
Generalized Weighted Model Counting:
An Efficient Monte-Carlo Meta-Algorithm

Lirong Xia
SEAS, Harvard University, USA,

lxia@seas.harvard.edu

Abstract

In this paper, we focus on computing the prices of secu-
rities represented by logical formulas in combinatorial pre-
diction markets when the price function is represented by
a Bayesian network. This problem turns out to be a natu-
ral extension of the weighted model counting (WMC) prob-
lem (Sang, Bearne, and Kautz 2005), which we call general-
ized weighted model counting (GWMC) problem. In GWMC,
we are given a logical formula F and a polynomial-time com-
putable weight function. We are asked to compute the total
weight of the valuations that satisfy F .
Based on importance sampling, we propose a Monte-Carlo
meta-algorithm that has a good theoretical guarantee for for-
mulas in disjunctive normal form (DNF). The meta-algorithm
queries an oracle algorithm that computes marginal probabil-
ities in Bayesian networks, and has the following theoretical
guarantee. When the weight function can be approximately
represented by a Bayesian network for which the oracle algo-
rithm runs in polynomial time, our meta-algorithm becomes
a fully polynomial-time randomized approximation scheme
(FPRAS).

Introduction
Prediction markets are a type of financial markets that aggre-
gates agents’ probabilistic information about some random
event. The Iowa Electronic Market and Intrade are two ex-
amples of real-world prediction markets with a long history
of tested results (Berg et al. 2008; Berg, Nelson, and Rietz
2008). See (Chen and Pennock 2010) for a recent survey.

In many real-life situations, the number of outcomes of
the random event is exponentially large and has a combi-
natorial structure. Such situations are called combinato-
rial prediction markets (Fortnow et al. 2004; Hanson 2003;
2007; Chen et al. 2008; Chen, Goel, and Pennock 2008).
For example, in the NCAA men’s basketball tournament,
there are 64 teams and therefore 63 matches in total to
predict. Each match can be seen as a binary variable. It
follows that the prediction market for this tournament has
263 ≈ 9.2× 1018 outcomes. In such situations, even though
usually the price of a security corresponding to a single out-
come is computationally easy, it is not surprising to see that
computing and updating the prices by directly using the cost

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

function becomes computationally intractable. In fact, pric-
ing LMSR-based combinatorial prediction markets is #P-
hard (Chen et al. 2008).

To overcome this computational intractability, one
promising idea is to use a Bayesian network to represent
the prices of the securities corresponding to disjoint and ex-
haustive outcomes. This idea was first explored by (Chen,
Goel, and Pennock 2008) for a class of LMSR-based com-
binatorial prediction markets for tournaments. They mod-
eled the market price distribution by a Bayesian network
whose graph is a balanced binary tree, and identified two
types of structure-preserving securities: after any shares of
any such securities are sold, the updated market price distri-
bution can still be represented by a Bayesian network with
the same structure. A followup work obtained a full charac-
terization for structure-preserving securities for any network
structure (Pennock and Xia 2011).

However, the two papers mentioned above focused on
price-updating after trading some shares of a security rather
than the #P-hard problem of computing the price of a
given security when the market prices are represented by
a Bayesian network. In this paper, we tackle this problem
by designing a sample-based Monte-Carlo algorithm. Math-
ematically, the problem corresponds to computing the total
weight (prices) of valuations (outcomes) that satisfy a given
logical formula F , which is a natural generalization of the
model counting problem (a.k.a. #SAT), one of the most im-
portant problems in artificial intelligence. Our main tech-
nical contribution is a Monte-Carlo meta-algorithm (Algo-
rithm 1) based on importance sampling that uses two sub-
procedures. One procedure computes the marginal proba-
bilities in Bayesian networks (we call this the oracle algo-
rithm), and the other computes the weight of a given valua-
tion.1 Our algorithm has the following theoretical guarantee:
Suppose the weights can be approximately represented by a
Bayesian network π∗ (we will formally define this in Defi-
nition 2). For any DNF formula F and any error rate ε, Al-
gorithm 1 is an unbiased estimator for the total weight of the
outcomes that satisfies F , and with probability larger than
3/4 the multiplicative error is no more than ε. Moreover, the
algorithm runs in polynomial time plus polynomial calls to
the oracle algorithm, where the running time (respectively

1The second procedure is usually given as part of the input.

