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Abstract 
Images form a significant information source in published 
biomedical articles, which is under-utilized in biomedical 
document classification and retrieval. Much current work on 
biomedical image retrieval and classification uses simple, 
standard image representation employing features such as 
edge direction or gray scale histograms. In our earlier work 
(Shatkay Chen, and Blostein, 2006) we have used such 
features as well to classify images, where image-class-tags 
have been used to represent and classify complete articles.  
  Here we focus on a different literature classification task: 
identifying articles discussing cis-regulatory elements and 
modules, motivated by the need to understand complex 
gene-networks. Curators attempting to identify such articles 
use as a major cue a certain type of image in which the 
conserved cis-regulatory region on the DNA is shown. Our 
experiments show that automatically identifying such 
images using common image features (such as gray scale) is 
highly error prone. However, using Optical Character 
Recognition (OCR) to extract alphabet characters from 
images, calculating character distribution and using the 
distribution parameters as image features, forms a novel 
image representation, which allows us to identify DNA-
content in images with high precision and recall (over 0.9). 
Utilizing the occurrence of DNA-rich images within 
articles, we train a classifier to identify articles pertaining to 
cis-regulatory elements with a similarly high precision and 
recall.  Using OCR-based image features has much potential 
beyond the current task, to identify other types of 
biomedical sequence-based images showing DNA, RNA 
and proteins. Moreover, automatically identifying such 
images is applicable beyond the current use-case, in other 
important biomedical document classification tasks. 
 

Introduction   
Classifying biomedical documents according to their 
relevance to a given topic is a basic step toward biomedical 
database curation. Classification also forms a major 
                                                
Copyright © 2012, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

component in biomedical text mining applications. For 
instance, consider the process used by the Mouse Genome 
Informatics (MGI) resource at the Jackson labs (Eppig et 
al, 2005), in which curators need to identify published 
literature containing information about gene expression in 
the mouse (Smith et al, 2007; Hersh et al, 2005). A first 
step in this process requires obtaining all and only articles 
describing experiments relevant to this topic. The articles 
are then read, and the most significant information is 
extracted and curated. Another example involves finding 
articles containing experimental evidence for protein-
protein interaction. The latter task was part of the challenge 
posed in BioCreative III  (Krallinger et al, 2011). 

Images within articles provide significant cues to curators 
for deciding the relevance of an article with respect to a 
given biological task. We are interested in using a 
combination of information from images and text to 
classify biomedical articles, as we have already shown in 
an earlier work (Shatkay, Chen and Blostein 2006).  

During the past decade, much research has been dedicated 
to content-based retrieval of images and to image 
classification, both within and outside the biomedical 
domain. Most of the work is concerned with content-based 
categorization and retrieval of images (i.e. not of 
documents). To do so, a corpus of training/test images is 
identified, certain features are extracted from the images, 
the images are represented as feature-vectors, and a 
classifier is trained to identify certain types of images 
within the corpus, under the specified feature-vector 
representation. Features that are often used for image 
representation include, among others, statistics based on 
gray-level histograms (Gonzalez and Woods, 2002), 
Haralick’s texture-features (Haralick, Shanmugam and 
Dinstein, 1973), and values from edge direction histograms 
(Jain and Vailaya, 1998). In our early work (Shatkay, Chen 
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and Blstein, 2006) we have used such features as well for 
image classification, where image-class-tags were used to 
represent and classify documents.  

Here we discuss a different, specific document 
classification task, namely that of identifying articles 
discussing genomic cis-regulatory elements and modules, 
motivated by the need to understand complex gene-
networks. The group working on the CYRENE cis-
regulatory browser project at Brown University (Istrail et 
al, 2010) noted that to identify such articles in the vast 
literature, one can use as a significant cue a certain type of 
image showing the DNA and denoting the conserved cis-
regulatory elements. An example of such an image is 
shown in Figure 1. We refer to images that show DNA 
content as DNA-rich images.  
 

Based on our experiments, automatically identifying such 
images using common image features (like those 
mentioned above) proves highly error prone. However, 
using Optical Character Recognition (OCR) to extract 
alphabet characters from images, calculating character 
distribution and using the distribution parameters as image 
features, allows us to form a novel representation of 
images, and identify DNA-content in images with high 
accuracy. Using such DNA-rich images, we then train a 
classifier that identifies documents pertaining to cis-
regulatory modules with high precision and recall.   
 

