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Abstract

In this paper, we present CrowdSense, an algorithm for
estimating the crowd’s majority opinion by querying
only a subset of it. CrowdSense works in an online fash-
ion where examples come one at a time and it dynam-
ically samples subsets of labelers based on an explo-
ration/exploitation criterion. The algorithm produces a
weighted combination of a subset of the labelers’ votes
that approximates the crowd’s opinion. We also present
two probabilistic variants of CrowdSense that are based
on different assumptions on the joint probability dis-
tribution between the labelers’ votes and the majority
vote. Our experiments demonstrate that we can reliably
approximate the entire crowd’s vote by collecting opin-
ions from a representative subset of the crowd.

Introduction
The problem of “approximating the crowd” is that of es-
timating the crowd’s majority opinion by querying only a
subset of it. Our goal is to determine the majority opinion of
a crowd, on a series of questions (“examples”), with a lim-
ited budget. Because of the open nature of crowdsourcing
systems, it is not necessarily easy to approximate the ma-
jority vote of a crowd on a budget by sampling a represen-
tative subset of the voters. For example, the crowd may be
comprised of labelers with a range of capabilities, motives,
knowledge, views, personalities, etc. Without any prior in-
formation about the characteristics of the labelers, a small
sample of votes is not guaranteed to align with the true ma-
jority opinion. In order to effectively approximate the crowd,
we need to determine who are the most representative mem-
bers of the crowd, in that they can best represent the interests
of the crowd majority. This is even more difficult to accom-
plish when items arrive over time, and it requires our budget
to be used both for 1) estimating the majority vote, even be-
fore we understand the various qualities of each labeler, and
2) exploring the various labelers until we can estimate their
qualities well. Estimating the majority vote in particular can
be expensive before the labelers’ qualities are known, and
we do not want to pay for additional votes that are not likely
to impact the decision.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In order to make economical use of our budget, we could
determine when just enough votes have been gathered to
confidently align our decision with the crowd majority. The
budget limitation necessitates a compromise: if we pay for
a lot of votes per decision, our estimates will closely align
with the crowd majority, but we will only make a smaller
number of decisions, whereas if we pay for less votes per
decision, the accuracy may suffer, but more decisions are
made. There is clearly an exploration/exploitation tradeoff:
before we can exploit by using mainly the best labelers, we
need to explore to determine who these labelers are, based
on their agreement with the crowd.

The main contributions of this work can be broken down
into two main parts: In the first part, we propose a modu-
lar algorithm, CrowdSense, that approximates the wisdom
of the crowd. In an online fashion, CrowdSense dynami-
cally samples a subset of labelers, determines whether it has
enough votes to make a decision, and requests more if the
decision is sufficiently uncertain. CrowdSense keeps a bal-
ance between exploration and exploitation in its online it-
erations – exploitation in terms of seeking labels from the
highest-rated labelers, and exploration so that enough data
are obtained about each labeler to ensure that we learn each
labeler’s accuracy sufficiently well.

The second part presents probabilistic variations of
CrowdSense. One of the main challenges to approximat-
ing the crowd has to do with the fact that the majority
vote is taken as the ground truth (the truth we aim to pre-
dict). This means that there is a complicated relationship
(a joint probability distribution) between the labelers’ ac-
curacies and the ground truth. Based on this observation,
we introduce two variations of CrowdSense, called Crowd-
Sense.Ind and CrowdSense.Bin, that make various distribu-
tional assumptions to handle distinct crowd characteristics.
In particular, the first algorithm makes a statistical inde-
pendence assumption of the probabilities for large crowds,
whereas the second algorithm finds a lower bound on how
often the current sub-crowd agrees with the crowd major-
ity vote, using the binomial distribution. For both Crowd-
Sense.Ind and CrowdSense.Bin, even though probabilistic
assumptions were made, the accuracy is comparable to (or
lower than) CrowdSense itself.

