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Abstract
The field of robot Learning from Demonstration (LfD) makes
use of several input modalities for demonstrations (teleoper-
ation, kinesthetic teaching, marker- and vision-based motion
tracking). In this paper we present two experiments aimed at
identifying and overcoming challenges associated with using
teleoperation as an input modality for LfD. Our first exper-
iment compares kinesthetic teaching and teleoperation and
highlights some inherent problems associated with teleopera-
tion; specifically uncomfortable user interactions and inaccu-
rate robot demonstrations. Our second experiment is focused
on overcoming these problems and designing the teleopera-
tion interaction to be more suitable for LfD. In previous work
we have proposed a novel demonstration strategy using the
concept of keyframes, where demonstrations are in the form
of a discrete set of robot configurations (Akgun et al. 2012b).
Keyframes can be naturally combined with continuous trajec-
tory demonstrations to generate a hybrid strategy. We perform
user studies to evaluate each of these demonstration strategies
individually and show that keyframes are intuitive to the users
and are particularly useful in providing noise-free demonstra-
tions. We find that users prefer the hybrid strategy best for
demonstrating tasks to a robot by teleoperation.

Introduction
In real world scenarios, it is not possible to pre-program
robots with all the tasks they might need throughout their
operational life. Learning from demonstration (LfD) is a
paradigm in which robots are programmed by demonstrat-
ing successful executions of a task (Argall et al. 2009). We
are interested in developing LfD systems that are suitable to
be used by everyday people. There has been much work re-
lated to LfD algorithms and representations but usability of
these with users who are unfamiliar with robotics and ma-
chine learning has not been explored in depth. We aim to
identify the challenges that these methods pose to the user
and propose solutions.

There are various means to show such demonstrations. We
are particularly interested in kinesthetic teaching, in which
the users manually guide the robot and teleoperation, in
which they use a teleoperation device (see Figure 1). Both of
these are desirable since they overcome the so-called “cor-
respondence problem” and the resulting demonstrations are
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(a) Kinesthetic Teaching (b) Teleoperation

Figure 1: Input modalities of interest for demonstrations

restricted to the kinematic limits (e.g. workspace, joint lim-
its) of the robot. Moreover, extra hardware/instrumentation,
such as motion capture devices, is not necessary.

We first conduct a user study comparing kinesthetic teach-
ing and teleoperation, to understand how natural and com-
fortable these input modalities are to different users and how
they compare with each other. We find that people are par-
tial towards kinesthetic interaction due to the small learning
curve, ease of use and accuracy of demonstrations. However,
teleoperation was still viewed positively.

Kinesthetic teaching requires that the robot and the user
be co-located and that the user can manipulate the robot.
This might not be possible if the robot is distant, the robot or
the environment is dangerous or the scale of the robot does
not permit it. This is when teleoperation becomes important,
and leads to our follow-up experiment aimed at improving a
teleoperation teaching interaction.

In previous work (Akgun et al. 2012b) we have pro-
posed two novel interaction strategies to improve LfD, (1)
Keyframe demonstrations, in which only the important robot
configurations to complete the task are shown in sequence.
(2) Hybrid demonstrations, the combination of trajectories
and keyframes, allowing users to provide both keyframe and
trajectory information in a single demonstration. The intu-
ition is that keyframes are good for gross motions whereas
trajectories are good for non-linear and complex portions of
a task. In this work we show the particular benefit of these
interaction strategies in a teleoperation setting.

Our second experiment studies the effect of different
demonstration strategies on the LfD interaction, finding that
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people prefer keyframes-only over a trajectory-only interac-
tion, and prefer the hybrid strategy over both.

We first describe, in Section , some work related to robot
teleoperation and its application to LfD scenarios. We then
detail the platform and tasks used in our experiments. In
Section , we present the design and results of our first ex-
periment on comparing kinesthetic and teleoperation in-
put modalities. We then introduce of the keyframe-based
demonstration strategies in Section and their evaluation in
Section .

