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Abstract

This paper presents an intuitive physics-inspired frame-
work for controlling robot swarms that is based on the
three major physical states of matter: solid, liquid and
gas. An analogy is drawn between the states of matter
and the basic swarming behaviors of clustering, trans-
lating and wandering. Mobility and localization require-
ments to achieve each of the states are specified.

Introduction
Physics-inspired, or physicomimetic, multi-robot control
has two distinct advantages over animal-behavior inspired,
or biomimetic swarm controls. First, it easier to engineer,
in that the behaviors must be expressed in terms of Newto-
nian or Eulerian mechanics, which in turn allows the control
designer to precisely specify the required level of mobility,
localization and communication required for each agent dur-
ing each phase of the mission. Secondly, based on our ev-
eryday experience with physical objects in our environment,
the three major physical states of matter, solid, liquid and
gas, represent a natural and intuitive means of describing the
types of motions a swarm of mobile robots can perform as
they cluster, transit or wander (Gage 1992).

This work presents a taxonomy of robotic swarm con-
figurations and discusses the agent mobility and localiza-
tion performance required to achieve them. In particular,
it will demonstrate how to specify such biologically in-
spired behaviors as flocking and migrating in terms of physi-
comimetic interactions, and will describe how heterogenous
teams of robotic agents can interact given vastly different ca-
pacities, such as ground robots coordinating with fixed wing
air vehicles.

Background
A weakness of early physicomimetic approaches is that its
basic agent model was the holonomic point particle (Spears
and Gordon 1999). This lead to unrealistic performance ex-
pectations based on simulations (Spears et al. 2004; Wie-
gand et al. 2006), which tended to focus on equilibrium
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states of the swarm. This deficiency began to be systemat-
ically addressed by explicitly including a heading and turn-
rate in the agent model, showing that limiting the agents’
ability to turn reduced the quality of the lattice they would
form using the same reactive controller as the holonomic
particles (Ellis and Wiegand 2008). The authors (Apker and
Potter 2011b) conducted a more thorough study of the im-
pacts of motion constraints on swarming ability, and found
it helpful to control agents’ heading explicitly via virtual
torques and a particle that “tows” the agent. In addition, they
found that agent mobility has a strong impact on the types
of formations available to the swarm (Apker et al. 2011).

Biomimetic approaches typically begin with motion-
constrained agents and attempt to reverse engineer behav-
ior models from observations of animals engaged in tasks
such as hunting (Madden, Arkin, and MacNulty 2010), for-
aging (Liu and Hedrick 2011), or nest-site selection (Sasaki
and Pratt 2011). There have been significant advances in de-
veloping algorithms that allow researchers to examine these
behaviors in simulation (Luke et al. 2005), generally assum-
ing noise-free estimates of the agents’ own, neighbors’ and
targets’ positions. However, the actual information flow into
biological agents’ in terms of the sensing, processing and
communication required to produce these estimates is still a
very active area of research (Jaroszewicz et al. 2007). Het-
erogenous agent interactions are quite rare and difficult to
generalize to missions of human interest.

Most human interfaces that control live robots are based
on artificial potential fields, such as Mission Lab (Ali and
Arkin 2000), that employ a combination of agent-carried
and map-fixed schema to direct agents to perform desired
tasks and various abstractions to facilitate system design.
A similar approach has been taken with physicomimet-
ics to abstract low-level Newtonian parameters into con-
cepts more intuitive to the operator to enable desired be-
haviors to emerge, such as forming an evenly spaced ring
around a target (Kira and Potter 2009). Much of the work in
physicomimetics involves finding proper distances between
agents and relative heading angles, much like swarming and
flocking algorithms from a biological perspective.

Physicomimetic Agents and Interactions
Like most swarm and robot team control approaches, physi-
comimetics is a guidance algorithm. As shown in figure 1,
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Figure 1: Block diagram of a typical physicomimetic implementation

its output is a commanded state, ~xc, that the inner-loop con-
troller, ∆Tinner, attempts to meet by computing a set of ac-
tuator inputs, ~δ, to drive the difference between its estimated
state, x̂ and ~xc, (error signal ~e) to zero. Sensors onboard the
vehicle such as odometry, laser scanners and GPS produce
measurement, ~y, that are fused in the navigation filter to pro-
duce x̂. With this in mind, we can use linear control theory
to determine when ~xc is in the reachable space of the inner
loop within one pass through the outer loop, ∆Touter.

