
An Information-Theoretic Metric for Collective Human Judgment

Tamsyn Waterhouse
Google, Inc.

345 Spear Street, 4th Floor
San Francisco, CA 94105-1689

Abstract

We consider the problem of evaluating the performance of
human contributors for tasks involving answering a series of
questions, each of which has a single correct answer. The
answers may not be known a priori.
We assert that the measure of a contributor’s judgments is
the amount by which having these judgments decreases the
entropy of our discovering the answer. This quantity is the
pointwise mutual information between the judgments and the
answer.
The expected value of this metric is the mutual information
between the contributor and the answer prior, which can be
computed using only the prior and the conditional probabil-
ities of the contributor’s judgments given a correct answer,
without knowing the answers themselves.
We also propose using multivariable information measures,
such as conditional mutual information, to measure the inter-
actions between contributors’ judgments.
These metrics have a variety of applications. They can be
used as a basis for contributor performance evaluation and
incentives. They can be used to measure the efficiency of the
judgment collection process. If the collection process allows
assignment of contributors to questions, they can also be used
to optimize this scheduling.

Introduction
Background
Human computation, as defined by Quinn and Beder-
son (2011) (which see for more discussion of it and related
terms), is the performance of computational tasks by hu-
mans under the direction of a computer system. The term
is sometimes confused with crowdsourcing, which encom-
passes a broader definition of tasks, performed by workers
sourced openly online.

In this paper we work under a paradigm we call collec-
tive human judgment: tasks phrased in the form of a ques-
tion with discrete possible answers, such as the Freebase
curation tasks described by Kochhar, Mazzocchi, and Par-
itosh (2010). Each question is presented independently to a
number of contributors, and their judgments are synthesized
to form an estimate of the correct answer.

Collective human computation presents an interesting
quality-control problem: How do we measure and manage
the performance of human computers?

Salaried human computers are often under pressure to
perform well, which usually means some combination of
“faster” and “better”. Definitions of these terms, and how
they are weighted in evaluating workers’ performance, can
often be vague or capricious.

Crowdsourced workers, on the other hand, work online
for low pay with minimal or no supervision. There is a
strong financial incentive to perform the most work with the
least effort, which can lead to laziness, cheating, or even
adversarial behavior. Such behavior can be modeled and ac-
commodated without difficulty in the processing of collec-
tive human judgments, but it still comes with a cost: Em-
ployers must pay workers, even for worthless work. Most
solutions to this problem involve terminating (or blocking)
low-quality workers and offering extra financial incentives
to high-quality workers.

In both cases, there is a growing need for objective mea-
surements of worker performance.

Aside from the need to be able to evaluate workers’ con-
tributions, the benefits of proactive management of human
computers have been studied by Dow et al. (2011). Shaw,
Horton, and Chen (2011) explore the effect of several differ-
ent incentive mechanisms on Mechanical Turk workers per-
forming a website content analysis task. But without an ob-
jective metric for contributor performance, we have no way
of knowing that we’re incentivizing behavior that is actually
beneficial.

Once answers are estimated, we could simply score work-
ers by percent of answers correct. But this has serious short-
comings. In many cases, a good worker can produce judg-
ments that are highly informative without ever being cor-
rect. For example, for classification problems over an or-
dinal scale, a well-meaning but biased worker can produce
valuable output. If the distribution of classes is not uniform,
a strategic spammer can often be correct simply by giving
the most common answer every time. Problems over inter-
val scales, for example the image-cropping task described
by Welinder and Perona (2010), can be resolved by model-
ing contributor estimates of the correct answer as discrete
Gaussian distributions, with even a very good (accurate and
unbiased) contributor having a very low probability of get-
ting the answer exactly correct.

Many collective judgment resolution algorithms implic-
itly or explicitly include parameters representing contribu-

AAAI Technical Report FS-12-06
Machine Aggregation of Human Judgment

54

tors’ skill. But such parameters are specific to their models
and may not even be scalars, making it impossible to use
them directly to score workers.