Related Work
In LfD, demonstrations are often represented as arm joint
trajectories and/or end-effector path (Calinon and Billard
2009). Some also consider the position of the end-effector
with respect to the target object of the skill. Typically start
and end points of a demonstration are explicitly demarcated
by the teacher. Most studies subsample the recorded data
with a fixed rate (Amor et al. 2009). Demonstrations are of-
ten time warped such that a frame-by-frame correspondence
can be established between multiple demonstrations.

Keyframes have been used extensively in the computer
animation literature (Parent 2002). The animator creates im-
portant frames in a scene and the software interpolates be-
tween them. In the LfD setting, an earlier work (Miyamoto
et al. 1996) utilizes via-points (similar to keyframes) which
are extracted from continuous teacher demonstrations and
updated to achieve the demonstrated skill. A recent approach
is to record keyframes and use them to learn a constraint
manifold for the state space in a reinforcement learning set-
ting (Bitzer, Howard, and Vijayakumar 2010). In this paper
we consider both trajectory and keyframe representations.

Human-robot interaction (HRI) has not been a focus of
prior work on kinesthetic teaching, but there are a few ex-
amples. In (Weiss et al. 2009), kinesthetic teaching is em-
bedded within a dialog system that lets the user start/end
demonstrations and trigger reproductions of the learned skill
with speech.

A modification to the kinesthetic teaching interface is
kinesthetic correction (Calinon and Billard 2007a; 2007b),
where the teacher corrects aspects of a learned skill in an in-
cremental learning interaction by using a subset of joints in
subsequent demonstrations.

The teleoperation concept has been around for more
than 50 years, with the focus on dealing with delays, in-
formation loss, instabilities, operator noise, telepresence
etc. (Hokayem and Spong 2006). However, there has also
been some interest in LfD with teleoperation. An earlier
work, which describes a skill learning method with HMMs
for a manipulator, is presented in (Yang, Xu, and Chen
1993). Some other related work include (Peters and Camp-
bell 2003) in which a space humanoid learns a “reach-
grasp-release-recract” skill, (Lieberman and Breazeal 2004),
which extends trajectory segmentation and time alignment
from demonstrations obtained via a telemetry suit and
(Howard and Park 2007), which injects haptic information to
guide the user for better demonstrations. Whole body grasps
for a simulated humanoid is learned in (Hsiao 2006) by
forming template grasps demonstrations via “keyframes”,

(a) Box Close (b) Scoop and Pour

(c) Stacking (d) Cup and Saucer

Figure 2: Tasks used in our experiments

which are the start/end points of a demonstration and the
points of contact and loosing contact with the objects.

These methods do not explicitly concentrate on the user.
Some of the existing usability studies for teleoperation, such
as (Elton and Wayne 2011) which compares a novel hy-
draulic manipulator control interface with the traditional
joint-by-joint control, concentrate on making task comple-
tion better/more efficient but do not consider learning.

Platform
We use the PR2 from Willow Garage and Sensable Phan-
tom Omni R© haptic device in our experiments. PR2’s right
arm is used which has 7 degrees-of-freedom (DOFs) and is
passively gravity compensated. The teleoperation device has
6-DOFs, which is mapped to the end-effector of the robot.
Force-feedback is disabled to eliminate lag and instabilities.

Experimental Tasks
We have a total of four main tasks for users to teach the
robot, shown in Figure 2, all of which were designed such
that they are achievable with all the interaction modalities
and demonstration strategies. The tasks involve the use of a
single arm of the robot.

• Box Close: The goal of this task is to move the robot arm
such that it closes the lid of an open box.

• Scoop/Pour: A spoon is placed in the robot’s gripper and
the goal is to transfer as many coffee beans as possible
from a big bowl to a nearby smaller bowl.

• Stacking: The goal of this task is to move the robot arm
to grip a relatively slim block with a square cross-section
and then place it on top of another similar block.

• Cup/Saucer: A hemispherical block is placed on another
relatively thin rectangular block from its circular side. The
top block falls if the arm moves too fast or the orientation

3



deviates. The aim is to transfer these blocks into a rectan-
gular region by avoiding an obstacle.