Figure 1 succintly summaries the engineering challanges
facing swarm control designers. Highly reactive and interac-
tive swarms depend on accurate localization and timely mes-
sage passaging between agents. Care must be taken to keep
~xc in each agent’s reachable space, otherwise the swarm as
a whole will go unstable, especially in presense of distur-
bances (Li et al. 2011). The concept of local sensing, and
possibly on-board estimation of neighbors’ states, may re-
duce the dependance on electronic communication, but op-
erator control assumes a swarm-spanning network and the
problem of agents localizing their peers in real time remains
a subject of active research.

Agent model
In (Apker et al. 2011), the authors described the “dumbbell
agent,” shown in figure 2 for physicomimetics control of real
robots. Much like a biological agent, this version followed
its “head,” generally the front particle, towards its goal or
equalibrium position. In some cases, linear force interac-
tions, ~F , were insuficient to generate or maintain swarm
formations, and mission-level or localization, e.g. turning to
point a camera at a landmark, require the vehicle to point in a
specific direction. The dumbbell agent model accomplished
this through a virtual torque, ~T .

uj,k+1 = (uj,k + ∆tFt/m)µu; (1)

Ωj,k+1 = (Ωj,k + ∆tΣ ~Mj/Izz)µΩ (2)

These forces, force couples and torques were combined to
produce speed, u, and turnrate, Ω, commands as shown in
equations 1 and 2. The forces on the front and back particle,
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Figure 2: Diagram of the nonholomomic dumbbell agent

~Ff and ~Fb, respectively, were determined using the inter-
action models described below. The linear acceleration, or
change in the speed command, ∆u, is determined by the
virtual mass m of the agent’s particles, while the change
in turnrate, ∆Ω, is a function of the torque; front and back
force couples, themselves functions of the forces and dis-
tance from the rotation center to the particles, ~rf and ~rb; and
the virtual moment of inertia I . Further, we specified ranges
of u ∈ [umin, umax] and Ω ∈ [Ωmin,Ωmax] for each agent
that were used both to bound ~xc in the reachable space of
the vehicle and to determine how heterogenous agents may
interact.

Physicomimetic Interactions
The physicomimetics framework assumes that all trajecto-
ries are generated based on the interactions of particles con-
nected to agents or salient features of the environment. This
study focuses on three types of force laws specified in terms
of solids, liquids and gasses. The physicomimetic force in-
teractions considered here have three factors in common: (1)
they are specified in terms of point singularities, (2) they are
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functions of the radial vector ~r between those points and (3)
any individual interaction has a finite maximum range. The
first two factors allow us to bound the complexity of each in-
dividual interaction, while the third enforces a sort of local
measurement constraint that limits the overall computational
cost of each agents’ model. Torque or heading interactions
are considered in terms of aligning agents, much like the
Boids algorithm (Reynolds 1987), or facilitating attraction
or repulsion.

The following sections consider three broad classes of in-
teractions based on whether the objective is to cluster, tran-
sit or wander in the environment. Each of these cases places
specific demands on the vehicle’s inner loop, and so we will
describe steps that can be taken at the interaction level to en-
sure that ~xc remains reachable and each agent’s error term ~e
is minimized. Taking these steps results in slight losses in the
quality of the swarm’s lattice and smoothness of motion, but
does result in predictions and control inputs that are more
appropriate for swarm control.

Solid-Mode Interactions
The solid mode’s primary interaction is the Lennard-Jones
potential, which is a function of the distance between the
agents, ~rij , the equilibrium distance, σ, potential well depth
factor, ε, and distance power, p, in equation 3 and plotted
for several values of p in figure 3. The effectiveness of us-
ing the Lennard-Jones potential for large-scale swarm con-
trol with simulated watercraft using p = 6, also known as
the six-twelve Lennard-Jones potential, has been previously
demonstrated by (Frey et al. 2008). High values of p result
in very narrow potential wells, which allowed the swarm to
easily tesselate and avoid the second-order interactions that
broader interaction ranges could cause.
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Figure 3: Lennard-Jones force with p = 2, 4 and 6.
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Figure 4: Deadband range of equation 3 for p = 2, 4 and 6.