Ipeirotis, Provost, and Wang (2010) introduce a data-
based metric for contributor performance that calculates the
hypothetical cost incurred by the employer of using that con-
tributor’s judgments exclusively. It depends on confusion
matrices (and thus is restricted to classification problems)
and takes a cost-of-errors matrix as input.

We propose a metric which we feel provides an objective
and widely-applicable measurement of workers’ contribu-
tions, in naturally-motivated units of information. Unlike
Ipeirotis, Provost, and Wang’s cost function, our metric is
explicitly intended to be agnostic to the purpose for which
the results are used: Workers are measured strictly by the
information content of their judgments.

The proposed metric also allows us to measure the redun-
dancy of information obtained from multiple contributors
during the judgment collection process. We can therefore
measure the information efficiency of the process, and even
tune the assignment of questions to contributors in order to
increase the amount of information we obtain from a given
number of judgments.

Notation
Let Q be the set of questions. Let H be the set of contribu-
tors. LetA be the set of possible answers. LetJ be the set of
possible judgments. In many applications we have J = A,
but this isn’t strictly necessary. When J = A, we’ll refer to
the set simply as the answer space.

Let A be a random variable producing correct answers
a ∈ A. Let J and J ′ be random variables producing judg-
ments j, j′ ∈ J from two contributors h, h′ ∈ H. J and J ′
are assumed to depend on A and to be conditionally inde-
pendent of one another given this dependence.

For brevity and to keep notation unambiguous, we’ll re-
serve the subscript a to refer to answer variables A, and the
subscripts j and j′ to refer to judgment variables J (from
contributor h) and J ′ (from contributor h′) respectively.

Thus, let pa = P (A = a) be the prior probability that
the correct answer of any question is a. Let pa|j = P (A =
a|J = j) be the posterior probability that the correct answer
to a question is a, given that the contributor represented by
J gave judgment j. Other probabilities for variables A, J ,
and J ′ are defined analogously.

The Value of a Judgment
Information Content of an Answer
Suppose first that we have no judgments for a given ques-
tion. The probability distribution of its correct answer is
simply pa, the answer prior. The information content of a
particular answer A = a is

I(A = a) = − log pa.

The choice of base of the logarithm here simply deter-
mines the units (bits, nats, digits, etc.) in which the informa-
tion is expressed. We’ll use bits everywhere below.

We could also write the information as I(A), a random
variable that depends on A. Its expected value is the entropy
of A:

H(A) ≡ EA[I(A)] = −
∑
a

pa log pa

Information Content of a Judgment

Suppose that we have a single judgment J = j (from con-
tributor h). Now the information content of the outcome
A = a, conditioned on this information, is

I(A = a|J = j) = − log pa|j ,

and the expected value of I(A|J) over all combinations of x
and y is the conditional entropy of A given J ,

H(A|J) ≡ EA,J [I(A|J)] = −
∑
a,j

pa,j log pa|j .

Given a question q ∈ Q, a judgment j ∈ J , and the
correct answer a ∈ A, the information given to us by J is
the amount by which the information content of the outcome
A = a is decreased by our knowledge of J : in other words,
how much less surprising the outcome is when we have J =
j. This quantity is

∆Ia,j ≡ I(A = a)− I(A = a|J = j) = log
pa|j

pa
, (1)

the pointwise mutual information of the outcomes A = a
and J = j.

We propose ∆Ia,j as a measure of the value of a single
judgment from a contributor. If the judgment makes us more
likely to believe that the answer is a, then the value of the
judgment is positive; if it makes us less likely to believe that
the answer is a, then its value is negative.