AAAI Technical Report FS-12-06
Machine Aggregation of Human Judgment

60

the number of calls) is polynomial in the input size and 1/ε.
Of course the performance of the meta-algorithm de-

pends on both π∗ and the oracle algorithm that computes
the marginal probabilities. One important corollary is
that if there exits a polynomial time algorithm that com-
putes marginal probabilities in π∗, then Algorithm 1 is
a fully polynomial-time randomized approximation scheme
(FPRAS). For example, when π∗ can be represented by a
Bayesian network whose structure is a polytree,2 then we
can use the celebrated belief-propagation algorithm (Pearl
1988) to obtain an FPRAS. Therefore, we automatically ob-
tain another FPRAS for pricing LMSR-based combinatorial
prediction markets for tournaments (Xia and Pennock 2011).

Related Work. Our work is closest to the following two
lines of research. Conceptually, it is closely related to and
is a natural generalization of the weighted model counting
problems (Sang, Bearne, and Kautz 2005). We will see that
WMC is a very special case of GWMC where the weight
function can be represented by a Bayesian network with-
out edges (Example 1). Therefore, our main algorithm is
an FPRAS for WMC. We are not aware of previous work
showing an FPRAS for WMC. On the technical level, the
main application of WMC is to solve Bayesian inference
by reducing a Bayesian inference problem to a WMC prob-
lem. Our meta-algorithm, on the other hand, aims at explor-
ing the power of Bayesian inference algorithms to compute
GWMC for various applications, including pricing combi-
natorial prediction markets.

Technically, our work extends the idea of the FPRAS
algorithm for model counting by Karp, Luby, and
Madras (Karp, Luby, and Madras 1989) (KLM for short),
and the FPRAS algorithm for pricing combinatorial pre-
diction markets for tournaments in our previous work (Xia
and Pennock 2011). However, the KLM algorithm only
dealts with (unweighted) model counting problems. While
the framework of our meta-algorithm is similar to Algo-
rithm 1 in (Xia and Pennock 2011), our meta-algorithm uses
a Bayesian inference algorithm as a oracle, and the algo-
rithm in (Xia and Pennock 2011) heavily depends on the as-
sumption that π∗ can be represented by a Bayesian network
whose structure is a balanced binary tree.

Other related work including designing combinatorial
prediction markets based on convex optimization (Aber-
nethy, Chen, and Vaughan 2012; Dudik, Lahaie, and Pen-
nock 2012), which are technically quite different from the
setup of this work.

Comments on Significance and Limitations. Admittedly,
both the conceptual extension of WMC to GWMC and the
technical extension of the KLM algorithm and the FPRAS
in (Xia and Pennock 2011) to our meta-algorithm are quite
natural. However, we feel that their combination is inter-
esting because our meta-algorithm shows that there is some
hope to develop efficient algorithms for a much more gen-
eral problem than WMC. Methodologically, our paper intro-
duces the idea of employing Bayesian network inference al-

2A polytree is a directed graph that does not contain undirected
cycles.

gorithms to handle GWMC problems, while previous work
focused on how to develop techniques to facilitate inference
in Bayesian networks. As we will see in Example 2, GWMC
has found applications in pricing general combinatorial pre-
diction markets. Therefore, we feel that designing computa-
tionally tractable algorithms for GWMC is a promising di-
rection for future research, which bridges different impor-
tant research directions including Bayesian inference, SAT
and model counting, and electronic commerce.

Our meta-algorithm has mainly two limitations. Most im-
portantly, being an FPRAS is a good theoretical guarantee,
but it is not clear yet how well our meta-algorithm works
in practice. On the technical level, the meta-algorithm only
work well for DNFs. It is important to develop practical
algorithms for GWMC for CNFs. One natural idea is to
convert CNFs to DNFs, and then apply our meta-algorithm.
This approach will us additive error bounds. More gener-
ally, how to design algorithms for GWMC for CNF is an
interesting future direction.

