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Abstract

In practical applications of robot swarms with bio-
inspired behaviors, a human operator will need to ex-
ert control over the swarm to fulfill the mission objec-
tives. In many operational settings, human operators are
remotely located and the communication environment
is harsh. Hence, there exists some latency in informa-
tion (or control command) transfer between the human
and the swarm. In this paper, we conduct experiments
of human-swarm interaction to investigate the effects of
communication latency on the performance of a human-
swarm system in a swarm foraging task. We develop and
investigate the concept of neglect benevolence, where
a human operator allows the swarm to evolve on its
own and stabilize before giving new commands. Our ex-
perimental results indicate that operators exploited ne-
glect benevolence in different ways to develop success-
ful strategies in the foraging task. Furthermore, we show
experimentally that the use of a predictive display can
help mitigate the adverse effects of communication la-
tency.

Introduction
Swarm robotic systems are composed of simple individ-
ual units and generate collective behavior that is robust to
failure of individual robots (Reynolds 1987; Couzin et al.
2002). However, for practical use of such systems in large
and complex human-supervised missions, key problems that
arise in human-swarm interaction need to be understood
and solved. In application scenarios, the human operator
may be remotely located and there may be communication
constraints due to the hardware limitations of the robots
(e.g., communication radios of limited power) and the en-
vironmental properties (e.g. underwater environments). This
will lead to delay in the communication of information be-
tween the swarm and the human. The delay in communica-
tion results in the human neither knowing perfectly the cur-
rent state of the swarm nor the effect of her action on the
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robots. The extant literature on Human-Swarm Interaction
(HSI) (Bashyal and Venayagamoorthy 2008; Kolling, Nun-
nally, and Lewis 2012; Coppin and Legras 2012; Cummings
2004; Klarer 1998; Kira and Potter 2009; Naghsh et al. 2008;
Goodrich et al. 2011) has not studied the performance and
behavior of human operators in the presence of delayed in-
formation transmission between the swarm and the human
and vice versa. Therefore, in this paper, we create an exper-
imental scenario to study the effects of latency and error on
human performance in controlling swarm robotic systems.
We also study the use of predictive displays to mitigate the
effect of latency.

In our experimental foraging scenario, a human operator
guides a swarm to find unknown targets in a given area. The
robots have a single behavior, namely flocking, and the op-
erator applies inputs (a) to give a desired direction of flock-
ing to the robots and (b) to enforce cohesiveness among the
robots (by activating constraints for attracting neighbors that
are far away and repelling neighbors that are very close).
In our experiment, each subject performs the mission under
three conditions, namely, (a) without any latency (control
condition), (b) with equal latency in the human to swarm
and swarm to human communication channel (c) the same
latency as (b) but with a predictive display. In all conditions,
each robot has some error in transforming the orientation
heading to its own reference frame (due to localization er-
rors), which is modeled as a Gaussian distribution. Our ex-
perimental results indicate that, as expected, there is a degra-
dation of performance due to latency. However, when using
the predictive display, the performance of the operators can
be as good as it was in the absence of delay (control condi-
tion). We also found that the users exhibited different strate-
gies for effectively controlling the swarm.

The human operator needs to influence the swarm with-
out adversely disturbing the swarm (such as breaking it
into many small connected components). The effect of an
operator command is dependent on swarm state, which
gradually evolves to a steady state after a command has
been issued. To capture the idea that humans may need
to observe the evolution of the swarm state before act-
ing, we investigate a novel concept called neglect benev-
olence, whereby neglecting the swarm to allow for sta-
bilization before issuing new commands may be benefi-
cial to overall mission performance. An analogous but dif-
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ferent concept called neglect tolerance (Xu et al. 2010;
Dai, Sycara, and Lewis 2011) is used in human robot inter-
action. For independently operating multiple robots, neglect
tolerance is defined as the time a human can neglect a robot
without degradation in system performance. For neglect tol-
erance, it is assumed that the performance of an individual
robot degrades with time and hence the attention of the op-
erator needs to be scheduled so that the time between ser-
vicing robots is minimized (Mitchell and Cummings 2005;
Mau and Dolan 2007). In contrast, neglect benevolence cap-
tures the concept that it may be beneficial to leave the swarm
alone for a certain length of time after issuing an instruction
to allow the behavior to stabilize (since the swarm state may
not degrade monotonically with time). Our results show ev-
idence of neglect benevolence.