To compute ∆Ia,j for a single question, we must know
the answer a to that question. In practice, we find a using a
judgment resolution algorithm applied to a set of contributor
judgments. Although knowing a is the goal of judgment res-
olution, we can still compute a contributor’s aggregate value
per question without it, simply taking the expected value of
∆Ia,j over all values of A and J . This is

EA,J [∆Ia,j] = H(A)−H(A|J) ≡ I(A; J),

the mutual information ofA and J , a measure of the amount
of information the two random variables share. We can ex-
pand this as

I(A; J) =
∑
a,j

pa,j log
pa|j

pa
. (2)

Although ∆I can be negative, I(A; J) is always nonneg-
ative: No contributor can have a negative expected value,
because any behavior (even adversarial) that statistically dis-
criminates between answers is informative to us, and behav-
ior that fails to discriminate is of zero value.

55

Example
Say we have a task involving classifying objects q into
classes a1 and a2, with uniform priors pa1

= pa2
= 0.5,

so that I(A = a1) = I(A = a2) = 1 bit, and J = A.
Consider a contributor, represented by a random variable

J , who always identifies a1 objects correctly but misidenti-
fies a2 as a1 half the time.

We have the following table of outcomes:

a j pa,j pa|j I(A = a|J = j) ∆Ia,j
a1 a1 0.5 2

3 0.58 bits 0.42 bits
a2 a1 0.25 1

3 1.58 bits -0.58 bits
a2 a2 0.25 1 0 1 bit

This contributor is capable of giving a judgment that reduces
our knowledge of the correct answer, with ∆Ia2,a1 < 0.
However, the expected value per judgment from the contrib-
utor is positive: I(A; J) = EA,J [∆Ia,j] ≈ 0.31 bits.

Combining Judgments
We typically have several judgments per question, from dif-
ferent contributors. The goal of judgment resolution can be
expressed as minimizing H(A|J, J ′), or in the general case,
minimizing H(A|J, . . .). To do so efficiently, we would like
to choose contributors so as to minimize the redundant infor-
mation among the set of contributors assigned to each ques-
tion.

Suppose we start with one judgment, J = j. If we then
get a second judgment J ′ = j′, and finally discover the
correct answer to be A = a, the difference in information
content of the correct answer made by having the second
judgment (compared to having just the first judgment) is the
pointwise conditional mutual information

∆Ia,j′|j ≡ I(A = a|J = j)− I(A = a|J = j, J ′ = j′)

= log
pa|j,j′

pa|j
. (3)

Below, we’ll consider two situations: assigning a second
contributor J ′ to a question after receiving a judgment from
a first contributor J (the sequential case), and assigning both
contributors to the same question before either gives a judg-
ment (the simultaneous case).

This section tacitly assumes that we have a good way to
estimate probabilities as we go. This requires us to work
from some existing data, so we can’t use these methods for
scheduling questions until we have sufficient data to make
initial estimates of model parameters. What constitutes “suf-
ficient data” depends entirely on the data and on the reso-
lution algorithm, and these estimates can be refined by the
resolution algorithm as more data is collected.

Sequentially
The expected information gained from the second judgment,
conditioned on the known first judgment J = j, is

EA,J′|J=j [∆Ia,j′|j] =
∑
a,j′

pa,j′|j log
pa|j,j′

pa|j
, (4)

which is similar in form to 2.

This expression allows us to compute the expected value
of ∆Ia,j′|j for each choice of second contributor J ′ and
to make optimal assignments of contributors to questions,
if our judgment collection system allows us to make such
scheduling decisions.

Simultaneously
If we must choose contributors for a question before getting
judgments, we take the expectation of 3 over all three ran-
dom variables rather than just A and J ′. The result is the
conditional mutual information

I(A; J ′|J) = EA,J,J ′ [∆Ia,j′|j] =
∑
a,j,j′

pa,j,j′ log
pa|j,j′

pa|j
,

(5)
which is the expected change in information due to receiving
one judgment from J ′ when we already have one judgment
from J .

Two contributors are on average at least as good as one:
The total information we gain from the two judgments is

I(A; J, J ′) = I(A; J) + I(A; J ′|J) ≥ I(A; J),

since I(A; J ′|J) ≥ 0. In fact, we can write

I(A; J, J ′) = I(A; J) + I(A; J ′|J)

= I(A; J) + I(A; J ′)− I(A; J ; J ′),

where I(A; J ; J ′) is the multivariate mutual information of
A, J , and J ′. Here it quantifies the difference between the
information given by two contributors and the sum of their
individual contributions, since we have

I(A; J ; J ′) = I(A; J) + I(A; J ′)− I(A; J, J ′).