However, narrow potential wells require very accurate lo-
calization of the interacting particles. Assuming the robotic
agents use Kalman-type or particle filters for localization,
there is a finite amount by which their estimates will shift
with each uncertain measurement. Keeping the swarm at its
equilibrium formation required us to define an explicit dead-
band distance ∆xmin using equation 5 in which the agent
can settle and adjust itself without disturbing its neighbors.
To do this, we begin by finding the deadband in the force
law about the equilibrium point, ∆Fmin, defined in equa-
tion 4. Then, given information about the amount of noise
we expect from our measurement system, we can find a suit-
able combination of p and ε for a given σ that maximizes
both the quality of the swarm’s formation and its stability in
the face of noise and disturbances. An example of force law
deadband is shown in figure 4.

∆Fmin =
m∆umin
∆Touter

(4)

∆xmin =
∆Fmin
∂F/∂x

(5)

From the operator’s perspective, the goal of solid-mode
interactions is to get the agents to cluster together with zero
relative velocity, possibly in a specific formation. This im-
plies that there is an overlap between all of the physical
agents and interacting particles’ range of speeds, e.g. fixed
wing aircraft can cluster with other, similarly sized vehicles,
but not ground vehicles or virtual particles at fixed points. In
addition, the maneuverability of the cluster is significantly
less than the agents. In the absense of explicit heading align-
ment, we found that the maximum pursuit speed of a swarm
of five or more dumbbell agents in formation was less than
2% of the maximum agent speed, which for most mobile
robots effectively means that the swarm must stop relative
to an inertial frame, while holonomic agents experience a
less dramatic loss in swarm speed with the number of agents.
However, if the dumbbell agents expliciltly align themselves
using the Boids mutual-heading rule, the maximum linear
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pursuit speed is also the maximum agent speed. These re-
sults are summarized in figure 5.
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Figure 5: Movement rate of swarms of holonomic and
dumbbell agents

The operators’ commands in solid mode involve setting
parameters for agent clustering. This allows behaviors such
as gathering in an area for pickup, forming an antenna array
or dispersal with equal spacing for sustained area coverage.
As long as p and ε are valid for the values of σ chosen by the
user or an algorithm such as the one presented in (Kira and
Potter 2009), solid mode physicomimetics provides a simple
and robust means of clustering a swarm of mobile robots.

Liquid Mode Interactions
One of the areas where biomimetic swarms perform well is
in cases where the swarm needs to transit a large distance.
Several algorithms for fish schooling and bird flocking
produce robust paths for motion-constrained agents along
curved paths and through cluttered environments. These
paths and the agents following them exhibit a liquid-like
quality, flowing around obstacles and rejoining as a cohesive
body without explicit direction about which agents should
pass each obstacle on its side. Physicomimetics generates
similar trajectories for holonomic agents using radial force
laws and separate particle types for obstacles and mobile
agents.

Radial obstacle avoidance algorithms for nonholomic
robots are generally more effective at preventing all motion
by introducing local potential wells than encouraging trans-
lation around obstacles. To help in such circumstances, a
“swirl force” with a radial component has been used to guide
the agent around the obstacle instead of simple repulsion, for
example to avoid a centrally located camera in (Martinson,
Apker, and Bugajska 2011).

A substantial improvement to this for urban navigation
has been developed by incorporating irrotational vortex pan-
els into the obstacle model to generate streamlines, paths
that do not intersect any obstacle or each other, in cluttered
environments (Uzol, Yavrucuk, and Sezer-Uzol 2008). The

fundamental obstacle particle in this model is the irrotational
vortex, a tool used in aerodynamic modeling to approximate
the behavior of flows over wing and tail surfaces.

Each vortex particle generates a tangential flow relative
to the radius between itself and any point. Its direction in
the global coordinate frame is defined as the cross prod-
uct between ~rij and the unit vector normal to the plane k̂.
The strength of this interaction is a function of the vortex
strength, Γ, divided by the distance between the jth vortex
and observation point, ~xi. In liquid mode physicomimetics,
we treat this velocity component as a force input per equa-
tion 6. The strength of each vortex is set using the algorithm
described in (Uzol, Yavrucuk, and Sezer-Uzol 2008) to guar-
antee that the sum of any additional fluid-type inputs, such
as a uniform flow, source or sink, does not result in a force
normal to the obstacle’s mapped location.

~Fij = ~rij × k̂
(

Γ

r2
ij

)
(6)

The primary benefit of this liquid mode approach to trans-
lating in formation is that it is easier for an operator to ex-
plicitly direct the swarm to move in particular direction or
to a particular point using the direction of a uniform flow
and sink inputs. In cases where the streamlines curve too
sharply for the agents to follow, they will simply move to
adjoining streamlines and continue moving in the direction
specified. The authors found in (Apker and Potter 2011a)
that using liquid mode interactions with obstacles and solid
mode interactions between fixed wing UAV-inspired agents
produced an obstacle avoiding line-abreast formation that is
well suited for plume detection and mapping.