We also have two practice tasks to help familiarize the
user with the robot. One is called “Orient and Place”. In this
task, the robot holds an oblong prism and the goal is to make
this fit within a gap of two blocks placed on the table. The
gap is placed such that the user needs to both manipulate
the position and orientation of the robot’s end-effector. The
other practice task is “Peg in Hole”. In this task, a vertical
slim block should be grasped, inserted through a horizontal
hole, and then be placed back near its original position.

Experiment 1: Input Modalities
In our first experiment, we compare Kinesthetic Teaching
(KT) and Teleoperation (TO) in an LfD setting with naı̈ve
users. The users are instructed to teach the PR2 robot a set
of tasks such that it is able to efficiently execute them with-
out any human intervention. The experiment is designed to
provide insight into the characteristics of these two modal-
ities and highlight the user’s comfort and the robot’s task
accuracy in using these.

In kinesthetic teaching (KT), the user interacts with the
robot by physically manipulating its end-effectors, as shown
in Figure 1(a) and in teleoperation (TO), the user, with the
help of the Phantom Omni haptic device, controls the robot’s
end effector from a distance. This interaction is shown in
Figure 1(b). In order to demonstrate, the user provides a
continuous trajectory of a task. We now briefly highlight the
method used by the robot to learn them, followed by the ex-
perimental design and the results obtained.

LfD Method
When the user is demonstrating a particular task, the robot
is recording every motion that the user exhibits. The robot,
given a set of such task demonstrations, is required to pro-
cess them and learn a generalized model of the task. In or-
der to learn such a model, we choose a supervised learning
approach based on Gaussian Mixture Models (GMMs). It
has been previously used in similar LfD scenarios (Calinon,
Guenter, and Billard 2007) and found to be very useful.

We choose GMMs as they can be learned with a small
number of demonstrations, can be trained in interaction time
and are adept at learning cyclic tasks as well as point to
point tasks. In this method, the demonstrations are given to
the learner in the form of time-stamped end-effector poses.
These are first time-warped to ensure that each of them has
a similar time scale. After this pre-processing step, k-means
algorithm is run to cluster the data. The cluster means and
covariances are used as the initial values for the Expectation-
Maximization (EM) algorithm, which learns a GMM from
the data. In our study, we used a constant number of clus-
ters that was derived empirically (12 for Box Close and 18
for Scoop/Pour). The outputs of GMM are sub-population
means and covariances which constitutes the model of the
task. Given a time vector as an input, Gaussian Mixture Re-
gression (GMR) is used on this model to extract a set of cor-
responding end-effector poses for the robot. These can then
be executed by the robot in order to reproduce the task.

Figure 3: Box and whisker plots of survey replies for Exper-
iment 1.

Experiment Design
To compare the KT and TO input modalities, we designed
a within-subjects experiment where every participant taught
two tasks, Box-Close and Scoop/Pour, to the robot in each of
the modalities. We had 9 participants, 5 females and 4 males,
all of whom were university students. Their ages were be-
tween 23 and 32 with a median of 25. None of the partici-
pants were experts in robotics or machine learning and none
of them had prior experience with either modality.

We now describe the experimental scenario and high-
light important aspects of the interaction. Each participant
is first introduced to the robot. Then, based on a counterbal-
anced order, one of the input modalities is described to them.
They have a short period of time to become familiar with
the input modality and the robot by performing the “Orient
and Place” task during the practice session. They are then
asked to demonstrate one of the two experiment tasks (also
counterbalanced). The user initiates the demonstration by
saying “New demonstration”, manipulates the arm to make
the robot perform the task and finishes by saying “End of
demonstration”. The robot then learns a model of the task
using GMMs and the user is given the option of review-
ing what the robot has learned. The user, based on their as-
sessment of robot performance, can decide to give another
demonstration or move on to the next task. After teaching
both tasks in the first modality, this protocol is repeated for
the second modality. After completing the two tasks in the
two input modalities, the user is asked to fill out a survey.