I(A; J ; J ′) is a measure of the redundant information be-
tween the two contributors. It might not be fair to reward
a contributor’s judgments based on their statistical interac-
tion with another contributor’s judgments, but we can use
this as a measure of inefficiency in our system. We receive
an amount of information equal to I(A; J) + I(A; J ′), but
some is redundant and only the amount I(A; J, J ′) is useful
to us. The overlap I(A; J ; J ′) is the amount wasted.

More than Two Judgments
Generalizing to higher-order, the relevant quantities are the
combined mutual information

I(A; J1, . . . , Jk),

which gives the total information we get from k judgments,
and the conditional mutual information

I(A; Jk|J1, . . . , Jk−1),

which gives the increase in information we get from the kth
judgment. Higher-order expressions of multivariate mutual
information are possible but not germane to our work: We
are instead interested in quantities like[

k∑
i=1

I(A; Ji)

]
− I(A; J1, . . . , Jk)

for measuring information overlap.

56

Practical Calculation
Equations
In practice, we generally have a model for questions and
contributor behavior which defines probabilities pa (answer
priors) and pj|a and pj′|a (probability of a judgment given
an answer). Other probabilities, such as pa|j (probability of
an answer given a judgment), must be computed from these.

To compute probabilities involving more than one judg-
ment, we must assume conditional independence of judg-
ments given the correct answer. This means, for example,
that pj′|a,j = pj′|a.

Here is how to compute our mutual information quantities
using the typically-known probabilities. Pointwise mutual
information, 1, is

∆Ia,j = log
pa|j

pa
= log

pj|a∑
a′ pa′pj|a′

. (6)

Mutual information, 2, is

I(A; J) =
∑
a,j

pa,j∆Ia,j =
∑
a,j

papj|a log
pj|a∑

a′ pa′pj|a′
.

(7)
Pointwise conditional mutual information, 3, is

∆Ia,j′|j = log
pa|j,j′

pa|j
= log

(
pj′|a

∑
a′ pa′pj|a′∑

a′ pa′pj|a′pj′|a′

)
.

(8)
Mutual information conditioned on one point J = j, 4, is

EA,J′|J=j [∆Ia,j′|j] =
∑
a,j′

pa,j′|j∆Ia,j′|j

=
∑
a,j′

papj|apj′|a∑
a′ pa′pj|a′

log

(
pj′|a

∑
a′ pa′pj|a′∑

a′ pa′pj|a′pj′|a′

)
. (9)

Conditional mutual information, 5, is

I(A; J ′|J) =
∑
a,j,j′

pa,j,j′∆Ia,j′|j

=
∑
a,j,j′

papj|apj′|a log

(
pj′|a

∑
a′ pa′pj|a′∑

a′ pa′pj|a′pj′|a′

)
. (10)

Combined mutual information is then

I(A; J, J ′) = I(A; J) + I(A; J ′|J),

and multivariate mutual information is

I(A; J ; J ′) = I(A; J ′)− I(A; J ′|J).

Computational Complexity
Calculating contributor performance goes hand-in-hand
with the main problem of turning human judgments into es-
timates of correct answers to questions. Our metrics can be
computed at the same time as these estimates.

In the examples to follow, we’ll assume for simplicity a
judgment resolution algorithm which makes pointwise es-
timates of model parameters. Although this is a common
simplification in the literature and in practice, full statisti-
cal inference involves marginal integration over the space of

possible parameter values, for example using Markov chain
Monte Carlo methods (see Walsh (2004) for an introduc-
tion).

Because these numerical methods are computationally in-
tensive, we should consider how much additional burden our
metrics would impose in such cases.