Gas Mode Interactions
There are two cases when swarm agents cannot settle into
desired locations or paths. The first is when the agents physi-
cally cannot stop relative to one another, such as a fixed wing
UAV observing a stationary target or slow moving ground
vehicle. The second occurs when the agents cannot provide
a sufficiently accurate estimate of their own state to com-
pute a meaningful ~xc. In these cases, we describe the swarm
as being in gas-mode, as the most productive behaviors for
the agents involve constant motion with as much change in
direction as possible. In gas mode, we assume the controller
provides heading inputs to the agents, while the inner loop
controller or other local logic determines the best speed for
the agent given hardware and environmental constraints.

Restricting the physicommietics controller to changing
the heading while maintaining a constant speed aligns the
swarm controller’s commands with the reachable space of
vehicles such as fixed wing UAVs. These have a preferred
cruise speed for aerodynamic and stability reasons, and the
linear behavior of their inner loop control is only valid for
small deviations from it. In addition, there is great interest
in developing rules to govern interactions between heteroge-
nous systems such as air and ground vehicles that cannot
settle into equilibrium positions or follow the same paths. In
these cases, the constant and semi-random motion of gasses
provides the only model for feasible interactions.
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Figure 6: Plots of the paths flow by simulated UAV agents assuming small kθ (left) and bang-bang control (right)

When agent localization allows it, such as small UAVs
operating with GPS, we use the torsion-spring law described
in (Apker et al. 2011). In this approach, agents are directed
towards or away from a specific point or other agent by ap-
plying a virtual torque T that is a function of the angle θ
between the vector between agents ~rij and its velocity ~v and
a proportionality constant kθ as shown in equation 8. For
small values of kθ, this approach drives agents into a spiral
pattern in which they follow each other like beads on a string
over fixed targets. At large values of kθ, gas mode physi-
comimetics effectively becomes a bang-bang style controller
in which agents turn as hard as possible away from each
other or towards a target, producing a wider scattering of
agents and thus more even area coverage as shown in figure
6. The choice of small vs. large kθ depends on whether the
user wants more time over a given target or broader coverage
around the target.

θij = cos−1

(
~rij · ~v
‖~rij‖‖~v‖

)
(7)

T = kθθij (8)

The heading-only gas mode is also helpful when local-
ization is difficult and the goal is to allow agents to diffuse
through a cluttered environment as quickly as possible. A
compass or radio beacon, such as those used by the Senor-
Fly system during their random walk deployment (Purohit
et al. 2011), can provide a reasonable estimate of the desired
heading, while onboard sensors provide information about
obstacles and determine the most appropriate speed for the
environment. Adding gas-mode interactions to the swarm
“makes a virtue of necessity,” and allows swarm designers
to prepare for either the lack or loss of localization systems
within the physicomimetics framework.

Conclusion and Future Work

The goal of this work was to provide a framework for robot
team and swarm control that is species-agnostic and sim-
ple to explain to an operator with no background in robotics
or biology. Based on everyday experience with solids, liq-
uids and gasses, we presented a means of describing swarm
behaviors that cluster, translate and wander along with the
mobility and localization requirements to achieve them.

The dumbbell agent provided the basic mobility con-
straints of biological agents, and information from animal
studies could be used to set the parameters of the interac-
tions described above. Constraining agent motion resulted in
physicomimetics lattice formations that more closely resem-
bled the less-orderly clustering of biological agents than the
even lattices of holonomic particles, suggesting that biolog-
ical and physical inspiration lead to very similar results on
robotic hardware. Defining translational behaviors in terms
of simple fluid models allowed us to incorporate knowledge
such as the map of an area into the swarm’s behavior in
a way that respected robot hardware constraints while still
reproducing movements similar to biological flocking and
schooling. Finally, we introduced a gas mode to handle cases
where heterogenous agents could not operate in formation,
wandering behaviors were desired or localization was not
available to the agents.

In the future we plan to parameterize more biologically
inspired behaviors in physicomimetics terms and define a
means of tailoring interactions to specific vehicles. In par-
ticular, we are interested in using this solid-liquid-gas ap-
proach in conjunction with quorum sensing by cuing agents
to transtion between modes based on their own sensor in-
puts.
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