Throughout the paper, a “majority vote” refers to the sim-
ple, every day sense of voting wherein every vote is equal,
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with no differential weighting of the votes. This is in con-
trast to a weighted majority vote, as we use in CrowdSense,
wherein each labeler’s vote is multiplied by the labeler’s
quality estimate. This weighting scheme ensures that the
algorithm places a higher emphasis on the votes of higher
quality labelers.

Related Work
The low cost of crowdsourcing labor has increasingly led
to the use of resources such as Amazon Mechanical Turk1

(AMT) to label data for machine learning purposes, where
collecting multiple labels from non-expert annotators can
yield results that rival those of experts. This cost-effective
way of generating labeled collections using AMT has also
been used in several studies (Snow et al. 2008; Kaisser and
Lowe 2008; Bernstein et al. 2010).

(Dawid and Skene 1979) presented a methodology to es-
timate the error rates based on the results from multiple di-
agnostic tests without a gold standard using latent variable
models. Smyth et al. (1994a; 1994b) used a similar approach
to investigate the benefits of repeatedly labeling same data
points via a probabilistic framework that models a learn-
ing scheme from uncertain labels. Although a range of ap-
proaches are being developed to manage the varying reliabil-
ity of crowdsourced labor (Callison-Burch and Dredze 2010;
Wallace et al. 2011; Law and von Ahn 2011), the most com-
mon method for labeling data via the crowd is to obtain mul-
tiple labels for each item from different labelers and treat
the majority label as an item’s true label. (Sheng, Provost,
and Ipeirotis 2008), for example, demonstrated that repeated
labeling can be preferable to single labeling in the pres-
ence of label noise, especially when the cost of data pre-
processing is non-negligible. (Dekel and Shamir 2009a) pro-
posed a methodology to identify low quality annotators for
the purpose of limiting their impact on the final attribution
of labels to examples. To that effect, their model identifies
each labeler as being either good or bad, where good an-
notators assign labels based on the marginal distribution of
the true label conditioned on the instance and bad annota-
tors provide malicious answers. (Dekel and Shamir 2009b)
proposed an algorithm for pruning the labels of less reli-
able labelers in order to improve the accuracy of the ma-
jority vote of labelers. First collecting labels from label-
ers and then discarding the lower quality ones presents a
different viewpoint than our work, where we achieve the
same “pruning effect” by estimating the qualities of the
labelers and not asking the low quality ones to vote in
the first place. A number of researchers have explored ap-
proaches for learning how much to trust different label-
ers, typically by comparing each labeler’s predictions to the
majority-vote prediction of the full set. These approaches of-
ten use methods to learn both labeler quality characteristics
and latent variables representing the ground-truth labels of
items that are available (Kasneci et al. 2011; Dekel, Gen-
tile, and Sridharan 2010; Warfield, Zou, and Wells 2004)
sometimes in tandem with learning values for other la-
tent variables such as task difficulty (Whitehill et al. 2009;

1http://www.mturk.com

Welinder et al. 2010), classifier parameters (Yan et al. 2010a;
2010b; Raykar et al. 2010), or domain-specific information
about the labeling task (Welinder et al. 2010).

CrowdSense
Let us first model the labelers’ quality estimates as a mea-
sure of their agreement with the crowd majority. These qual-
ity estimates indicate whether a labeler is “representative” of
the crowd. Let L = {l1, l2, . . . , lM}, lk : X → {−1, 1} de-
note the set of labelers and {x1, x2, . . . , xt, . . . , xN}, xt ∈
X denote the sequence of examples, which could arrive one
at a time. We define Vit := li(xt) as li’s vote on xt and
St ⊂ {1, . . . ,M} as the set of labelers selected to label xt.
For each labeler li, we then define cit as the number of times
we have observed a label from li so far and ait as how many
of those labels were consistent with the other labelers:

cit :=
t∑

t̃=1

[i∈St̃] ait :=
t∑

t̃=1

[
i∈St̃,Vit̃=VSt̃t̃

]