We asked the users to rate the ease of use, enjoyability and
accuracy of the method and the extent to which they thought
they would improve at using the modality, given time with a
set of 7-point Likert-scale survey questions. We also asked
an open-ended question to get the overall impression from
the user. The question was phrased as “If you bought this
robot to use at your house, which modality would you prefer
and why?”. In addition to the survey, we also compare KT
and TO with respect to the task-oriented metrics: duration of
demonstrations; and success of the learned task model.

Survey Results
We use Wilcoxon signed rank test to evaluate the survey (see
Figure 3). A summary of the results obtained is given below.

Kinesthetic teaching was rated easier: The median an-
swer to the ease-of-use-of-modality question was 6 for the
KT case, whereas it was 5 for the TO case. Note that the
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answers are significantly different from one another (p =
0.05). We expected this result due to the fact that people
are more accustomed to a kinesthetic type of teaching, i.e.,
it occurs naturally in human-human interactions. Moreover,
with this interaction method, the users have more control
over robot’s joints, can more easily adjust their perspective
to see more of the workspace and be more “situated”.

Users enjoyed both methods: Both methods were rated
highly on the enjoyability scale, thus we were unable to
show a significant difference in enjoyability.

Users tend to think that they can give more accurate
demonstrations with the kinesthetic teaching method: Al-
though this is not significant, we can see a trend (p = 0.077).

Majority preferred kinesthetic: According to the open-
ended question responses, a majority of participants (7 of
9) preferred KT over TO, with 6 users citing their reason
being its “ease” of use.

Task Metrics
In addition to the survey results we look at task-specific suc-
cess and demonstration durations. We define the end state of
the Box Close task (Open or Closed) and the amount of cof-
fee beans transferred for Scoop/Pour as the success metrics.

The Box Close task was completed successfully by al-
most all participants (except 1) using both modalities. In
the Scoop/Pour task demonstrations, participants transferred
more coffee beans with KT than TO (p < 0.05 in paired t-
test). However we note that this is not always reflected in the
learned tasks. There are two probable causes for this. First,
users may provide subtle but useful assistance (e.g. rocking
the spoon) during kinesthetic teaching since they are more
accustomed to this form of interaction. However, these are
smoothed out by learning. Second, an artifact of our ex-
periment, we did not control the distribution of the coffee
beans before executing the task. After a user demonstration,
a dent is left in the distribution and the learned task will try
to scoop from around the demonstrated region but will not
get as many coffee beans due to the dent.

The participants were faster at providing demonstrations
with Kinesthetic for Scoop/Pour (p < 0.05) than Teleoper-
ation. For Box Close, people were faster on average but not
significantly (p = 0.09). This is partly due to 2 outlier users
who took some time to realize they needed to move some
of the robot joints (shoulder joints) that were away from the
end effector in KT modality. Overall KT leads to more suc-
cessful demonstrations in a shorter amount of time.

We would like to highlight here that on observing the
demonstrations given by the participants using teleopera-
tion, we noticed the users frequently repositioning the robot
arm to complete the task accurately. These characteristics af-
fect the learned model as they are assumed to be part of the
task demonstration. The robot, in its learned model, tends to
replicate these extraneous movements. In real-world scenar-
ios we would like to overcome this shortcoming.

New Demonstration Strategies
The results of the previous experiment showed us that there
is a gap between Kinesthetic and Teleoperation in terms of

usability in an LfD setting, with kinesthetic being easier to
use and leading to more successful demonstrations. How-
ever, kinesthetic teaching requires that the robot and the user
be co-located and that the user can manipulate the robot.
This might not be possible if the robot is distant, the robot or
the environment is dangerous or the scale of the robot does
not permit it. Thus, we are interested in novel demonstra-
tion strategies aimed at improving a teleoperation teaching
interaction. We explore two new ways to demonstrate tasks:
keyframe demonstrations and hybrid demonstrations.

Keyframe Demonstrations
In Keyframe demonstrations (KF), the robot records only
specific configurations (i.e. keyframes or poses) that are
marked by the user. These configurations are stored as a se-
quential set of discrete end-effector configurations. In this
strategy, the interaction proceeds as follows, the user ini-
tiates the demonstration by saying “New demonstration”,
moves the arm to specific configurations while making the
robot perform the task and says “Record Pose” at each im-
portant point to record that configuration. The user finishes
the task by saying “End of demonstration.”

