representation using
concepts from the Systematized Nomenclature of Medicine
– Clinical Terms (SNOMED–CT), and manually applied this
representation to a sample of CPG recommendations that is
representative of multiple medical domains and recommen-
dation types. Using this resource, we trained and evalu-
ated a supervised classification model that formalizes new
CPG recommendations according to the SNOMED–CT rep-
resentation, achieving a precision of 75% and recall of 42%
(F1 = 54%). We have identified two important lines of future
investigation: (1) feature engineering to address the unique
linguistic properties of CPG recommendations, and (2) alter-
native model formulations that are more robust to processing
errors. A third line of investigation – creating additional train-
ing data for the NLP model – is shown to be of little utility.

Introduction
Clinical practice guidelines (CPGs) were originally con-
ceived as an information source to be used by physicians
in the clinical decision making process (Field and Lohr
1990). CPGs provide recommendations for a wide vari-
ety of decisions including prevention, diagnosis, treatment,
management, counseling, and others. CPG proponents ex-
pect compliance with these recommendations to improve
patient health and reduce treatment and outcome variation
(Field and Lohr 1990), and multiple studies in different med-
ical domains have confirmed this expectation (Golub 2009;
Lugtenberg, Burgers, and Westert 2009; Quaglini et al.
2004; Reker et al. 2002; Rutten et al. 2010). However, it
remains difficult to introduce CPG information into daily
practice in a way that reliably affects clinical decisions
(Godemann et al. 2010; Grol 2001; Gross et al. 2001;
Pathman et al. 1996; Tunis et al. 1994), largely because
CPGs are formulated as free-text documents that cannot be
used directly within clinical intelligence systems (e.g., de-
cision support). Researchers have attempted to address this
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problem with computer-interpretable guideline interchange
formats (e.g., GEM (Shiffman et al. 2000)), but the for-
malization process tends to be manual and complex, requir-
ing experience with logical formalisms and knowledge en-
gineering software.

Given the difficulties and expense associated with man-
ual CPG formalization, researchers have begun to inves-
tigate the feasibility of automatically formalizing aspects
of CPGs within particular medical domains. Seminal
work in automatic CPG formalization was based largely on
hand-crafted, non-probabilistic, domain-specific formaliza-
tion rules (Kaiser 2005; Kaiser, Akkaya, and Miksch 2005;
2007; Kaiser and Miksch 2007; 2009). Results of these stud-
ies have shown promise; however, this work has focused
primarily on hand-crafted formalization rules within a rel-
atively simple medical domain (Kaiser 2005). Although it
can be appropriate to focus initial investigations on partic-
ular domains and phenomena, we believe automated CPG
formalization techniques will be more useful if investigated
more generally.

In our study, we investigated the application of current
NLP techniques to the task of automatic CPG formalization.
We developed a recommendation representation using con-
cepts from the Systematized Nomenclature of Medicine –
Clinical Terms (SNOMED–CT).1 We drew CPG recommen-
dations from the Yale Guideline Recommendation Corpus
(YGRC), which covers a broad range of medical domains
and recommendation types (Hussain, Michel, and Shiffman
2009). We then manually formalized these recommenda-
tions according to the SNOMED–CT representation. To
our knowledge, this gold-standard formalization resource
is unique. Finally, we trained and evaluated an automatic
recommendation formalization model. In sum, this paper
presents an initial exploration of automatic CPG formaliza-
tion using current NLP techniques. Further progress in this
area could lead to improved clinical intelligence applications
(e.g., decision support) based on CPG knowledge. In the fol-
lowing sections, we describe our data collection effort and
formalization experiments.