Let m = |H| be the number of contributors, s = |A| be
the number of possible answers, and t = |J | be the num-
ber of possible judgments. Computing first-order quantities
I(A; J) for all contributors using 7 has runtime O(m · s · t),
and computing a second-order quantity such as I(A; J, J ′)
for all contributor pairs using 10 has runtime O(m2 · s · t2).
Higher-order quantities become challenging, though: In
general, computing I(A; J1, . . . , Jk) for all contributor k-
sets has runtime O(mk · s · tk).

By comparison, estimating answers to all questions in a
task from a single set of model parameter values can be ac-
complished in runtime proportional to the total number of
judgments received. This number varies depending on the
experimental setup and the desired accuracy of the results.
In the literature it is typically of order 10 times the number
of questions.

Search Problems
The above discussion works well for classification problems,
those in which the same small answer space is shared by all
questions, and we have enough data to estimate priors pa
and confusion matrix elements πa,j .

A good example of this sort of problem is Galaxy
Zoo (Lintott et al. 2008), which uses volunteers to classify
galaxy morphology from photographs. Contributor behav-
ior for classification problems can usually be modeled well
with confusion matrices pj|a = πa,j , and the small size of
the answer space relative to the number of questions allows
us to make good estimates of the class priors pa.

We’ll refer to problems that don’t satisfy these conditions
as “search problems”, because unlike classification prob-
lems, we have little prior knowledge of what the answer
could be: Our contributors are searching for it.

Search problems can have very large answer spaces. For
example, the answer space for the question “Find the URI
for company X’s investor relations page” is the set of all
valid URIs.

Problems with large answer spaces have large entropies,
naturally incorporating the increased difficulty of searching
over these spaces. The set of all Freebase MIDs, for exam-
ple, presently numbers in excess of 20 million entities, so
H(A) ∼ 24 bits for problems over this space.

Large answer spaces aren’t strictly necessary for a prob-
lem to fall into the search category, though: A typical
multiple-choice exam also has the property that answer A
on question 1 is unrelated to answer A on question 2, so
confusion matrix models are inappropriate.

As we noted above, our metrics require a runtime which
is polynomial in the size of the answer spaces. For large
answer spaces this becomes unviable. Fortunately, the same
challenge is faced by the judgment resolution algorithm, and
its solution can be ours too.

57

Without enough information to model contributor behav-
ior using confusion matrices (or with answer spaces too
large for confusion matrices to be computable), we usually
use models with agnostic answer priors and a single value π
that gives the probability of a contributor answering a ques-
tion correctly. π may depend on the contributor, the ques-
tion, or both; see Whitehill et al. (2009) for an example of
the latter case.

That is, we generally have J = A and uniform answer
priors pa = 1

s (although this can change if we have infor-
mation beyond just the contributors’ judgments), where as
above we let s = |A|. Our conditional probabilities are

pj|a = πδa,j +
1− π
s− 1

(1− δa,j),

where δa,j is the Kronecker delta. This means that with
probability π, the contributor answers the question correctly,
and with probability 1− π, the contributor gives a judgment
chosen randomly and uniformly from among the incorrect
answers.

All of the equations above now simplify (in terms of com-
putational, if not typographical, complexity). The normal-
ization term in 6 is∑

a

papj|a =
∑
a

1

s

[
πδa,j +

1− π
s− 1

(1− δa,j)
]

=
1

s
.

Conditional probability is

pa|j =
papj|a∑
a′ pa′pj|a′

= pj|a.

Mutual information is therefore

I(A; J) = π log(sπ) + (1− π) log

(
s

1− π
s− 1

)
.

Note that I(A; J) ∼ π log s = π · H(A) as s → ∞. In 1,
we plot I(A;J)

H(A) for various values of s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

I(
A

;J
)

/
H

(A
)

π

s=2
s=3
s=8

s=75
s=∞

Figure 1: I(A;J)
H(A) as a function of π and s.