The resulting data from this interaction is a sparse trajec-
tory (as opposed to a continuous trajectory used in Experi-
ment 1). Given these sets of discrete points, the robot replays
the demonstration by sequentially splining through each of
them. An example of this is shown in Figure 4 under the ti-
tle “keyframes”. Importantly, we generate time information
for the sparse trajectory by taking into account the distance
between adjacent keyframes and assume a constant average
velocity between them. In our implementation, if the user
forgets to give keyframes for the start and/or the end posi-
tion of a task demonstration, they are added automatically.

Learning is slightly different than the trajectory case, but
the space is the same. Again k-means is run as the first
step, but now the number k is chosen to be the maximum
number of keyframes across all demonstrations provided
for a task. Then a GMM is learned in the same way as
the trajectory version. To generate the task, the GMM sub-
population means are traversed by splining between them.
We took such an approach since the GMM sub-population
means obtained from the keyframe version will be of differ-
ent nature than the ones obtained from the trajectory version.
With keyframes, it is more likely to be a transition between
two trajectory segments whereas with trajectories it is more
likely to be a mid-point of a trajectory segment (Calinon,
Guenter, and Billard 2007).

Hybrid Demonstrations
In hybrid demonstrations (HY), the user is allowed to give
both keyframes and trajectory segments in their demonstra-
tions (illustrated in Figure 4). Trajectory segments are the
same method used to provide demonstrations in Experi-
ment 1. Starting and ending a demonstration and recording
a keyframe is same as before. At any point, the user can say
“Start Trajectory” to initiate a trajectory demonstration and
“End Trajectory” to finish it. In the hybrid strategy, the user
has the ability to mix and combine keyframes and trajecto-
ries in any manner. For example, a task could involve a se-

5



Figure 4: Left and middle columns depict the trajectory and
keyframe strategies. All of the columns are possible demon-
strations with the hybrid strategy. The dots correspond to
start/end points or keyframes, the solid lines to user demon-
strated trajectories and the dashed lines to splines between
keyframes.

Figure 5: Results for choice questions on the survey for Ex-
periment 2. The p-values are obtained with the Friedman’s
test when comparing all methods and the Wilcoxon signed
rank test when comparing just TR and KF.

quence of 2 keyframes, 1 trajectory sequence and another 3
keyframes. For such a hybrid demonstration, the robot will
replay the trajectory portions and keyframes as before and
will transition between the two using splines.

We presented a method that can learn from hybrid demon-
strations in (Akgun et al. 2012a). The main idea is to extract
keyframes from trajectory segments (retaining velocity and
acceleration information) and cluster all the keyframes to-
gether. Then spline between cluster centroids to generate the
skill. The details are out-of-scope of this paper since the cur-
rent study was done prior to the aforementioned paper.

Experiment 2: Improving Teleoperation with
new Demonstration Strategies

In our second experiment we evaluate the various demon-
stration strategies described in the previous section in the
context of improving teleoperation. We have two novel
strategies (Keyframes(KF) and Hybrid(HY)), to comple-
ment the standard Trajectory demonstrations (TR). We hy-
pothesize that the new strategies will enhance the user inter-
action with the teleoperation device both in terms of “ease
of use” as well as providing better demonstrations. This ex-
periment is setup to first compare the individual utility of
keyframes and trajectory strategies and then compare them
both against the hybrid strategy.

Experiment Design
We conducted a within-groups study where every partici-
pant did all the 3 strategies and performed all 4 tasks with
potential task repetitions in the hybrid strategy. We had 12
participants, all male, from the campus community (differ-
ent from the ones who participated in Experiment 1). Their
ages were between 18 and 47 with a median of 21.5. Only
one user was a first year Ph.D. student in the Robotics pro-
gram. The others were not experts in any related field and
none of them had used a teleoperation device before.

We used all the tasks mentioned in Section with a few
differences. We made the Box Close task harder by requir-
ing users to make the lid “click” (by pushing it down) after
closing it. Since some of the tasks in this experiment require
grasping, the users had the ability to close and open the robot
gripper with verbal commands. Moreover, the robot makes
a sound after each verbal command for confirmation.