Task Description
Our study investigates the ability of a human operator to
effectively influence a swarm operating under algorithms
that require time to exhibit emergent behaviors. In partic-
ular, we investigate (1) the effect of communication latency
in human-swarm performance, (2) the effect of predictive
displays, and (3) the existence of neglect benevolence as
a new notion in HSI. We designed a foraging task that re-
quires users to direct a swarm around an open environment
using instructions to change swarm heading and flocking
constraints. We also use this study to look at the effect of
communication latency on this ability.

The Environment
The overall task of the experiment is to guide the swarm
around an open, 100x100 meter environment to find tar-
gets of different colors. We use three different environments
divided into six regions, with each region containing one
of three target frequencies: low (0-4 targets), medium (5-9
targets), or high (10+). The target distribution is different
across the search missions that each participant solves, but
each environment contains 1 high, 2 low, and 3 medium fre-
quency regions. There are 40 targets in total in each of the
three environments, and each participant receives a work-
sheet indicating the target frequency of each region.

We use Stage v. 3.2.2 (Gerkey, Vaughan, and Howard
2003) to simulate the environment, the targets, and a swarm
of 40 differential drive P2AT robots. Robot controllers are
implemented using the Robot Operating System (ROS)
(Quigley et al. 2009). Each robot is equipped with a color
sensor with a range of 4 meters to detect the colored targets.
We also simulate an additional sensor that allows the robots
to sense the location of a neighbor within 4 meters. This al-
lows each robot to estimate the direction of motion of its
neighbors from repeated observations of their location.

The graphical user interface is also implemented in ROS.
This interface displays the known targets and positions of
the robots; however, it does not display the region bound-
aries. During the trial, each robot transmits its position and
observations from its color sensor to the user interface. A
target is considered found only if six or more robots detect
it simultaneously, at which point the target is shown on the
map and a counter on the side is incremented.

Human Influence
Users can influence the swarm with three commands: stop,
heading, and apply-constraints. The stop command simply
instructs the robots to stop their motors. The heading com-
mand broadcasts a global heading to the swarm. To simulate
a localization error, every robot interprets the global head-
ing with respect to a local coordinate frame to compute its
goal heading. The orientation of this local coordinate frame
differs from the true orientation of the robot by an error sam-
pled from the Gaussian distribution N (0, 4⇡

9 ).
Upon receiving the command, the robots turn toward their

respective goal heading and begin moving (Figure 1a). In or-
der to correct for the erroneous interpretations of the global
heading, each robot also executes a consensus algorithm at
a frequency of 0.5 Hertz. Robots sense the direction of mo-
tion of their neighbors and update their goal heading to the
average goal heading of their neighbors and themselves.

By using the consensus algorithm, robots will change
their heading to the average heading of their neighbors, and
all robots in a connected component of the swarm will even-
tually move in the same direction (Figure 1b). The amount
of time needed to reach consensus depends on the spec-
tral properties of the connectivity graph of the robots (Xiao,
Boyd, and Lall 2005). If each robot is connected to every
other robot, then the consensus happens in one cycle. How-
ever, in general, the robot connectivity graph is not com-
plete and may not even be connected as the robots move. In
such cases, there will usually be a bias in the heading of the
swarms when the headings converge.

Finally, the user can issue an apply-constraints com-
mand, which applies biologically-inspired flocking con-
straints similar to those in (Reynolds 1987; Couzin et al.
2002; Goodrich et al. 2011). These constraints force robots
to repel from each other if they are closer than 1.5 meters,
and otherwise attract to neighbors further than 3 meters.
Only the closest 5 neighbors are considered for these con-
straints. If a robot is between 1.5 and 3 meters from each of
it’s neighbors, it proceeds toward the goal heading dictated
by the consensus algorithm (Figure 1c).