where VStt = sign
(∑

i∈St
VitQit

)
is the weighted majority

vote of the labelers in St. Labeler li’s quality estimate is then
defined as

Qit :=
ait +K

cit + 2K
(1)

where t is the number of examples that we have collected la-
bels for and K is a smoothing parameter. Qit is a Bayesian
shrinkage estimate of the probability that labeler i will agree
with the crowd, pulling values down toward 1/2 when there
are not enough data to get a more accurate estimate. This
ensures that labelers who have seen fewer examples are not
considered more valuable than labelers who have seen more
examples and whose performance is more certain. Crowd-
Sense uses a pessimistic estimate of the mean rather than an
upper (e.g. 95%) confidence interval that IEThresh (Donmez
et al., 2009) (and UCB algorithms) use.

At the beginning of an online iteration to label a new ex-
ample, the labeler pool is initialized with three labelers; we
select two “exploitation” labelers that have the highest qual-
ity estimates Qit and select another one uniformly at random
for “exploration”. This initial pool of seed labelers enables
the algorithm to maintain a balance between exploitation of
quality estimates and exploration of the quality of the entire
set of labelers. We ask each of these 3 labelers to vote on
the example. Their votes for this example are then used to
generate a confidence score, given as

Score(St) =
∑

i∈St

VitQit

which represents the weighted majority vote of the labelers.
Next, we determine whether we are certain that the sign of
Score(St) reflects the crowd’s majority vote, and if we are
not sure, we repeatedly ask another labeler to vote on this
example until we are sufficiently certain about the label. To
measure how certain we are, we greedily see whether adding
an additional labeler might make us uncertain about the de-
cision. Specifically, we select the labeler with the highest
quality estimate Qit, who is not already in St, as a candidate
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Algorithm 1 Pseudocode for CrowdSense.
1. Input: Examples {x1, x2, . . . , xN}, Labelers

{l1, l2, . . . , lM}, confidence threshold ε, smoothing
parameter K.

2. Define: LQ = {l(1), . . . , l(M)}, labeler id’s in descending
order of their quality estimates.

3. Initialize: ai1 ← 0, ci1 ← 0 for i = 1, . . . ,M . Initialize
Qit ← 0 for i = 1 . . .M, t = 1 . . . N

4. For t = 1, ..., N

(a) Compute quality estimates
Qit =

ait+K
cit+2K , i = 1, . . . ,M . Update LQ.

(b) St = {l(1), l(2), l(k)}, where k is chosen uniformly at
random from the set {3, . . .M}.

(c) For j = 3 . . .M, j &= k
i. Score(St) =

∑
i∈St

VitQit, lcandidate = l(j).

ii. If
|Score(St)|−Qlcandidate,t

|St|+1 < ε, then St ← St ∪ lcandidate.
Otherwise exit loop to stop adding new labelers to St.

(d) Get the weighted majority vote of the labelers VStt =
sign

(∑
i∈St

VitQit

)

(e) ∀i ∈ St where Vit = VStt, ait ← ait + 1
(f) ∀i ∈ St, cit ← cit + 1

5. End

to label this example. We then check whether this labeler
could potentially either change the weighted majority vote if
his vote were included, or if his vote could bring us into the
regime of uncertainty where the Score(St) is close to zero,
and the vote is approximately a tie. We check this before we
pay for this labeler’s vote, by temporarily assigning him a
vote that is opposite to the current subcrowd’s majority. The
criteria for adding the candidate labeler to St is defined as:

|Score(St)|−Qlcandidate,t

|St|+ 1
< ε (2)

where ε controls the level of uncertainty we are willing to
permit, 0 < ε ≤ 1. If (2) is true, the candidate labeler is
added to St and we get (pay for) this labeler’s vote for xt. We
then recompute Score(St) and follow the same steps for the
next-highest-quality candidate from the pool of unselected
labelers. If the candidate labeler is not added to St, we are
done adding labelers for example t, and assign the weighted
majority vote as the predicted label of this example. We then
proceed to label the next example in the collection. Pseu-
docode for CrowdSense is given in Algorithm 1.