We note that some tasks can be more efficiently solved
using specific or a combination of strategies. For example,
the stacking task can be better suited for demonstrations us-
ing the keyframe strategy as it requires only a set of lin-
ear translations, whereas the Cup/Saucer task requires the
use of trajectories as they provide control over the speed of
the arm. Without speed control, the hemispherical block has
more tendency to fall down.

Each user demonstrates 2 tasks per strategy. The tasks dif-
fered across TR and KF. Then one task from TR and one
task from KF is chosen for HY (e.g. (TO: T1 T2)→(KF: T3
T4)→(HY: T1 T4) where Tx denotes one of the four experi-
mental tasks). We partially counterbalanced the strategy and
the task order. Half of the experiments started with TR and
the other half with KF. Note that there were (3×2)×12 = 72
interactions which are distributed evenly among the related
conditions (e.g. 24 per demo, 18 per task, 6 per demo and
task combination).

The experiment starts with the participant getting intro-
duced to the robot. Our experience from the previous study
indicated that users needed more practice with the teleopera-
tion modality. We added a short session of “free form” prac-
tice before beginning the experiment in which users moved
the arm around freely and were asked to put the end-effector
in various canonical configurations (e.g. horizontal, verti-
cal). They performed the Orient and Place task after this to
complete the practise session.

After the practice session, they are introduced to one of
the strategies (either KF or TR, picked from a counterbal-
anced order). They are familiarized with the strategy using
the Peg in Hole task. They are then asked to demonstrate two
of the four tasks (also counterbalanced) using the instruc-
tions specific to that strategy. Once completed, they repeat
the same procedure for the other modality using the remain-
ing two tasks. The user is then asked to complete a survey
based on these two strategies. They are introduced to the hy-
brid strategy afterwards and asked to demonstrate two of the
four tasks, one from each modality. Then, the user completes
the last survey with questions on the hybrid strategy.

Using data gathered from the above protocol, we com-
pare the three demonstration strategies based on the survey
results (Likert scale questions and open-ended responses)
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as well as characterizations of the demonstrations data pro-
vided with the different strategies.

Survey Results for Keyframe, Trajectory, and
Hybrid
In Figure 5, we present the results of our survey questions.1
None of the replies are statistically significant between the
strategies, so we cannot draw any differential conclusions.
There was positive bias in people’s answers across all the
strategies. For example, all of them were rated enjoyable,
with medians being close to the upper limit. This is in part
due to the novelty effect of interacting with a humanoid
robot, but the positive bias also indicates that our interaction
strategies were acceptable to the participants.

Participants subjectively reported that all of the interac-
tions were easy. However, this was not our observation. It is
difficult to manipulate a robot with a teleoperation device,
and people clearly struggled at times. Nevertheless, the per-
ceived ease is a positive for teleoperation and the interaction
methods and shows that the participants were comfortable
with the design and use of these strategies.

Users also thought that the methods were accurate. This
is interesting since the keyframe method does not seem intu-
itive at first, but it received very similar perceived accuracy
ratings compared with the more intuitive trajectory method.
The improvement results indicate that the users think that
they could do better with more experience, which is espe-
cially true for such a teleoperation scenario.

Open-ended Responses on Keyframe vs. Trajectory
In an open-ended response question, we asked people to di-
rectly compare keyframes and trajectories.

In their responses, 9 out of 12 users preferred keyframes
over the trajectories mode. Six of the participants who
chose keyframes mentioned giving more “efficient” demon-
strations and “not recording any mistakes”. Two of the
users admitted that they were not very proficient with the
teleoperation device and felt more comfortable with the
keyframe mode. All three users who chose trajectory mode
complained about “having to give many poses” with the
keyframe strategy; showing some concern for the loss of in-
formation with keyframes.

