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Abstract

Most learning from demonstration algorithms are im-
plemented with a certain set of variables that are known
to be important for the agent. The agent is hardcoded
to use those variables for learning the task (or a set
of parameters). In this work we try to understand the
causal structure of a demonstrated task in order to find:
which variables cause what other variables to change,
and which variables are independent from the others.
We used a realistic simulator to record a simple pick
and place task demonstration data, and recovered differ-
ent causal models using the data in Tetrad, a computer
program that searches for causal and statistical models.
Our findings show that it is possible to deduce irrele-
vant variables to a demonstrated task, using the recov-
ered causal structure.

Graphical models are powerful tools to express one’s be-
lief about the underlying model of the observed world (Rus-
sell and Norvig 2003; Pearl 2009). They can be used for
making probabilistic inference of the state variables, model-
ing the state transition of the world, monitoring variables,
and smoothing the earlier inference with the current evi-
dence in hindsight. All these tasks require a model of the
world. Given enough information, one can manually model
the world, or use causal structure recovery algorithms to
come up with different plausible models that may represent
the true model underlying the observed data.

This ability of interpreting the observed (raw) data, and
trying to find how the world works, can be useful for Learn-
ing from Demonstration for software agents and robots.
Learning from Demonstration can be defined very generally
as the subfield of computer science / robotics that aims to
create agents that can acquire different skills and tasks with-
out the necessity of coding. The teacher can be a human, as
well as another agent. There are several different approaches
for teaching a task to an agent: teaching with human rewards
and guidance (e.g. Interactive Reinforcement Learning), au-
tonomous learning using a reward function (e.g. Reinforce-
ment Learning), explicit approaches where the teacher pro-
vides the label for different states (e.g. Confidence Based
Autonomy), to name just a few (Argall et al. 2009).
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There are several challenges in Learning from Demon-
stration; for instance dealing with noisy or sometimes even
seemingly conflicting demonstrations depends on how well
the agent can generalize over the state space. Another chal-
lenge is learning the task as fast as possible, with the min-
imum information available. Cost/benefit based approaches
try to tackle this problem by assigning every extra informa-
tion required a cost, and by estimating the benefit that the
agent will get from getting that information. Modeling the
learning problem can also be hard. Most machine learning
techniques have several parameters that need to be tweaked
or learned, which adds another layer to the problem. In the
light of a given demonstration, understanding what is rele-
vant to the task is another problem. When it comes to imple-
mentation, most Learning from Demonstration techniques
are implemented in a way that the state vector of the agent
contains only relevant variables. Filtering out the unneces-
sary variables, i.e. feature selection, is generally done by the
researcher who implements the technique.

We believe that causal structure recovery can be helpful
for tackling the first and the last problems mentioned. If an
agent can understand the causal relationship between sev-
eral different variables, we may be able to prevent the agent
from over-fitting to a certain set of values of those variables.
Moreover, the strength of causation between observed vari-
ables can also help us filter out the unnecessary variables au-
tomatically. If we can filter out unnecessary variables, then
we may be able to shape (and re-shape) the state vector of
our agent throughout its mission.

In this paper we present a preliminary work where we col-
lected observed data, using a realistic simulator (Gazebo)
with a physics engine, for a simple pick and place task
demonstrated by a human teacher to a realistically simulated
service robot, PR2.

We used Robot Operating System' as our main frame-
work. Recorded data then was loaded to a causal structure
recovery software (Tetrad-IV)?, and different causal struc-
tures of the underlying world (i.e. the task demonstration)
were recovered. We show that: a) in a simple demonstra-
tion, this technique can be helpful to distinguish relevant
variables from irrelevant variables and b) as we add expert

"http://www.ros.org/wiki/
*http://www.phil.cmu.edu/projects/tetrad/
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Figure 1: Snapshots of the world during task demonstration.

knowledge into the causal structure search algorithms, re-
covered models get more useful.

The rest of the paper is organized as follows: Section 2
explains how we recorded our observed data. In Section 3
and 4 we present our findings using the data recorded and
the causal structure recovery software. Section 5 gives some
ideas that would be interesting to pursue in future work, and
finally Section 6 concludes the paper.