Applying the constraints serves two necessary functions:
the repulsive force spaces out the swarm to give better cov-
erage, and the attractive force helps prevent the swarm from
splitting into many disconnected subgroups. However, these
constraints were not automatically on for the duration of the
study because of the need for a swarm to have time to reach
consensus. The consensus algorithm required robots to sense
the positions of their neighbors over time in order to get
accurate heading estimates. Therefore, if constraints were
applied automatically following a heading command, much
of this movement would be due to enforcing the 1.5 to 3m
separation between robots, which would introduce a signif-
icant amount of noise to the consensus algorithm. Allowing
the operator to activate constraints provides the opportunity
to observe the swarm and decide when constraints become
necessary.

Experimental Design
The experiment consists of three conditions—the control,
latency, and predictive conditions. In all conditions, the op-
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Figure 1: The swarm in each of the three possible states: when the user first issues a heading command (a), after the consensus
algorithm has stabilized (b), and after the user has issued the constraints command and the robots have adjusted (c).

erator begins with a swarm of 40 robots positioned randomly
in a 10x10 meter box.

In the control condition, there is no latency in either of the
human-to-swarm or swarm-to-human channels.

In the latency condition each channel—operator-to-
swarm and swarm-to-operator—has a latency of 10 seconds,
meaning that operator-issued commands will not reach the
robots until 10 seconds after issuing, and the state of the
swarm displayed in the interface for the user is 10 seconds
old. Therefore, from the operator’s point of view, the swarm
will not begin executing the command until 20 seconds after
the heading instruction is issued, as the message will take 10
seconds to reach the swarm, and the reflection of this com-
mand will take 10 more seconds to return to the operator.

In the predictive condition, the latency remains present;
however, the interface gives the user a prediction of where
each member of the swarm will be in 20 seconds (the time
it takes for an operator’s command to travel to the swarm
and the result to return to the operator) by taking the head-
ing and speed (which is a constant 0.5 m/s) of each swarm
member and extrapolating the robot’s position that far in the
future (Figure 2). The prediction does not extend past the
point where the robots would perform the user’s command.
In other words, if the user issued a command 3s ago, the pre-
diction will only show the swarm state 17s further into the
future (which is 7 seconds ahead of the actual state).

Each participant has a different environment for each of
these conditions, and the order of both the conditions and the
maps are randomized for each participant in order to remove
any learning biases. 21 participants (8 men and 13 women)
were recruited from the greater Pittsburgh area to participate
in the study. Each participant was given a short explanation
of the controls and goals of the study and a 10-minute train-
ing session to familiarize themselves with the interface, after
which they completed each of the three conditions.

Figure 2: An illustration of the predictive display condition.
The interface projected a lighter shadow ahead of each robot
to predict for the user where the robot would be in 10 sec-
onds, or when the next command is received.

Results and Discussion
The overall mission performance for each participant is
measured in terms of the number of targets found and the
coverage of the high-frequency target regions. In the con-
trol condition participants found 19.86 targets and covered
1.47m2/s of the high-frequency target regions on aver-
age, both of which were significantly higher than in the la-
tency condition, where participants found 16.71 targets (p =
.021) and covered 0.98m2/s of the high-frequency regions
(p = .007). In the predictive condition, however, partici-
pants found 18.86 targets on average and covered 1.24m2/s
of the high-frequency regions, neither of which were signif-
icantly different from the control condition (p = .467 and
p = .196, respectively). These results show that the latency
of 10 seconds significantly impedes performance, but that
the predictive display in the predictive condition removes
this impediment.

An indirect measure of an operator’s ability to control the
swarm is the swarm’s overall connectivity. To determine the
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overall connectivity of the swarm at any given time, we rep-
resented the swarm as a simple graph, G, and used the sec-
ond eigenvalue of the graph’s Laplacian as the connectiv-
ity measure. Keeping the swarm connected has two ben-
efits. First, such a swarm is less likely to break off into
smaller connected components, which allows the user to
meet the six-robot threshold for sensing a target more easily.
Secondly, a highly-connected swarm will reach consensus
faster, as each robot will have more neighbors to average
with during each consensus round.