Datasets and Baselines
We conducted experiments on four datasets that model a
crowd with different characteristics. In particular, the first
dataset is a real world collection of movie ratings from hu-
mans, the second dataset is the decisions of software agents
on prediction tasks, and the remaining two datasets are the
classification outputs of supervised machine learning algo-
rithms.

MovieLens is a movie recommendation dataset of user
ratings on a collection of movies, and the goal is to find
the majority vote of these reviewers. This is a real world
dataset with humans as labelers. The dataset is originally
very sparse, meaning that only a small subset of users have
rated each movie. We compiled a smaller subset of this
dataset where each movie is rated by each user in the subset,
to enable comparative experiments. We mapped the orig-
inal rating scale of [0-5] to votes of {-1,1} by using 2.5
as the decision boundary. ChemIR is a dataset of chemical
patent documents from the 2009 TREC Chemistry Track.
This track defines a “Prior Art Search” task, where the com-
petition is to develop algorithms that, for a given set of
patents, retrieve other patents that they consider relevant to
those patents. The labelers for this dataset can be considered
as software agents specifically designed for this particular
task. The evaluation criteria is based on whether there is an
overlap of the original citations of patents and the patents re-
trieved by the algorithm. The ChemIR dataset that we com-
piled is the complete list of citations of several chemistry
patents, and the {+1,-1} votes indicate whether or not an al-
gorithm has successfully retrieved a true citation of a patent.
Both MovieLens and ChemIR datasets have 11 labelers in
total. Reuters is a popular dataset of articles that appeared
on the Reuters newswire in 1987. We selected documents
from the money-fx category. The Reuters data is divided
into a “training set” and a “test set,” which is not the for-
mat we need to test our algorithms. We used the first half
of the training set (3,885 examples) to develop our label-
ers. Specifically, we trained several machine learning algo-
rithms on these data: AdaBoost, Naı̈ve Bayes, SVM, Deci-
sion Trees, and Logistic Regression. Each algorithm with its
specific parameter setting was used to generate one labeler,
and there were 10 labelers generated this way. Additionally,
we selected 3 features of the dataset as labelers, for a total of
13 labelers. We combined the other half of the training set
with the test set, which provided 6,904 total examples over
which we used to measure the performance of CrowdSense
and the baselines. The same simulation of a crowd that we
conducted for the Reuters dataset was also used for the Adult
dataset from the UCI Machine Learning Repository. Both of
these datasets use well known machine learning algorithms
as their labelers.

We compared CrowdSense with several baselines: (a) the
accuracy of the average labeler, represented as the mean
accuracy of the individual labelers, (b) the accuracy of the
overall best labeler in hindsight, and (c) the algorithm that
selects just over half the labelers (i.e. *11/2+ = 6 for
ChemIR and MovieLens, *13/2+ = 7 for Reuters and
Adult) uniformly at random, which combines the votes of
labelers with no quality assessment using a majority vote.
We also compare CrowdSense against IEThresh (Donmez
et al., 2009). IEThresh builds upon Interval Estimation (IE)
learning, and estimates an upper confidence interval UI for
the mean reward for an action, which is a technique used
in reinforcement learning. In IEThresh, an action refers to
asking a labeler to vote on an item, and a reward represents
the labeler’s agreement with the majority vote. IEThresh up-
dates the UI scores of the labelers after observing new votes,
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Figure 1: Tradeoff curves, averaged over 100 runs. The x-axis is the total number of votes (the total cost) used by the algorithm
to label the entire dataset. The y-axis indicates the accuracy on the full dataset.

and given {UI1, UI2, . . . , UIk} for the labelers, IEThresh
selects all labelers with UIj̃ > ε × maxj̃(UIj̃). The ε pa-
rameter in both CrowdSense and IEThresh algorithms tunes
the size of the subset of labelers selected for voting, so we
report results for a range of ε values. Note that tuning ε ex-
hibits opposite behavior in CrowdSense and IEThresh; in-
creasing ε relaxes CrowdSense’s selection criteria to ask for
votes from more labelers, whereas larger ε causes IEThresh
to have a more strict selection policy.