1http://www.nlm.nih.gov/research/umls/Snomed/snomed/
main.html
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Primary label Secondary label Example

ACTION

EVALUATION (129265001) [computed tomography CT] should be used
DRUG (410942007) [oral risedronate] should not be used

DOSAGE (260911001) treat with oral risedronate [5 mg daily]
PROCEDURE (71388002) [red blood cell transfusion] is appropriate

EVIDENCE STRONG (18669006) [it has been shown to reduce the occurrence of NTDs]
WEAK/NONE (41647002) [there is insufficient evidence]

MODALITY
OBLIGATORY computed tomography CT [should] be used

NEVER oral risedronate [should not] be used
OPTIONAL physician [may] choose

AGENT (223366009) [physician] may choose
MORBIDITY (64572001) prevent [preeclampsia]

POPULATION (385436007) [obese women with gestational diabetes mellitus]
PURPOSE (288830005) is used [to prevent osteoporotic fractures]

TEMPORAL (410669006) [initial] treatment
TRIGGER Diuretics are [recommended]

Table 1: CPG recommendation representation. The first column indicates a broad annotation label, which is specialized by
labels shown in the second column. The third column provides examples of the primary/secondary label. Labeled text spans
are indicated with square brackets. Numbers next to the labels indicate SNOMED–CT concept identifiers. Note that we have
included representational elements for various modalities that do not have concepts in SNOMED–CT.

Data Collection
Our study treated automatic CPG formalization as a su-
pervised classification task. Since no appropriate, gold-
standard formalization corpora exist, we created our own.
In the next section, we describe our data representation for
CPG recommendations. Then we describe our manual for-
malization effort, which produced a set of CPG recommen-
dations formalized according to the representation.

CPG Recommendation Representation
Our goal was to create a CPG representation that balances
the need to express detailed knowledge with the need to au-
tomatically formalize guidelines according to the represen-
tation. This is an important tradeoff. At the extreme end
are representations such as Asbru, which can express intri-
cate actions, plans, and temporal dependencies (Peleg et al.
2003). Although this representation can enable complex rea-
soning within clinical intelligence systems, we do not be-
lieve that current NLP methods will support the automatic
formalization of CPGs at this level of sophistication. On
the other hand, an overly simplified representation would be
easy to fill out using NLP techniques, but it might not sup-
port any useful applications.

In our study, we represented key CPG recommendation
elements using concepts from SNOMED–CT, a comprehen-
sive and widely used source of medical terminology. Con-
sider the following recommendation from the Heart Failure
Society of America’s heart failure practice guideline (HFSA
2010), which has been marked up with SNOMED–CT con-
cepts (indicated with subscripts):
(1) [DRUG Diuretics] are recommended for

[POPULATION patients with [MORBIDITY heart
failure]].

As shown, SNOMED–CT concepts cover all major pieces
of information contained in this recommendation. Table 1

shows our complete representation, which we believe strikes
a useful balance between expressivity and NLP capabilities.
Elements in this representation should support basic clini-
cal intelligence applications, but should also be identifiable
using current NLP techniques. As shown in Table 1, it was
not always possible to match our representational elements
to those in SNOMED–CT (e.g., for triggers, which provide
an overt indication of a recommendation’s presence).

CPG Recommendation Annotation
We applied the representation in Table 1 to a sample of CPG
recommendations. We addressed the need for domain neu-
trality by basing our annotation effort on the Yale Guide-
line Recommendation Corpus (YGRC) (Hussain, Michel,
and Shiffman 2009). To create this corpus, the authors first
randomly sampled guidelines from the National Guideline
Clearinghouse (NGC).2 The authors then sampled a fixed
number of recommendations from each guideline, where
a recommendation was defined as “a statement whose ap-
parent intent is to provide guidance about the advisability
of a clinical action”(Hussain, Michel, and Shiffman 2009).
Recommendations were sampled randomly from the guide-
lines to remove bias, as guidelines often present recommen-
dations in particular orders (e.g., screening techniques fol-
lowed by treatments). In total, the authors sampled 1,275
recommendations in this way. The authors quantified the
medical domain distribution of the recommendations using
the frequency of terms from a controlled vocabulary, and
found that the domain distribution of the YGRC follows the
domain distribution of the entire NGC corpus quite closely.
Thus, the YGRC is an ideal data source for the creation and
testing of automatic, domain-neutral recommendation for-
malization models.