Experimental Setup

Observing the world accurately and obtaining data about,
for example, several different objects’ locations can be quite
challenging depending on the environment. To keep this first
step as simple as possible we gathered our observation data
from a realistic 3D simulator, Gazebo. In the world that we
have observed, there were two box-shaped tables, a coffee
cup, and a service robot, PR2. Box-shaped tables were static
objects that are fixed throughout the session. In this world,
an expert human teacher (first author of the paper) demon-
strated a simple pick and place task by teleoperating the
robot using the computer’s keyboard. The task was to pick
the coffee cup from the green table and place it on the blue
table. The teacher used only the robot’s right gripper. Ini-
tially the right gripper started from a home position and after
placing the cup on the table, the teacher returned the grip-
per back to somewhere near this initial position. We started
recording the data from the first move (i.e. home position of
the gripper) until the last move (i.e. back to home position)
of the demonstrator. This session included moving the right
arm to the coffee cup, opening the gripper, taking the grasp
position, closing the gripper, lifting the cup, bringing the cup
on the blue table, putting the cup on the table, opening the
gripper, moving the gripper away from the cup and taking
the gripper back to its home position. Some snapshots of the
world and the demonstration are shown in Fig. 1.

We recorded two kinds of data: data that was relevant
with the demonstration (cups position, end-effector’s posi-
tion, grippers’ state i.e. distance between fingers and the
pressure sensor data) and data that was not relevant with
the demonstration (both tables’ center of gravity locations).
Since those two points were static in the world, and there
was no data about the size of the boxes, they did not have
any informative value for the task. In fact, we could have
recorded just any random two (or more) values, however
since those two points had a semantic meaning (locations
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of the tables) it is plausible that they are in the task demon-
stration. Length of the demonstration was around 5 minutes
and all data was observed at a frequency of 2 Hz.

Experimental Results

Recorded data (625 sequential observations in total) were
saved to a csv file for causal structure recovery. For recover-
ing different causal structures, we used Tetrad, freely avail-
able software that creates, simulates data from, estimates,
tests, predicts with, and searches for causal and statistical
models. Our data was temporal (that is, every observation
belonged to a time slice), and for Tetrad to handle the tem-
poral data we had to copy every j+1th observation next to
every jth observation.

We tested the causal model search algorithm under three
conditions: with no additional expert knowledge, with only
temporal information added (i.e. the information that ¢ty —
t1); and with both temporal information added and the fact
that gripper position causes the gripper pressure to change
and the fact that the end-effector’s position causes the cof-
fee cup’s position to change (i.e. gripper_posgripper_effort
and endeffector_poscup_pos). The algorithm outputs a graph
where the nodes are variables and the edges are causal rela-
tions. The meanings of the edges are explained in detail in
the following subsections.

The PC Algorithm

The PC algorithm (Spirtes and Glymour 1991) is a pattern
search algorithm which assumes that:

e The underlying causal structure of the input data is
acyclic, and that no two variables are caused by the same
latent (unmeasured) variable.

e The input data set is either entirely continuous or entirely
discrete.

e If the data set is continuous (which is, in our case), the
causal relation between the two variables is linear, and
that the distribution of each variable is Normal.

e The sample is ideally i.i.d.
e No relationship between variables in the data is determin-
istic.
In the PC algorithm, one can interpret the output as fol-
lows:
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Figure 2: Results returned by the PC Algorithm.

e A directed edge X — Y means that X is deduced as a
direct cause of Y.

e An undirected edge between X and Y means that the algo-
rithm cannot tell if X causes Y or if Y causes X (in which
case additional information may resolve the issue).

e The absence of an edge between any pair of nodes means
they are independent.

The results of the search algorithm are shown in Fig. 2,
where, the three figures below respectively with the order of
no additional data, temporal data added (called Tiers) and
temporal data plus two other facts previously mentioned are
added. When all three results are compared there are a few
points to highlight.