It is worth noting that we do not assess the performance of
the algorithms on separate test splits of the datasets. Rather,
we make a single pass over the entire dataset and select
labelers for each example based on the quality estimates
available at that particular time. This is different than how
IEThresh was evaluated in (Donmez, Carbonell, and Schnei-
der 2009), where the labelers’ qualities were first learned
on a training set, and then the single best labeler with the
highest accuracy was selected to label all the examples in a
separate test set. In order to have a valid comparative assess-
ment of the iterative nature of quality estimation, the ma-
jority vote for each example in IEThresh is computed based
on the majority vote of the selected sub-crowd, similar to
CrowdSense.

Overall Performance
We compare CrowdSense with the baselines to demonstrate
its ability to accurately approximate the crowd’s vote. Accu-
racy is calculated as the proportion of examples where the
algorithm agreed with the majority vote of the entire crowd.
Figure 1 indicates that uniformly across different values of
ε, CrowdSense consistently achieved the highest accuracy
against the baselines, indicating that CrowdSense uses any
fixed budget more effectively than the baselines, including
IEThresh. Generally, the quality estimates of CrowdSense
better reflect the true accuracy of the members of the crowd
and therefore, it can identify and pick a more representa-
tive subset of the crowd. The other baselines that we con-
sidered did not achieve the same level of performance as
CrowdSense and IEThresh. On the subplots in Figure 1, the
accuracy of the best labeler in hindsight (baseline (b)) is in-
dicated as a straight line. Note that the accuracy of the best
labeler is computed separately as a constant. Baselines (a)
and (c), which are the average labeler and the unweighted
random labelers, achieved performance beneath that of the
best labeler. For the MovieLens dataset, the values for these

baselines are 74.05% and 83.69% respectively; for ChemIR
these values are 68.71% and 73.13%, for Reuters, the val-
ues are 84.84% and 95.25%, and for Adult they are 83.94%
and 95.03%. The results demonstrate that asking for labels
from labelers at random may yield poor performance for rep-
resenting the majority vote, highlighting the importance of
making informed decisions for selecting the representative
members of the crowd. Asking the best and average labeler
were also not effective approximators of the majority vote.

Effect of the parameters
As we discussed earlier, the ε parameter is a trade-off be-
tween the total cost that we are willing to spend and the ac-
curacy that we would like to achieve. We compared the run-
ning accuracy of CrowdSense at various ε values, and in all
datasets, the results consistently demonstrated that increas-
ing epsilon leads to increased accuracy, at a higher cost.

The K parameter helps with both exploration at early
stages and exploitation at later stages. In terms of explo-
ration, K ensures that labelers who have seen fewer exam-
ples (smaller cit) are not considered more valuable than la-
belers who have seen many examples. Additionally, since
the quality estimates are all approximately equal in early
stages due to the effect of K, the weighted majority vote be-
comes almost a simple majority vote. This prevents Crowd-
Sense from trusting any labeler too much early on.

Increasing K also makes the quality estimates more sta-
ble, which helps to permit exploration. The quality estimates
in the first few iterations that the labeler is involved in are
not often accurate, and not very stable, and as a result, the
algorithm’s accuracy could be sensitive to what happens in
the early iterations. Consider two equally accurate labelers.
After each has labeled many items, it would have been clear
that they are equal. If one labeler coincidentally makes more
mistakes in the earlier iterations than the other, then the mis-
takes at these early iterations will constitute a larger fraction
of the votes from that labeler (ait/cit will be small, and cit
will be small). Because of this, it is possible that this labeler
will not be chosen as often as the other one, and it may not
be possible to recover from the bias caused by the mistakes
in the early stages. One of the purposes of K is to help re-
duce this bias – both labelers will be assigned almost equal
quality estimates in early stages.