We can also compute higher-order quantities. How-
ever, higher-order quantities are less useful for search prob-
lems than for classification problems, because with lower-
dimension model parameters for each contributor, there is

less to differentiate contributors from each other and thus
less to be gained from attempting to optimize scheduling. In
the case of just one parameter π per contributor, contributor
skill is literally one-dimensional.

In any event, what matters is that for search problems, we
can eliminate the sums in 6 –10 to produce computationally
simple quantities.

Examples
We’ll apply our metrics to Wilson’s data in Dawid and
Skene (1979). The data is taken from real pre-operative as-
sessments by 5 observers of 45 patients’ fitness for anes-
thesia. The judgment and answer spaces are a set of four
categories numbered 1, 2, 3, 4. We duplicated Dawid and
Skene’s results, using as they did the EM algorithm and a
confusion matrix model of observer behavior.

One Contributor at a Time
Using the priors and confusion matrices thus obtained (cor-
responding to Dawid and Skene’s Table 2), we measured
I(A; J) for each observer J as follows:

Observer 1 2 3 4 5
I(A; J) in bits 0.94 1.06 1.03 1.15 1.05

Table 1: I(A; J) for Wilson’s observers.

From the prior pa = [0.40, 0.42, 0.11, 0.07], the entropy
of the answer priors is H(A) ≈ 1.67 bits.

We also computed pointwise judgment values using the
estimated answers (Dawid and Skene’s Table 4). In cases
where the estimated answer was a probability distribution,
we computed the expected judgment value over this distri-
bution.

Below are the observers’ judgments and the correspond-
ing values of ∆I , in bits, for a selection of patients for each
of observers 2, 3, and 4.

Patient Answer #2 #3 #4
2 4 4 3.91 3 2.58 3 1.10

11 4 4 3.91 4 2.32 4 3.32
20 2 1 -2.75 3 -0.08 2 1.16
32 3 3 2.03 2 0.10 3 2.36
39 3 3 2.03 4 2.58 3 2.36

Note that in many cases, an observer giving the wrong an-
swer still gives us a positive amount of information, because
the correct answer is more likely given that judgment. This
is to be expected with an answer space of cardinality larger
than two: An answer that a contributor is known to confuse
with the correct answer narrows down the possibilities for
us.

Multiple Contributors
We also computed combined, conditional, and mutual infor-
mation for pairs of contributors.

Although observer #4 gives us the most information in a
single judgment (I(A; J4) ≈ 1.15 bits in 1), a second judg-
ment from the same observer has low expected additional

58

I(A; J ′|J) #1 #2 #3 #4 #5
First #1 0.31 0.40 0.37 0.43 0.38
First #2 0.27 0.30 0.33 0.42 0.32
First #3 0.28 0.37 0.33 0.37 0.36
First #4 0.22 0.33 0.25 0.27 0.28
First #5 0.26 0.34 0.33 0.38 0.35

Table 2: Mutual information between correct answers and a
second observer, conditioned on a first observer.

I(A; J, J ′) #1 #2 #3 #4 #5
#1 1.25 1.33 1.31 1.36 1.32
#2 1.37 1.40 1.48 1.39
#3 1.36 1.40 1.39
#4 1.42 1.43
#5 1.40

Table 3: Mutual information between correct answers and
two combined observers.

I(A; J ; J ′) #1 #2 #3 #4 #5
#1 0.63 0.67 0.66 0.72 0.68
#2 0.76 0.70 0.73 0.73
#3 0.69 0.78 0.70
#4 0.87 0.77
#5 0.70

Table 4: Multivariate mutual information between correct
answers and two observers.

value (I(A; J4|J4) ≈ 0.27 bits in 2). Pairing #4 with #2
gives the most total information (I(A; J2, J4) ≈ 1.48 bits in
3), with relatively little overlap (I(A; J2; J4) ≈ 0.73 bits in
4).

Scheduling
Now we’ll demonstrate question-contributor scheduling
using mutual information conditioned on one point, 9.
Scheduling of human resources is an active area of research;
see Yan et al. (2011) for a sample.