Analysis of Keyframe vs. Trajectory
Demonstrations
The average number of keyframes per task was 10.25 (σ =
3.77). Table 1 shows the mean and the standard deviation
of distance covered and the average time taken to com-
plete a task in each of the modes. There seems to be an in-
verse relationship between the time taken and the distance
covered. We first analyze these metrics between trajecto-
ries and keyframes. We see a significant difference for the
demonstration duration (t(23) = −2.67, p = 0.014) and
a significant difference for distance traveled by the robot

1Only two of the questions were asked for HY. This was to
shorten the survey to minimize fatigue. Also, since we did not
counterbalance HY, it is biased, people inherently improved and
became more accurate by the time they completed this.

Table 1: Mean (and standard deviation) of demonstration du-
ration (in seconds) and distance (in meters).

Trajectory Keyframes Hybrid
Dur. 50.69 (26.26) 72.45 (30.36) 59.84 (31.13)
Dist. 3.65 (1.46) 2.12 (0.26) 3.08 (1.3)

Figure 6: Comparison of Trajectory (Red) and Keyframe
Demonstrations (Blue). The left image shows a desirable tra-
jectory for closing the box lid.

end-effector between trajectories and keyframes (t(23) =
4.80, p < 10−4). The latter result is due to the fact that the
robot moves nearly in a straight line between keyframes but
trajectories include the unnecessary motions of the user.

These results indicate that the participants spent more
time positioning the arm and thinking about the positions.
This in turn resulted in a good selection of keyframes as
the arm completed the task by traversing a smaller distance,
making it more efficient.

We would like to point out that the accuracy of the trajec-
tories as perceived by the participants and as obtained by the
quantitative measures can be misleading as the participants
were more interested in task completion rather than provid-
ing clean and noise free demonstrations. The trajectories had
hand jitter and unnecessary motions that would be very hard
to learn from. However, on reviewing the demonstrations ob-
tained in the keyframe mode, we find that they were noise
free (i.e. little or no unnecessary keyframes) which is much
better suited for input to a learning algorithm. This attribute
is highlighted in Figure 6, showing an example keyframe
and trajectory demonstration of the Box Close task.

Additionally some tasks were hard to perform using the
keyframe mode. For example, the Scoop/Pour task and the
Cup/Saucer required fine control as well as speed control of
the arm. We can therefore say that the keyframe mode was
not sufficient to solve all the tasks efficiently.

Survey and Open-ended Responses on Hybrid
mode
On comparing hybrid with the other two techniques, the re-
sults were encouraging. Figure 5 shows that hybrid is rated
easy and enjoyable. People not only thought it to be a valu-
able addition to the interaction modes, many participants
were able to figure out efficient ways to combine keyframes
and trajectories. The last column of figure 5 is people’s re-
sponse to questions asking them to rate how much they pre-
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fer the HY method over the TR and KF. People were positive
towards the hybrid mode with a median of 5 for HY vs TR
and median of 6 for HY vs KF and all users were at least
neutral (4) towards HY.

Our second open choice survey question was designed to
compare the hybrid mode with the other two modes and pro-
vide reasons for their choices. 11 of the participants thought
hybrid was a valuable addition and they preferred it over
keyframes and trajectory modes. We would like to highlight
two characteristics mentioned by the participants in the sur-
vey question. 6 of the participants preferred the Hybrid mode
due to the efficiency of the interaction and 5 of the partici-
pants highlighted the ability for precise control. Specifically
several mentioned how it is easier to demonstrate gross mo-
tions using keyframes and fine motions using trajectories.
One user mentioned “a combination keyframes and trajec-
tories” would be a valuable addition before being informed
about the hybrid strategy.

Analysis of Hybrid mode Demonstrations
In our final analysis of the hybrid strategy, we highlight
some of the choices the participants made, specifically how
they choose keyframes and trajectories depending on the
type of task. We observed that the keyframe mode was pri-
marily used for gross motions from location A to B, for lin-
ear motions or when only the end point mattered. The trajec-
tory mode was primarily used when the task required non-
linear motions or fine control over the speed. An example
scoop and pour demonstration can be seen in figure 7. It can
be seen that scooping and pouring is done with trajectories
and going from one bowl to the other with keyframes.