Since the quality estimates are all approximately equal in
early stages, the weighted majority vote becomes almost a
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simple majority vote. This prevents CrowdSense from trust-
ing any labeler too much early on. Having the Qit’s be al-
most equal also increases the chance to put CrowdSense into
the “regime of uncertainty” where it requests more votes per
example, allowing it to explore the labelers more. The im-
pact of K on the quality estimates gradually reduces as more
votes are observed, and exploitation-based selection of la-
belers will then start favoring labelers that are indeed higher
quality than others, and trusting them more in the weighted
majority vote.

Specific Choices for Exploration and
Exploitation in CrowdSense

The algorithm template underlying CrowdSense has three
components that can be instantiated in different ways: (1)
the composition of the initial seed set of labelers (step 4(b)
in the pseudocode), (2) how subsequent labelers are added
to the set (step 4(c)), and (3) the weighting scheme, which
affects the selection of the initial labeler set, the way the
additional labelers are incorporated, as well as the strategy
for combining the votes of the labelers (steps 4(b)(c)(d)).

We tested the effect of the first component by running sep-
arate experiments that initialized the labeler set with three
(3Q), one (1Q) and no (0Q) labelers that had the highest
quality estimates, where for the latter two, additional label-
ers were selected at random to complete the set of three ini-
tial labelers. 3Q removes the exploration capability of the
initial set whereas the latter two make limited use of the
quality estimates. Figure 2 shows an example for a specific
choice of ε, where all three variants have lower predictive
performance than CrowdSense.

We experimented with the second component by adding
labelers randomly rather than in order of their qualities. In
this case, exploitation is limited, and the algorithm again
tends not to perform as well (as shown in Figure 2 for the
curve marked “Component 2”).

To test the effect of the weighting scheme in the third
component, we removed the use of weights from the algo-
rithm. This corresponds to selecting the initial seed of label-
ers and the additional labelers at random without using their
quality estimates. In addition, when combining the votes of
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Figure 2: Performance of CrowdSense and several of its
variants on the Movielens dataset, averaged over 100 runs.
The x-axis is the total number of votes (the total cost), and
the y-axis is the running accuracy on those examples.

the individual labelers, we use majority voting, rather than a
weighted majority vote. This approach performed dramati-
cally worse than the rest of the variants in Figure 2, demon-
strating the significance of using quality estimates for labeler
selection and the calculation of weighted vote.

Probabilistic Algorithms for Approximating
the Crowd

CrowdSense has four important properties: 1) It takes label-
ers’ votes into account even if they are right only half of
the time. This property is especially beneficial for approxi-
mating small crowds, 2) It trusts “better” labelers more, and
places higher emphasis on their votes, 3) Its decision rule is
derived to be similar to boosting, and 4) Bayesian shrinkage
of the quality estimates. These estimates provide the means
for exploration of labelers in the earlier stages, and exploita-
tion in later stages.

The fact that the majority vote determines the ground truth
indicates a complicated relationship – a joint probability dis-
tribution – between the labelers’ accuracies and the major-
ity vote. CrowdSense makes an implicit assumption on the
joint probability distribution through its boosting-style up-
date. We believe it is possible to further improve its accu-
racy by making an explicit assumption on the joint proba-
bility distribution. To that effect, we propose two variations
of CrowdSense that directly incorporate the joint probabil-
ity distributions of the labelers under different assumptions.
The first variation (CrowdSense.Ind) makes a statistical in-
dependence assumption of the labelers. That is, we will as-
sume that the majority vote is independent of the votes that
we have seen so far. The second variation (CrowdSense.Bin)
makes a different probabilistic assumption, which is a lower
bound on how often the current subcrowd agrees with the
majority vote. This leads to a different voting scheme which
is based on the binomial distribution of the votes. This
also replaces the boosting-style decision rule in property 3.
CrowdSense.Bin does not include the current subcrowd’s
weights in the vote, but the labeler selection criteria still
favors labelers with high accuracy. Consequently, this ap-
proach covers the second property to some extent, but not as
strong as the original CrowdSense.