Preliminaries
Combinatorial Prediction Markets
In combinatorial prediction markets (Chen et al. 2008),
the set of outcomes Ω has a combinatorial structure. That
is, each outcome is characterized by the values of a set of
variables V = {x1, . . . ,xn}, where for each k ≤ n, xk
takes a value in a domain Ωk = {0, 1}. It follows that
Ω = Ω1 × · · · × Ωn. In this paper, a security is represented
by a logical formula F over V in conjunctive normal form
(CNF). That is, F = C1 ∧ · · · ∧ CK , , where for any j ≤ k,
Cj = lj1∧· · ·∧ ljsj , and lji is either x or ¬x for some variable
x. Cj is called a clause and lji is called a literal. We assume
that no clause contains both x and ¬x for any variable x.
If F is satisfied under the eventual true outcome (which is
a valuation over V), then the market maker should pay the
agent $1 for each share of F the agent holds; otherwise the
agent receives nothing for holding F .

At any point, we let p(·) denote the price function. By
definition, the instantaneous price of F is the sum of the
prices of the securities that correspond to the valuations un-
der which F is satisfied. That is, p(F) =

∑
~x:F (~x)=1 p(~x).

General Importance Sampling
Importance sampling is a general technique for Monte-Carlo
methods that reduces the variance of estimation, which in
turn improves the convergence rate. Suppose we want to
evaluate the expectation of a function f : {1, . . . , N} → R
when the variable is chosen from a probability distribution π
over {1, . . . , N}. That is, we want to evaluate the expecta-
tion of f w.r.t. π, denoted by E[f ;π]. The most straight-
forward Monte-Carlo method is to generate Z samples
X1, . . . , XZ i.i.d. according to π, and use 1

Z

∑Z
i=1 f(Xi) as

an unbiased estimator for E[f ;π]. The convergence rate is
guaranteed by the following lemma, which follows directly
from Chebyshev’s inequality.

Lemma 1 (Follows from Chebyshev’s inequality) Let
H1, . . . ,HZ be i.i.d. random variables with µ = E[Hi] and

61

variance σ2. If Z ≥ 4σ2/(ε2µ2), then,
Pr(| 1Z

∑Z
i=1Hi − µ| < εµ) ≥ 3/4

This lemma illustrates that for a fixed ε, the smaller
σ2/µ2, the faster this sampling method converges. Impor-
tance sampling reduces the variance by generating the out-
comes that have higher f values more often. Suppose we
have another distribution π∗ such that for every outcome
i, [π∗(i) = 0] =⇒ [f(i)π(i) = 0]. We can then use
π∗ to provide an unbiased estimator for E[f ;π] as follows.
Let H denote the random variable that takes f(i)π(i)

π∗(i) with
probability π∗(i). We generate Z i.i.d. samples of H , de-
noted by H1, . . . ,HZ , and use 1

Z

∑Z
i=1Hi as an estimator

for E[f ;π]. It is easy to check that this estimator is un-
biased, and Var(H)/E[H]2 might be significantly smaller
than Var(f)/E[f ;π]2.

A good π∗ can greatly reduce the ratio of variance over
square expectation, therefore in turn improving the perfor-
mance of the Monte-Carlo method. The best scenario is that
for any outcome i, π∗(i) is proportional to f(i)π(i). Then,
the variance becomes 0 and we only need 1 sample to calcu-
late the expectation. In practice, sometimes we would like
to choose π∗ that is a good approximation to f(i)π(i) and is
much easier to handle, as we will see in our meta-algorithm.

An FPRAS for # DNF
An algorithm A is a fully polynomial-time randomized ap-
proximation scheme (FPRAS) for a function f , if for any
input x and any error rate ε, (1) the output of the algorithm
A is in [(1 − ε)f(x), (1 + ε)f(x)] with probability at least
3/4,3 (2) the runtime of A is polynomial in 1/ε and the size
of x.