We simulated a continuation of Wilson’s experiment, with
a pool of 50 new patients drawn from the estimated prior
distribution and observers’ judgments drawn from their esti-
mated confusion matrices.

We implemented a simple queueing system in which a
patient with condition A is drawn at random and assigned to
an available observer, where “available” means “has given
the fewest number of judgments so far”.

The first observer J for each patient is chosen randomly
from the set of available observers. Once every patient has
been judged by one observer (J = j), we repeat the process
to get a second judgment. In control runs, we choose the sec-
ond observer randomly again from the pool of available ob-
servers. In test runs, we instead choose for each patient the
available observer J ′ that maximizes EA,J′|J=j [∆Ia,j′|j].
Using the same observer both times for one patient is per-
mitted in both cases.

Once two judgments have been collected for each patient,

we look at the patient’s actual condition a and use the es-
timated posterior probability of that condition pa|j,j′ from
the two judgments J = j and J ′ = j′ as a score for our
resolution.

We repeated the experiment 10000 times for each of the
control and test runs and computed mean scores of 0.876 for
the control group and 0.937 for the test group. That is, us-
ing the most likely answer for each patient, if we assign two
observers randomly, we can expect to get the patient’s con-
dition correct 87.6 percent of the time, and if we assign the
second observer to maximize expected information gain, we
get the patient’s condition correct 93.7 percent of the time.

Acknowledgments
Many thanks to Praveen Paritosh, Ronen Vaisenberg, Reilly
Hayes, Jamie Taylor, Stefano Mazzocchi, Colin Evans, Viral
Shah, Micah Saul, Robert Klapper, and Dario Amodei, for
valuable comments, conversations, and suggestions.

References
Dawid, A., and Skene, A. 1979. Maximum likelihood estimation
of observer error-rates using the EM algorithm. Applied Statistics
20–28.
Dow, S.; Kulkarni, A.; Bunge, B.; Nguyen, T.; Klemmer, S.; and
Hartmann, B. 2011. Shepherding the crowd: managing and pro-
viding feedback to crowd workers. In Ext. Abstracts CHI 2011,
1669–1674. ACM Press.
Ipeirotis, P.; Provost, F.; and Wang, J. 2010. Quality manage-
ment on Amazon Mechanical Turk. In Proc. HCOMP 2010, 64–67.
ACM Press.
Kochhar, S.; Mazzocchi, S.; and Paritosh, P. 2010. The anatomy of
a large-scale human computation engine. In Proc. HCOMP 2010,
10–17. ACM Press.
Lintott, C.; Schawinski, K.; Slosar, A.; Land, K.; Bamford, S.;
Thomas, D.; Raddick, M.; Nichol, R.; Szalay, A.; Andreescu, D.;
Murray, P.; and van den Berg, J. 2008. Galaxy Zoo: Morphologies
derived from visual inspection of galaxies from the Sloan Digital
Sky Survey. Monthly Notices of the Royal Astronomical Society
389(3):1179–1189.
Quinn, A., and Bederson, B. 2011. Human computation: a survey
and taxonomy of a growing field. In Proc. CHI 2011, 1403–1412.
ACM Press.
Shaw, A.; Horton, J.; and Chen, D. 2011. Designing incentives
for inexpert human raters. In Proc. CSCW 2011, 275–284. ACM
Press.
Walsh, B. 2004. Markov chain Monte Carlo and Gibbs sampling.
Lecture Notes for EEB 581.
Welinder, P., and Perona, P. 2010. Online crowdsourcing: rat-
ing annotators and obtaining cost-effective labels. In Proc. CVPR
2010, 25–32. IEEE.
Whitehill, J.; Ruvolo, P.; Wu, T.; Bergsma, J.; and Movellan, J.
2009. Whose vote should count more: Optimal integration of la-
bels from labelers of unknown expertise. Advances in Neural In-
formation Processing Systems 22:2035–2043.
Yan, Y.; Rosales, R.; Fung, G.; and Dy, J. 2011. Active learning
from crowds. In Proc. ICML 2011, 1161–1168. IMLS.

59