2http://www.guideline.gov
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(a) The syntactic parse tree for Example 2.
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(b) Labeling the highlighted NP node labels all of the
text that the node subsumes (i.e., “patients with heart
failure”).

Figure 1: Syntactic analysis for CPG recommendation labeling.

n’s left/right siblings’s syntactic category Semantic type of n’s UMLS concept n’s first/last word/POS
n’s semantic argument positions within VerbNet Number of n’s left/right siblings Object head of following PP
n’s parent’s grammar rule and syntactic category Whether or not n is followed by PP n’s head word

Right-most NP’s head word/POS if n is a PP n’s left/right sibling’s head word/POS n’s synset within WordNet
Semantic type of n’s semantic head’s UMLS concept n’s left/right sibling’s grammar rule Whether or not n is a PP

Syntactic path to the passive verb nearest to n n’s semantic argument positions n’s syntactic category
Words surrounding n’s, within a three-word window n’s grandparent’s grammar rule n’s head word if n’s parent is PP

n’s left/right sibling’s semantic head word n’s semantic head’s UMLS concept Frequency of words within n
n’s great grandparent’s grammar rule n’s left/right sibling’s first/last word n’s parent’s head word’s POS

n’s concept within the UMLS

Table 2: Features used for automatic CPG recommendation formalization. The variable n refers to the node being labeled.

For our study, we randomly selected 200 CPG recom-
mendations from the YGRC and applied labels from our
representation (Table 1) to each recommendation using the
MMAX2 text annotation toolkit.3 Our annotated recommen-
dations look very much like the one shown in Example 1,
with concept labels being applied to spans of text. In prac-
tice, we found our SNOMED–CT representation to be un-
ambiguous (i.e., only a single label was applicable to a span
of text) and efficient to apply. We used these 200 example
formalizations to train and evaluate our automatic formal-
ization model, which we describe below.

Methods
Our CPG recommendation formalization model begins with
a syntactic analysis of the recommendation text using the
statistical syntactic parser created by Charniak and Johnson
(2005). Consider the following recommendation:
(2) Diuretics are recommended for patients with heart

failure.
3One of the authors performed all of the annotation using the

MMAX2 annotation environment (http://mmax2.net).

The syntactic analysis in Figure 1a shows the internal struc-
ture of the sentence in Example 2. The internal structure
forms an inverted tree with a single root node S (for sen-
tence) and many leaf nodes, each containing a single word
from the recommendation text. The nodes in the tree allow
us to identify phrases such as the highlighted noun phrase
(NP) in Figure 1b, which subsumes the text “patients with
heart failure”. This rich phrase structure has proven to be
extremely useful in many NLP tasks (e.g., semantic anal-
ysis (Punyakanok, Roth, and Yih 2008), machine transla-
tion (May and Knight 2007), and discourse parsing (Sagae
2009)).

We used multi-class logistic regression to apply labels
from the representation in Table 1 to nodes within the syn-
tactic parse tree of a CPG recommendation. For example,
the logistic regression model might apply a label of POPU-
LATION to the highlighted NP in Figure 1b. In addition to
the labels contained in our representation, we defined a spe-
cial label NULL. This label is required because each node in
the syntax tree is given a label, but not all nodes are associ-
ated with an element of our representation. The AUX node
in Figure 1b is an example of this.
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Our logistic regression model uses the features in Table 2
to make labeling decisions. A full explanation of these fea-
tures is beyond the scope of this paper, and we refer the in-
terested reader to other work in which many of these features
are described more fully (Gerber and Chai 2010). However,
a few features in Table 2 involve the Unified Medical Lan-
guage System (UMLS)4 and are not documented elsewhere.
Referring again to Figure 1b, note the NP node above “di-
uretics”. The last feature in Table 2 characterizes each node
by indicating the node’s UMLS concept. In the case of the
“diuretics” NP, the UMLS concept is C0012798. This con-
cept includes the term “diuretics” as well as “water pills”.
The purpose of the UMLS feature is to provide the model
with knowledge that can generalize to CPG text that it does
not encounter during training. For example, even if the
model is only exposed to “diuretics” during training, it will
know something about “water pills” by virtue of the UMLS
concept C0012798, which contains both terms. Identifica-
tion of UMLS concepts was done by simple string matching
within the UMLS database.