To better present our algorithm, we recall an FPRAS for
the #DNF problem by Karp, Luby, and Madras (Karp, Luby,
and Madras 1989) (KLM for short). The #DNF problem has
been proven to be #P-complete (Valiant 1979). In a #DNF
instance, we are given a DNF formula F = C1 ∨ · · · ∨ Ck
over {x1, . . . ,xm}, and we are asked to compute the num-
ber of valuations under which F = 1. Let πu denote the
uniform distribution over all valuations. The #DNF problem
is equivalent to computing 2m · E[F ;πu].

One naı̈ve Monte-Carlo method is to generate Z valu-
ations i.i.d. uniformly at random, and counts how many
times F is satisfied, denoted by XZ . Clearly 2m ·
XZ/Z is an unbiased estimator for the solution to the
#DNF instance. However, when the solution is small,
Var(XZ/Z)/E[XZ/Z]2 can be exponentially large. Con-
sequently, the naı̈ve Monte-Carlo method might have a slow
convergence rate (Lemma 1). For example, if there is only
one valuation that satisfies F , then the variance of XZ/Z is
approximately 1/2m, and the expectation ofXZ/Z is 1/2m,
which means that Var(XZ/Z)/E[XZ/Z]2 is approximately
2m. Therefore, the convergence rate might be very slow.

3By using the median of means method, for any δ < 1, the
success rate of an FPRAS can be increased to 1 − δ, at the cost
of increasing the runtime by a multiplicative factor of ln(δ−1) (cf.
Exercise 28.1 in (Vazirani 2001)).

The KLM algorithm reduces the variance of by only gen-
erating valuations that satisfies F . We next recall a slight
variant of the KLM algorithm in (Xia and Pennock 2011),
which uses the uniform distribution πu for better presenta-
tion. For any clause Cj and any probability distribution π,
we let π(Cj) denote the marginal probability of the partial
valuation that corresponds to the literals in Cj . For example,
if Cj = x1 ∧ ¬x2, then π(Cj) = π(x1 = 1,x2 = 0). The
KLM algorithm is composed of the following three steps in
each iteration.

(1) LetG =
∑
j′ πu(Cj′). Choose a clause Cj with prob-

ability πu(Cj)/G;
(2) then choose a valuation ~x that satisfy Cj with proba-

bility πu(~x|Cj);
(3) finally, compute the number of clauses ~x satisfies, de-

noted by n(~x), and add
F (~x)G

2mπu(~x)n(~x)
to a counter K.

Given a error rate ε > 0, let Z = 4k4/ε2. After Z
iterations, the algorithm outputs 2mK/Z. Let H denote

the random variable corresponding to
F (~x)G

2mπu(~x)n(~x)
. Since

n(~x) ≤ k, it can be checked that Var(H)/E[H]2 ≤ k4

and H is an unbiased estimator to F · πu. It follows from
Lemma 1 that the KLM algorithm is an FPRAS for #DNF.

Generalized Weighted Model Counting
In this section, we formally model the computational prob-
lem of pricing in combinatorial prediction markets as a gen-
eralized weighted model counting problem.

Definition 1 In the generalized weighted model counting
(GWMC) problem, we are given a logical formula F and a
polynomial-time computable weight function w defined over
all valuations ofX . We are asked to compute the total weight
of the valuations that satisfy F , denoted by W (F). For-
mally,

W (F) =
∑
~x w(~x)F (~x) =

∑
~x:F (~x)=1 w(~x)

We note that w can be represented by a probability distribu-
tion πw over X and a total weightW , whereW =

∑
~x w(~x)

and πw(~x) = w(~x)/W . Therefore, if πw can be represented
by a compact Bayesian network, then w is polynomial-time
computable. However, inference under simple Bayesian net-
work might still be NP-hard (Cooper 1990). Our algorithm
will use a Bayesian network π∗ that approximately repre-
sents w. We next define the notion of such approximation.

Definition 2 For any c > 1, we say that a probability dis-
tribution π∗ is a c-approximation to πw, if for any outcome
~x, 1

cπw(~x) ≤ π∗(~x) ≤ cπw(~x).

Of course we can always set π∗ = πw, but a good π∗ may
greatly reduce computational complexity. Such an approxi-
mation π∗ may come from expert knowledge. We next show
that GWMC is an extension of weighted model counting
(WMC) (Chavira and Darwiche 2008) with a very simple
Bayesian network, and can be used to compute prices in
combinatorial prediction markets (Xia and Pennock 2011).