CrowdSense.Ind
CrowdSense.Ind makes an assumption, namely that the
quality of the individual labelers gives much more informa-
tion than the count of votes received so far. In other words,
that a labeler who is right 90% of the time and votes +1
should be counted more than a handful of mediocre labelers
who vote -1. This assumption is approximately true when
there a large number of labelers, but is not true for a small
number of labelers. For instance, consider a case where we
have received three votes so far: [+1,-1,-1], from labelers
with qualities .8, .5, and .5 respectively. Let’s say that there
are a total of 500 labelers. The evidence suggests that the
majority vote will be +1, in accordance with the high qual-
ity voter, and discounting the low-quality labelers. This is
the type of assumption CrowdSense.Ind makes. Instead, if
there were only 5 labelers total, evidence suggests that the
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majority vote might be -1, since the low quality labelers still
contribute to the majority vote, and only one more -1 vote is
now needed to get a majority.

Let Vi denote the vote of labeler i on a particular example,
and Pi denote the probability that the labeler will agree with
the crowd’s majority vote. Consider that two labelers have
voted 1 and -1, and we want to evaluate the probability that
the majority vote is 1. Then, from Bayes Rule, we have

P (y = 1|V1 = 1, V2 = −1) = P (V1 = 1, V2 = −1, y = 1)

P (V1 = 1, V2 = −1)

and after some derivations, we obtain

P (y = 1|V1 = 1, V2 = −1)

=
P1(1− P2)P (y = 1)

P (y = 1)P1(1− P2) + P (y = −1)(1− P1)P2

where P (y = 1) and P (y = −1) are the ratios of the
crowd’s approximated votes of 1 and -1 on the examples
voted so far, respectively.

To expand this more generally to arbitrary size subsets of
crowds, we define the following notation: Let V bin

i denote
the mapping of labeler i’s vote from {−1, 1} to {0, 1}, i.e.
V bin
i = (Vi+1)/2. Using the following notation for the joint

probabilities of agreement and disagreement with the crowd:

ψi = P
V bin
i

i (1− Pi)
1−V bin

i P(agreement|V bin)

θi = (1− Pi)
V bin
i P

1−V bin
i

i P(disagreement|V bin)

the likelihood of the majority vote y being 1 is estimated by
the following conditional probability:

f(xt|votes) = P (y = 1| V1, V2, . . . , Vi︸ ︷︷ ︸
votes of labelers in S

)

=

(∏
l∈S ψl

)
P+(∏

l∈S ψl

)
P+ +

(∏
l∈S θl

)
(1− P+)

=
1

1 +

(∏
l∈S θl

)
(1− P+)(∏

l∈S ψl

)
P+

(3)

where probabilities higher than 0.5 indicate a majority vote
estimate of 1, and −1 otherwise. Further, the more the prob-
ability in (3) diverges from 0.5, the more we are confident of
the current approximation of the crowd based on the votes
seen so far. As in CrowdSense, the decision of whether
or not to get a vote from an additional labeler depends on
whether his vote could bring us to the regime of uncertainty.
This corresponds to hypothetically getting a -1 vote when
P (y = 1|votes) > 0.5, and getting a 1 vote otherwise.
Defining

ψcandidate =

{
1− Pcandidate f(xt|votes) > 0.5
Pcandidate otherwise

θcandidate =

{
Pcandidate f(xt|votes) > 0.5
1− Pcandidate otherwise

and expanding (3) to include the new hypothetical vote from
the candidate labeler, we get

f(xt|votes, Vcandidate) =
1

1 +

(∏
l∈S θl

)
θcandidate (1− P+)(∏

l∈S ψl

)
ψcandidateP+

.