Results
CPG Annotation
As described above, we manually formalized 200 randomly
selected recommendations from the YGRC according to the
SNOMED–CT representation in Table 1. In total, we iden-
tified 834 representational elements in these recommenda-
tions. Table 3 shows how many of each element type were
annotated in our recommendation set. Notably, elements
such as AGENT and MORBIDITY are rarely observed in
the recommendations. This is because such concepts are
usually implied by the title of the CPG and the textual con-
text of the recommendations.

To our knowledge, this is the only existing CPG dataset
that contains textual annotations of this type, and we have
made it freely available for research purposes.5 Hopefully
this will encourage further studies of automatic CPG for-
malization.

Model Evaluation
We evaluated our automatic formalization model using ten-
fold cross-validation over the manually formalized CPG rec-
ommendations described above. For each testing fold, we
found the optimal logistic regression parameters using the
LibLinear toolkit (Fan et al. 2008) and data contained in the
training folds. Furthermore, we employed forward feature
subset selection to identify the optimal subset of features for
each training set (Pudil, Novovicova, and Kittler 1994). It is
important to note that the feature selection process did not
have access to information contained in the testing folds.
Having trained the ten models, we evaluated each over its
corresponding testing fold. We used the familiar metrics of
precision, recall, and F1 over the gold-standard representa-
tional elements. Table 3 presents the results. As shown, the
model achieved an overall F1 score of approximately 54%

4http://www.nlm.nih.gov/research/umls
5http://ptl.sys.virginia.edu/ptl/projects/medical-informatics

Element # P (%) R (%) F1 (%)
ACTION 301 74.5 26.2 38.7

MODALITY 158 71.9 73.0 72.4
POPULATION 140 83.7 56.6 67.5
TEMPORAL 53 28.6 1.1 2.2

TRIGGER 45 81.7 93.3 87.1
PURPOSE 43 58.3 16.3 25.5

EVIDENCE 38 83.3 13.2 22.7
AGENT 37 76.0 47.6 58.5

MORBIDITY 19 50.0 10.5 17.4
Overall 834 75.3 41.7 53.7

Table 3: Evaluation results. The first column indicates the
representational element being evaluated. The second col-
umn indicates the number of elements present in the gold-
standard recommendations. The final columns indicate pre-
cision, recall, and F1 score for identifying the given ele-
ments using the NLP model.

over 834 gold-standard representational elements. We dis-
cuss these results in the following section.

Discussion
As shown in Table 3, the performance of the automatic
formalization model varies across the representational ele-
ments. For some elements (e.g., POPULATION, MODAL-
ITY, and TRIGGER), the model exhibits performance that
is on par with the current state of the art in related NLP
tasks (e.g., semantic role labeling (Punyakanok, Roth, and
Yih 2008)). Other representational elements are more diffi-
cult to identify. For example, ACTION elements are recov-
ered with precision of 74.5% but recall of 26.2%. One could
lower the prediction threshold to trade precision for recall;
however, we doubt this would increase the overall F1 score.
Below, we discuss alternative strategies for increasing the
model’s performance.

Identify more informative features. The feature set used
by our formalization model is not particularly customized to
the CPG domain. We have borrowed many features from
our prior work in semantic analysis of natural language text
(Gerber and Chai 2010). We believe this feature set can
be expanded to include features that specifically target the
medical language used within CPGs. This would improve
the model’s ability to recognize clinical terminology (e.g.,
clinical actions) within CPG recommendations and would
probably increase recall, which is a primary deficiency of
the current model.