In WMC, we are given a propositional logical formula
F and a weight w̄(~x) for each valuation ~x. We are asked

62

to compute
∑
~x:F (~x)=1 w̄(~x), that is, the total weight of the

valuations that satisfy F . The weight function is represented
compactly in the following way: Each literal contributes a
multiplicative factor to the weight of a valuation. More pre-
cisely, for each variable x there are two weights w0

x and w1
x.

For any valuation xi of xi, let w̄(xi) = w0
x if and only if

xi = 0 and let w̄(xi) = w1
x if and only if xi = 1. For any

valuation ~x of all variables, let w̄(~x) =
∏
i w̄(xi).

Example 1 WMC is an special case of GWMC. To see this,
we show how to model w̄ as a simple Bayesian network.
Suppose in the BN there are no edges, and for any variable
x, let πw(x = 1) = w1

x and πw(x = 0) = w0
x. Let πw

denote the probability distribution and W =
∑
~x w̄(~x). It

follows that for any valuation ~x, w̄(~x) = Wπw(~x).

Example 2 In combinatorial prediction market, for each
valuation ~x, the price for its corresponding security, de-
noted by p(~x) and usually can be computed in polynomial
time. When a security is represented by a logical formula F ,
the price of which is defined to be p(F) =

∑
~x:F (~x)=1 p(~x).

Computing p(F) is a GWMC problem, where we let w = p.

The Meta Algorithm
The meta-algorithm we present in this section contains two
procedures. (1) Procedure CompMargin is the oracle algo-
rithm that computes the marginal probability in a Bayesian
network. (2) Procedure QueryWeight returns the weight
of a given valuation. The second procedure is usually
given as part of the input. First, we do not specify Pro-
cedure CompMargin, and will evaluate the computational
complexity of Algorithm 1 by number of calls to Proce-
dure CompMargin. The input of our meta-algorithm con-
sists in F , w, ε, and π∗ that is a c-approximation to πw for
some constant c.

Procedure CompMargin(π∗,Cj)
Input: π∗ and a conjunction of literals Cj .
Output: π∗(Cj).

Procedure QueryWeight(·)
Input: A valuation ~x.
Output: w(~x).

The meta-algorithm is similar to the KLM algorithm and
the Algorithm 1 in (Xia and Pennock 2011). It contains the
following three steps in each iteration.

(1) Compute G =
∑
j′ π
∗(Cj′) by calling Proce-

dure CompMargin for k times. Choose a clause Cj with
probability π∗(Cj)/G.

(2) Choose a valuation ~x with probability π∗(~x|Cj)
from all valuations that satisfy Cj by calling
Procedure GenerateValuation, which calls Proce-
dure CompMargin for no more than 2m times.

(3) Finally, compute the number of clauses ~x satisfies, de-

noted by n(~x), and add
w(~x)G

π∗(~x)n(~x)
to a counterN by calling

Procedure QueryWeight once.
Procedure QueryWeight generates values of variables in

X sequentially in a way similarly to the Monte-Carlo sam-
pling algorithm in (Gogate and Dechter 2008). More pre-
cisely, given j, w.l.o.g. let Cj = x1 ∧ x2 ∧ · · · ∧ xm′ . Let
x1 = · · · = xm′ = 1. Suppose the values of x1, . . . ,xt has
been determined for some m′ ≤ t < m, such that for every
i ≤ t, xi = xi. Let p1 = π∗(x1 = x1, . . . ,xt = xt,xt+1 =
1) and p0 = π∗(x1 = x1, . . . ,xt = xt,xt+1 = 0). p1
and p2 can be computed by Procedure CompMargin. We

let xt+1 =

{
1 with probability p1/(p1 + p0)
0 with probability p0/(p1 + p0)

and let

t← t+ 1.

Algorithm 1: GWMC
Input: w, π∗, ε, and a DNF formula F = C1∨ · · ·∨Ck.
Output: An estimation for W (F).

1 Compute G =
∑
j′≤k CompMargin(Cj′).

2 for i = 1 to Z = 4c4k4/ε2 do
3 Choose an index j with probability

CompMargin(Cj)

G
.