We see that the latency condition had an average connec-
tivity of 0.111, which was significantly higher than in con-
trol condition, which had an average connectivity of 0.084,
p < .001. Similarly, average connectivity in the predictive
condition was also significantly higher than in the control
condition, with a value of 0.116, p < .001, see Fig. 3. This
points to the existence of neglect benevolence, as it demon-
strates that communication latency helped enforce swarm
connectivity by causing operators to wait to see the results
of their heading command before deciding whether to issue
a new one. As a consequence, each command has a longer
duration, thus giving the swarm more time to stabilize af-
ter each command. We find this is indeed true, with users
issuing significantly more commands on average in the con-
trol condition (M = 27.81) than in the latency condition
(M = 17.76, p = .028), and significantly more than in the
predictive condition (M = 18.86, p = .052).

To investigate the various behaviors and strategies of the
operators, we investigated the duration and timing of the
heading and apply-constraints instructions. We analyzed the
average time between a heading and a subsequent apply-
constraints command (hereafter referred to as time to con-
straints), or the next heading command (duration). Because
these instructions involve altering the current state of the
swarm at the time they are issued, even two identical com-
mands (i.e., two heading commands with the same head-
ing) can lead to drastically different effects depending on
the state of the swarm.

As demonstrated by the previous results, because the
number of heading commands were different across con-
dition, the duration of the commands are similarly differ-
ent. The apply-constraints instruction, however, can be more
flexible, and operators may decide to issue constraints at any
point in time after a heading command, or issue a new head-
ing command without activating constraints at all. To inves-
tigate the effect of the application of constraints, we clus-
tered the data into three equal-sized groups across all mis-
sions into a high (100% to 78%), medium (78% to 45%),
or low (45% to 0%) group corresponding to the number of
heading commands for which constraints were later applied.

Performance in terms of targets found does not differ be-
tween these groups, but the total area swept is significantly
different, with fewer constraints (low) leading to less overall
area covered by at least six sensors (p = .040). On the other
hand, many constraints (high) lead to a larger error between
the heading of the swarm and the operator’s goal heading
(p = .011), and fewer constraints (low) have more heading
instructions leading to a consensus (74%, p < .001).

These results suggest that operators employ different
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Figure 3: These graphs display the connectivity of the swarm
at the end of each heading command issued. Connectivity is
significantly different across conditions (left), with the la-
tency conditions generally having more connected swarms.
The average time to constraints also impacts connectivity
(right), with participants choosing to enforce constraints
more often generally having better connected swarms. The
boxes in each figure represent the bottom three quartiles, and
the outliers are marked as black dots.

strategies to find a larger number of targets, with some op-
erators using constraints earlier and more often, increasing
coverage at the expense of higher heading errors, while oth-
ers preferred the opposite.

We expected a difference in heading duration and time to
constraints between the two latency conditions and the con-
trol condition, as participants must wait 20 seconds to see
the results of their commands. Interestingly, however, across
all instructions, only 27% in the latency condition and 30%
in the predictive condition have constraints activated later
than 20 seconds, neither of which were significantly differ-
ent from control, meaning that, unlike with the heading com-
mands, operators often issued the constraints prior to seeing
the effect of the heading instruction on the swarm. Swarm
connectivity was also significantly impacted by the applica-
tion of constraints as well, with the high constraints group
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having significantly better connectivity than the medium or
low group (p = .043), see Fig. 3.

These results provide considerable support for neglect
benevolence. Frequent and short commands provide an oper-
ator more control, but sacrifice swarm cohesion as reflected
in the lower connectivity value and the higher number of
connected components. This is largely due to the fact that
new heading commands reintroduce error into the swarm
members’ estimated heading and require several rounds of
consensus to stabilize. Activating the constraints too early
and often, however, leads to higher heading errors, and thus
may make the swarm more difficult for the human to con-
trol. We found that operators develop two different strate-
gies around neglect benevolence: either stabilize the con-
sensus and lower the heading error, or maintain swarm cohe-
sion and improve coverage. It appears operators were able to
use either method to their advantage and obtain a good per-
formance, and that, while latency can degrade performance
overall, it does not impact one strategy more than the other.