We analyze the choices of the users in the hybrid mode
for specific tasks.
• In the Cup/Saucer task, 5 out of 6 participants that did this

task with hybrid used the trajectory mode to move the cup
because it gave them more control over the speed.

• In the Scoop/Pour task, 5/6 used trajectory for scooping,
2/6 for transferring, and 5/6 for pouring.

• In the Close the Lid task, 3/6 users moved under the lid
with the keyframe method and all of them used trajec-
tory mode to close the lid. 1 of the users then used the
keyframe method to push the lid to its place.

• In the Stack the Block task, 4 people used keyframes to
move to the first block, 2 to go to the next and 3 to stack.
Among the users, one of them did this task with only
keyframes, which is arguably the best option.

In general, we observed that people tried to take advantage
of keyframes and trajectories wherever appropriate. Partic-
ipants show a trend of choosing trajectory for fine control
and keyframes for gross motion. We argue that with more
practice, users can develop even better strategies to more ef-
ficiently achieve the tasks with the hybrid strategy.

Discussion
Our first experiment showed that users preferred kinesthetic
teaching over teleoperation as it is more intuitive and more
situated. They were still positive towards teleoperation. The

Figure 7: An example hybrid demonstration for the scoop
and pour task. Dashed lines represent keyframe portions and
continuous lines represent trajectory portions. Different col-
ors correspond to different demonstration segments.

users did not have any previous experience with the PR2
robot nor have they ever had any experience with a teleop-
eration device. This makes the already steep learning curve
of teleoperation even steeper. Taking this into account, we
were able to show that within the span of an hour, the users
were becoming better at using the teleoperation device and
were able to demonstrate the tasks relatively well.

Our introduction of keyframes and the hybrid strategy
made the LfD interaction with teleoperation more suitable.
Participants quickly figured out the concept of keyframes
and learned how and when to provide them. It took users a
couple iterations of looking at the robot replay their demon-
strations at most to understand the steps necessary to correct
the position of the keyframes. We can see that the time taken
for providing keyframes was greater than trajectories, shown
in Table 1. We attribute this to two reasons; one, the users
spent time to think where the poses must be given and to po-
sition the robot accurately and two, they spent time saying
the phrase “Record Pose” and waiting for the robot to con-
firm. This in fact supported our hypothesis that users were
ready to spend that extra time in providing keyframes be-
cause the robot demonstrations were less prone to noise.

Furthermore some participants, with continued interac-
tions, were able to gain insight into the properties of
keyframes as envisioned by us. Specifically, they were able
to understand that keyframes assume constant speed be-
tween them and therefore do not encode any velocity related
information. Two participants mentioned that “keyframes
are not good when speed control is required”. This only goes
to show how naive users using a few interactions were able
to grasp the details of the interaction strategies.

Given these characteristics of the participants in our study,
we highlight an aspect that was common to most of the users.
Our results indicate that the users concentrated more on task
completion rather than providing good demonstrations, al-
though they were encouraged to give smooth demonstra-
tions. They perceived the robot being accurate during the
replays, however their trajectories often contained noisy, un-
necessary and imprecise portions which makes learning dif-
ficult. We believe that this was an artifact of not showing the
participants the learned model. Thus, integrating this work
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with online learning is planned for future work.

Conclusions
We found that teleoperation is harder than kinesthetic teach-
ing for naı̈ve users of LfD. Users found the kinesthetic
modality to be more comfortable and better suited to provide
accurate demonstrations. We presented two novel demon-
stration strategies for teleoperation to make it easier to pro-
vide “good” demonstrations and compared these against the
traditional trajectory method. Our first strategy was based
on keyframes that helps to avoid errors and noise in trajec-
tories. Experiments with participants show that this interac-
tion strategy is much better suited for learning from teleop-
eration. Additionally, we combine the keyframes with con-
tinuous trajectories in a hybrid manner. This combination
provides a suitable and intuitive interface to efficiently solve
most tasks.

A link with a video of the key contributions
of our work can be found at http://www.cc.
gatech.edu/social-machines/video/
KLfD-Teleop-AAAI-FSS12.mov
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