4 Call GenerateValuation(π∗, Cj) to choose a
valuation ~x with probability π∗(~x|Cj) from all
valuations that satisfy Cj .

5 Compute n(~x) = |{j′ : Cj′(~x) = 1}|.

6 Let N ← N +
QueryWeight(~x)G

π∗(~x)n(~x)
.

7 end
8 return N/Z.

Procedure GenerateValuation(π∗,Cj)
Input: π∗ and a conjunction of literals Cj .
Output: A valuation ~x that satisfies Cj w.p. π∗(~x|Sj).

1 for any variable x whose literals appear in Cj do
2 If Cj contains x, then let x = 1; otherwise let

x = 0.
3 end
4 Let C = Cj .
5 while there exists a variable x such that C does not

contain x or ¬x do
6 Let p1 = CompMargin(π∗, C ∧ x), let

p0 = CompMargin(π∗, C ∧ ¬x).
7 Choose x = 1 w.p.

p1
p1 + p0

, and then let C ← C ∧ x

0 w.p.
p0

p1 + p0
, and then let C ← C ∧ ¬x

8 end
9 return −→x .

63

Theorem 1 If π∗ is a c-approximation to πw for some con-
stant c, then given any ε > 1, Algorithm 1 is an unbiased
estimator for W (F), and

Pr ((1− ε)W (F) < Output < (1 + ε)W (F)) >
3

4
. (1)

The running time of Algorithm 1 is a polynomial function in
1/ε and the input size, plus polynomial number of calls to
Procedure CompMargin.

Proof of Theorem 1: We first prove that Algorithm 1
is an unbiased estimator for W (F). Let Xi (for all 1 ≤
i ≤ Z) denote the random variable that corresponds to
the ith sample added to N in Step 6. Then, E(Xi) =∑
~x:F (~x)=1

w(~x)G

π∗(~x)n(~x)
× π
∗(~x)n(~x)

G
=
∑
~x:F (~x)=1 w(~x) =

W (F). Therefore, the output of Algorithm 1 is an unbiased
estimator for W (F).

To prove Inequality (1), we note that Xi =
w(~x)G

π∗(~x)n(~x)
=

W (F)G
πw(~x)

π∗(~x)n(~x)
. Because π∗ is a c-approximation to πw

and 1 ≤ n(~x) ≤ k, we have 1
ckE(Xi) ≤ Xi ≤ ckE(Xi),

which means that V ar(Xi)/(E(Xi)
2) ≤ (ck)4. Inequal-

ity (1) follows after Lemma 1.
Algorithm 1 calls Procedure CompMargin for k times in

Step 1 and calls Procedure GenerateValuation for 4c4k4/ε2

times, in each of which Procedure CompMargin is called for
no more than 2m times. Therefore, the total number of times
Algorithm 1 calls Procedure CompMargin is polynomial in
1/ε and the input size. �
Remark: the power of Theorem 1 is that even if πw cannot
be represented by a Bayesian network where inference is
computationally easy, it might still be possible to find a good
approximation π∗ where inference is computationally easy.
Since inference for polytree-structured Bayesian networks
can be done in polynomial time by the belief-propagation
algorithm (Pearl 1988), we immediately have the following
corollary.
Corollary 1 If π∗ is a c-approximation to πw for some
constant c and π∗ can be represented by a polytree-
structured Bayesian network, then Algorithm 1 is an unbi-
ased FPRAS for W (F) where the oracle algorithm is the
belief-propagation algorithm.

We have shown in Example 1 that WMCs are GWMCs
where πw can be represented by a Bayesian network with-
out edges. Also, it is assumed in (Xia and Pennock 2011)
that for combinatorial prediction markets for tournaments,
there exists a Bayesian network whose structure is a tree
and is a c-approximation to the price function. Since both
structures are polytrees, it follows immediately after Corol-
lary 1 that Algorithm 1 is an FPRAS for these two prob-
lems if we use the belief-propagation algorithm as Proce-
dure CompMargin.