First of all, we can see that as we add knowledge in the
algorithm, more causal relations are recovered. In the first
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result gripper position and effort (i.e. pressure data) seem
to be independent, whereas right after adding the tiers, the
algorithm returns a model where gripper_effort is a direct
cause of gripper_position. The other thing to highlight is,
although with additional knowledge, gripper, cup and end-
effector data are returned to be causally related, green_table
and blue_table variables are always independent from the
rest of the variables. This is useful, especially from the LfD
perspective, because when after a task demonstration we ob-
tain a result such as shown in the last figure, we can, for
instance, use this information about independence of vari-
ables to ask for clarification to the teacher. Missing links are
especially important, as they suggest no causation.

One interpretation of the causal model suggested on the
right hand side of the last figure can be as the following:

e gripper_pos and end_effector_pos are causally related.



This makes sense because we opened / closed the grip-
per at different positions of the end_effector.

e end_effector_pos causes cup_pos to change, which causes
end_effector position to change, which causes cup_pos to
change in turn. This also makes sense, because we keep
moving the cup until it gets to a certain location. If it is not
at that location yet, we keep moving it (hence cup_pos_t_0
end_effector_pos_t_1).

e gripper_pos and cup_pos are causally related. As we
moved the cup from start to finish, gripper was closed.
However right before grasping, and right after leaving
the cup the distance between the fingers changed due to
opening/closing action. The directionality is not recov-
ered but the algorithm found the causation between these
variables.

e gripper_pos cause gripper_effort to change. This is a
knowledge that we manually added in the algorithm.

e cup_pos causes gripper_effort to change. We believe that
this is again due to closing and opening the gripper in two
different locations of the world (once for grasping the cup,
once for releasing the cup).

Future Work

This work is just the very first step in understanding how one
can use causal structures for Learning from Demonstration.
There is clearly a lot of future work to incorporate causal
structures in an implemented LfD method. One incremental
step could be to use a filtering based on causation weights
(or strengths) to filter out the edges with low weights.

Observing the difference between successful and failed
demonstrations can tell us how the recovered causal struc-
tures change with a given search algorithm. When there
is not enough knowledge (or data) to recover some rela-
tions, asking a human teacher reasonable questions for fur-
ther clarification could be another future work. Recovering
a causal structure with multiple successful demonstrations
means more data. If the underlying model of the world is
not suitable, no matter how much data we have, we cannot
recover all the causal structure (Pearl 2009). Investigating
the effect of this phenomenon on task demonstrations could
be interesting.

Conclusion

In this paper we present a small first step towards using
causal models for Learning from Demonstration methods.
Intuitively we can understand that for a task demonstration,
we need objective(s) and actions. The actions are usually
performed towards an objective and they cause the variables
in the world to transition from one state to another towards
the goal (in case of a successful demonstration).

Here we recorded a simple pick and place task demon-
stration data using a realistic simulator with a teleoperated
service robot, PR2. Using the demonstration data, we tried
to recover a causal structure for the demonstration. Causal
models we obtained told us which variables have a causal
link to what other variables. Although it is not possible to
determine the goal of the task with causal models, we show
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that irrelevant variables for the task (table locations in our
case) can be found to be independent from the rest of the
variables. This could be useful for feature selection after a
task demonstration.

Another conclusion we would like to make is the impor-
tance of the additional knowledge given to a search algo-
rithm. Our findings show that, just the temporal information
makes a big difference in terms of the directionality of the
causal links. Tetrad assumes that if A happens after B, A
cannot be the cause of B. Querying a human expert for even
more additional information is a possibility, however in gen-
eral, agents are desired to generalize over a task with the
minimum number of demonstrations and set of knowledge
possible.

We show that causal model recovery has some useful
properties for Learning from Demonstration. How to lever-
age a causal model is left as a future work.

References

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robot. Auton. Syst. 57:469-483.

Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. New Jersey: Prentice Hall.

Spirtes, P., and Glymour, C. 1991. An algorithm for fast
recovery of sparse causal graph. Computer Review 9:62-72.