Conclusions and Future Work
This study provides support for the idea of neglect benev-
olence, with the commands in the study leading to strate-
gies with different costs and benefits depending on the state
of the swarm at the time the commands were issued. Fre-
quent heading commands provided the user more control
over the direction and location of the swarm at the expense
of total coverage and swarm connectivity. Due to the nature
of the swarm algorithms, high position and heading accu-
racy and high swarm cohesion were not possible simulta-
neously. Therefore, participants had to decide which char-
acteristics were more important. For the present study, both
strategies achieved success; however, other tasks may be bet-
ter achieved with one or the other. This will be the subject of
future study.

Latency had a negative effect on the number of targets
found; however, using a predictive display mitigated the neg-
ative effects. Latency also seemed to significantly impact
the frequency with which an operator issues heading com-
mands, but not apply-constraints commands. As this is the
first study to investigate latency in human-swarm interac-
tion, future work will address latency issues for human con-
trol of other tasks and swarm algorithms.

References
Bashyal, S., and Venayagamoorthy, G. 2008. Human swarm
interaction for radiation source search and localization. In
Swarm Intelligence Symposium, 2008. SIS 2008. IEEE, 1–8.
IEEE.
Coppin, G., and Legras, F. 2012. Autonomy spectrum and
performance perception issues in swarm supervisory con-
trol. Proceedings of the IEEE (99):590–603.
Couzin, I.; Krause, J.; James, R.; Ruxton, G.; and Franks,
N. 2002. Collective memory and spatial sorting in animal
groups. Journal of theoretical biology 218(1):1–11.
Cummings, M. 2004. Human supervisory control of swarm-
ing networks. In 2nd Annual Swarming: Autonomous Intel-
ligent Networked Systems Conference.

Dai, T.; Sycara, K.; and Lewis, M. 2011. A game theoretic
queueing approach to self-assessment in human-robot inter-
action systems. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, 58–63. IEEE.
Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The
player/stage project: Tools for multi-robot and distributed
sensor systems. In Proceedings of the 11th international
conference on advanced robotics, 317–323. Portugal.
Goodrich, M.; Pendleton, B.; Sujit, P.; and Pinto, J. 2011.
Toward human interaction with bio-inspired robot teams. In
Systems, Man, and Cybernetics (SMC), 2011 IEEE Interna-
tional Conference on, 2859–2864. IEEE.
Kira, Z., and Potter, M. 2009. Exerting human control
over decentralized robot swarms. In Autonomous Robots
and Agents, 2009. ICARA 2009. 4th International Confer-
ence on, 566–571. IEEE.
Klarer, P. 1998. Flocking small smart machines: An ex-
periment in cooperative, multi-machine control. Technical
report, Sandia National Labs., Albuquerque, NM (United
States).
Kolling, A.; Nunnally, S.; and Lewis, M. 2012. Towards
human control of robot swarms. In Proceedings of the 7th
international conference on Human-robot interaction, 89–
96. ACM.
Mau, S., and Dolan, J. 2007. Scheduling for humans in
multirobot supervisory control. In Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Confer-
ence on, 1637–1643. IEEE.
Mitchell, P., and Cummings, M. 2005. Management of mul-
tiple dynamic human supervisory control tasks. In 10th In-
ternational Command and Control Research and Technol-
ogy Symposium.
Naghsh, A.; Gancet, J.; Tanoto, A.; and Roast, C. 2008.
Analysis and design of human-robot swarm interaction in
firefighting. In Robot and Human Interactive Communi-
cation, 2008. RO-MAN 2008. The 17th IEEE International
Symposium on, 255–260. IEEE.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. 2009. Ros: an open-
source robot operating system. In ICRA Workshop on Open
Source Software, volume 3.
Reynolds, C. 1987. Flocks, herds and schools: A distributed
behavioral model. In ACM SIGGRAPH Computer Graphics,
volume 21, 25–34. ACM.
Xiao, L.; Boyd, S.; and Lall, S. 2005. A scheme for robust
distributed sensor fusion based on average consensus. In In-
formation Processing in Sensor Networks, 2005. IPSN 2005.
Fourth International Symposium on, 63–70. Ieee.
Xu, Y.; Dai, T.; Sycara, K.; and Lewis, M. 2010. Service
level differentiation in multi-robots control. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, 2224–2230. IEEE.

69