Summary and Future Work
In this paper, we propose an efficient Monte-Carlo meta-
algorithm to compute GWMC for DNF formulas, motivated

by applications in pricing combinatorial prediction markets.
Our algorithm is an FPRAS if the weight function can be ap-
proximately represented by a polytree-structured Bayesian
network. There are many directions for future research.
Technically, it would be interesting to develop techniques
for GWMC for CNF formulas, for example, we can study
how to extend techniques developed for WMC to GWMC.
Another important direction is to find more applications of
GWMC and test the performance of the algorithms for real-
world applications.

Acknowledgments
The author is supported by NSF under Grant #1136996
to the Computing Research Association for the CIFellows
Project. The author thanks Carla Gomes, David Pennock,
and Toby Walsh for helpful comments and suggestions. The
author also thanks an anonymous IJCAI-11 reviewer of (Xia
and Pennock 2011) for a very insightful comment that in-
spired part of this work.

References
Abernethy, J.; Chen, Y.; and Vaughan, J. W. 2012. Efficient
market making via convex optimization, and a connection
to online learning. ACM Transactions on Economics and
Computation.
Berg, J. E.; Forsythe, R.; Nelson, F. D.; and Rietz, T. A.
2008. Results from a dozen years of election futures markets
research. The Handbook of Experimental Economics Results
1:742–751.
Berg, J.; Nelson, F.; and Rietz, T. 2008. Prediction market
accuracy in the long run. International Journal of Forecast-
ing 24:285–300.
Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artificial Intelligence
172(6–7):772–799.
Chen, Y., and Pennock, D. M. 2010. Designing markets for
prediction. AI Magazine 31:42–52.
Chen, Y., and Vaughan, J. W. 2010. A new understanding of
prediction markets via no-regret learning. In Proceedings of
the 11th ACM conference on Electronic commerce, EC ’10,
189–198.
Chen, Y.; Fortnow, L.; Lambert, N.; Pennock, D. M.; and
Wortman, J. 2008. Complexity of combinatorial market
makers. In Proceedings of the ACM Conference on Elec-
tronic Commerce (EC), 190–199.
Chen, Y.; Goel, S.; and Pennock, D. M. 2008. Pricing com-
binatorial markets for tournaments. In STOC ’08: Proceed-
ings of the 40th annual ACM Symposium on Theory of Com-
puting, 305–314.
Cooper, G. F. 1990. The computational complexity of prob-
abilistic inference using Bayesian belief networks. Artificial
Intelligence 42(2–3):393–405.
Dudik, M.; Lahaie, S.; and Pennock, D. M. 2012. A
tractable combinatorial market maker using constraint gen-
eration. In Proceedings of the ACM Conference on Elec-
tronic Commerce (EC).

64

Fortnow, L.; Kilian, J.; Pennock, D. M.; and Wellman, M. P.
2004. Betting Boolean-style: a framework for trading in
securities based on logical formulas. Decision Support Sys-
tems 39(1):87–104.
Gogate, V., and Dechter, R. 2008. Studies in solution sam-
pling. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI), 271–276.
Hanson, R. 2003. Combinatorial information market design.
Information Systems Frontiers 5(1):107–119.
Hanson, R. 2007. Logarithmic market scoring rules for
modular combinatorial information aggregation. Journal of
Prediction Markets 1:3–15.
Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-Carlo
approximation algorithms for enumeration problems. J. Al-
gorithms 10:429–448.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. Morgan Kaufmann
Publishers Inc.
Pennock, D. M., and Xia, L. 2011. Price updating in combi-
natorial prediction markets with bayesian networks. In Pro-
ceedings of the 27th Annual Conference on Uncertainty in
Artificial Intelligence (UAI).
Sang, T.; Bearne, P.; and Kautz, H. 2005. Performing
bayesian inference by weighted model counting. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence (AAAI), 475–481.
Valiant, L. 1979. The complexity of enumeration and relia-
bility problems. SIAM J. Computing 8(3):410–421.
Vazirani, V. 2001. Approximation Algorithms. Springer
Verlag.
Xia, L., and Pennock, D. M. 2011. An Efficient Monte-Carlo
Algorithm for Pricing Combinatorial Prediction Markets for
Tournaments. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).

65