Change the model formulation. Our current recommen-
dation formalization model has specific limitations that stem
from its reliance on syntactic structures (i.e., the inverted
trees shown in Figure 1). The arrangement of the internal
nodes constrains the possible spans of text that can be la-
beled. For example, one cannot exactly label the text “are
recommended” in the parse trees of Figure 1. When the
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Figure 2: Effect of training set size on overall formaliza-
tion performance. We reduced the training set size by ran-
domly removing annotated recommendations. The y-axis
shows the evaluation results using a constant evaluation set.

parse tree is correctly structured, this constraint prevents in-
correct labelings; however, the parse tree structure is pro-
duced by an automatic process that occasionally makes mis-
takes. Thus, in some situations it might be impossible for the
model to label the correct span of text. In our data, 158 (or
19%) of the 834 recommendation elements are not properly
subsumed by single parse tree nodes. This limits the recall
of our model to approximately 80%.

An alternative approach would be to label sequences of
words instead of nodes in syntactic parse trees. This ap-
proach would allow the model to label arbitrary spans of text
within a recommendation and would exhibit a recall upper
bound of 100%. Such an approach has proven useful in re-
lated NLP tasks such as named entity identification (Bikel,
Schwartz, and Weischedel 1999), and we believe it holds
promise for recommendation formalization.

Annotate more data. In general, supervised statistical
models like the one in our study tend to perform better
when provided with larger training datasets. Thus, it might
be possible to increase automatic formalization performance
by manually formalizing additional CPG recommendations
from the YGRC. Doing so could provide the model with
better parameter estimates; however, the annotation process
requires substantial time and should be justified by empiri-
cal evidence. To assess the potential gains from additional
manual formalization, we systematically reduced the size of
the existing training datasets and observed the changes in the
evaluation metrics. Figure 2 presents the results. As shown,
gains from using larger amounts of training data diminish
substantially. If this curve were to be extrapolated beyond
100% (i.e., into the region covered by additional manual
annotation effort), it does not appear that significant gains

would be made.

Conclusions and Future Work
The study presented in this paper focused on the automatic
formalization of CPG recommendations using NLP meth-
ods. Prior to this study, automatic CPG formalization had
only been investigated within specific medical domains and
for a limited number of recommendation types. Our study
broadens the scope of automatic CPG formalization through
the creation of a new, gold-standard formalization resource.
This resource, which is freely available, is the result of man-
ually identifying SNOMED–CT concepts within a sample of
200 CPG recommendations covering a broad range of medi-
cal domains and recommendation types. To our knowledge,
this is the only existing set of manually formalized CPG rec-
ommendations that seeks to enable automatic NLP methods.

We have investigated the use of supervised classification
and standard NLP feature sets for automatic recommenda-
tion formalization. Our method (i.e., labeling nodes in a syn-
tax tree) is not novel within the NLP community, but this is
the first time it has been applied to the CPG domain. Judg-
ing from our current results and analyses, we believe this
is a promising approach. Our current formalization model
exhibits precision levels that are on par with state-of-the-
art methods in related NLP tasks; however, the model’s re-
call levels are not sufficient for reliable CPG recommenda-
tion formalization. We have identified a number of areas
for future work, in particular feature engineering and model
formulation. We have made the important observation that,
for the current approach, additional annotation effort is not
likely to improve formalization performance.

Our long-term goal is to provide a method for accurate,
automatic formalization of CPGs from multiple medical do-
mains. This would enable CPG libraries such as the National
Guideline Clearinghouse to augment each textual CPG with
a formalized version. The formalized versions could be gen-
erated quickly as new guidelines and guideline updates are
developed. Furthermore, the formalized versions could be
automatically consumed by a broad range of client systems
such as intelligent clinical decision support and performance
analysis. Our study will serve as a baseline for future work
in this area.
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