(4)
The decision as to whether get a new vote depends on the
values of Eq (3) and (4). If we are sufficiently confident of
the current majority vote to the point where the next best
labeler we have could not change our view, or is not in the
regime of uncertainty, then we simply make a decision and
do not call any more votes.

CrowdSense.Bin
The statistical independence assumption that we made
for CrowdSense.Ind is almost valid for sufficiently large
crowds, but it does not hold when the crowd is small. For
CrowdSense.Bin, we modify our treatment of the joint prob-
ability distribution by estimating a lower bound on how of-
ten the sub-crowd St agrees with the crowd’s majority vote.

Consider again the scenario where there are 5 labelers in
the crowd, and we already have observed [+1, -1, -1] votes
from three labelers. The simple majority of the crowd would
be determined by 3 votes in agreement, and we already have
two votes of -1. So the problem becomes estimating the like-
lihood of getting one more vote of -1 from the two labelers
that have not voted yet, which is sufficient to determine the
simple majority vote. If the voters are independent, this can
be determined from a computation on the binomial distribu-
tion. Let Nneeded denote the number of votes needed for a
simple majority and let Nunvoted denote the number of label-
ers that have not yet voted. (In the example above with 5 la-
belers, Nneeded = 1 and Nunvoted = 2). In order to find a lower
bound, we consider what happens if the remaining labelers
have the worst possible accuracy, P=0.5. We then define the
score using the probability of getting enough votes from the
remaining crowd that agree with the current majority vote:

Score = PBin(Nunvoted,0.5)(X ≥ Nneeded)− 0.5

=

[
Nunvoted∑

X=Nneeded

Bin(X,Nunvoted, 0.5)

]
− 0.5, (5)

where Bin(X,Nunvoted, 0.5) is the Xth entry in the Bino-
mial distribution with parameters Nunvoted and probability of
success of 0.5. In other words, this score represents a lower
bound on how confident we are that the breakdown of votes
that we have observed so far is consistent with the major-
ity vote. The score (5) is always nonnegative; therefore, the
decision to ask for a new vote can then be tied to our level
of confidence, and if it drops below a certain threshold ε,
we can ask for the vote of the highest quality labeler that
has not voted yet. The algorithm stops asking for additional
votes once we are sufficiently confident that the subset of la-
bels that we have observed is a good approximation of the
crowd’s vote.

When we compared CrowdSense.Ind and Crowd-
Sense.Bin with CrowdSense, CrowdSense achieved better
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performance than its probabilistic variants on most datasets.
However, on a larger MovieLens dataset that we com-
piled (with 51 labelers), CrowdSense.Bin was the best per-
former. In another dataset that we synthetically generated
with 101 labelers, CrowdSense.Ind yielded accuracy that is
marginally better than CrowdSense.

Conclusions
Our goal is to “approximate the crowd,” that is, to estimate
the crowd’s majority vote by asking only certain members
of it to vote. We discussed exploration/exploitation in this
context, specifically, exploration for estimating the qualities
of the labelers, and exploitation (that is, repeatedly using the
best labelers) for obtaining a good estimate of the crowd’s
majority vote. We presented a modular outline that Crowd-
Sense follows, which is that a small pool of labelers vote
initially, then labelers are added incrementally until the esti-
mate of the majority is sufficiently certain, then a weighted
majority vote is taken as the overall prediction. We discussed
specific choices within this modular outline, the most impor-
tant one being the choice of ε, which determines the overall
budget for labeling the entire dataset. We compared our re-
sults to several baselines, indicating that CrowdSense, and
the overall exploration/exploitation ideas behind it, can be
useful for approximating the crowd.

We then presented two variations of CrowdSense, namely
CrowdSense.Ind, which is based on an independence as-
sumption, and CrowdSense.Bin, where calculations are
based on the binomial distribution. These two algorithms
make probabilistic assumptions or bounds on the joint dis-
tribution of the votes and the labels.
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