While this paper focuses on the specific task of identifying 
cis-regulatory-related publications, the idea of using OCR 
as image features is applicable well beyond the current 
task, and can be utilized to identify other types of 
biomedical sequence-based images. Automatically 
identifying such images has much potential to be widely 
applicable in computational biomedicine. Throughout the 
rest of the paper we describe our approach, experiments 
and results. The next section briefly surveys image analysis 
in biomedical documents, highlighting the difference 
between previous work and the research presented here. 
We then discuss in more detail the specific problem we are 
addressing in the context of the CYRENE project, the 
datasets, and the methods we use to process and to 
represent images and articles. We follow with a section 
about experiments and results, followed by conclusions 
and an outline of future work. 

Related Work 
Research by Murphy et al. (e.g. Murphy et al, 2001; 
Cohen, Kou and Murphy, 2003; Quian and Murphy, 2008)1 
is among the earliest on using images within biomedical 
articles. Their work focused primarily on image 
categorization for identifying images and articles 
discussing protein subcellular localization. It constitutes an 

                                                
1 See also SLIF: Subcellular Localization Image Finder. Carnegie 
Mellon University. http://slif.cbi.cmu.edu.  

in-depth study of a specific task, namely, identifying and 
interpreting a certain type of microscopy images associated 
with protein localization experiments. The image 
processing employs standard image-features like the ones 
mentioned earlier. Notably, the tools used in that research 
aim at the protein-subcellular-localization task, and do not 
target biomedical text/image retrieval as a whole. Work by 
Rafkind et al. (2006) explored retrieval of biomedical 
images from the literature in a more general context, while 
work by Shatkay et al. (2006) started to examine the 
integration of text and image data for bioemedical 
document retrieval. Both used similar, standard image 
features such as gray-scale and edge-direction statistics. 
 

Another related area, which focuses on image processing 
in the biomedical domain, is content-based retrieval of 
medical images and medical documents. One may look, for 
instance, for x-ray images of a certain limb or for 
documents containing such images. During the past few 
years, shared tasks that included challenges of this nature 
were introduced in ImageClef2 leading to the development 
of systems addressing such challenges (e.g. Demner-
Fushman et al, 2009). Typically, standard image features 
like those mentioned earlier (texture features, gray-scale-
based features etc.) are used to represent the images.  
 

Taking advantage of text associated with images for 
document- or for image- retrieval typically relied on using 
text from figure captions (an idea introduced by Regev et 
al, 2002), or possibly also text referencing images from 
within the article’s body (Yu, Liu and Ramesh, 2010). 
Last, as a way to improve indexing and retrieval of 
biomedical images, Xu, Krauthammer et al. (2008) 
proposed to use optical character recognition (OCR) to 
extract text from within biomedical images, using the 
extracted words/terms to index images. In contrast to the 
work presented here, Xu et al’s research was not concerned 
with image processing, representation or classification. It 
viewed OCR as means to obtain text for identifying 
images, rather than as a source of useful image-features. 
This latter idea, which to the best of our knowledge was 
not pursued before, is the focus of this work. 

CYRENE and the Article Classification Task 
The CYRENE project (Istrail et al, 2010) is concerned with 
obtaining, providing and displaying highly reliable 
information about cis-regulatory genomics and gene 
regulatory networks (GRN). Two of its components 
include the cisGRN-Lexicon and the cisGRN-Browser. 
The lexicon is a database containing high-quality 
information about the sites, function, operation mechanism 
and other aspects of cis-regulatory elements, currently 
including 200 transcription factors encoding genes and 100 

                                                
2 ImageCLEF Medical (since 2007): Cross-Language Image 
Retrieval Evaluation, http://www.imageclef.org/ . 
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other regulatory genes. (Primarily in human, mouse, fruit 
fly, sea urchin and nematode, with some information 
pertaining to other organisms). To be included in the 
lexicon, a regulatory mechanism must adhere to stringent 
criteria of experimental validation, in-vivo. Obtaining such 
highly reliable information that can be placed in the 
database requires scanning carefully through the literature, 
identifying the articles that describe the cis-regulatory 
mechanisms and the experiments validating them, 
annotating the relevant information within them, and 
depositing the information in the database. Here we focus 
the first step, namely, that of identifying articles that are 
likely to contain the high-quality information that can be 
curated into the CYRENE database. 
 

As noted by the group working on creating and curating 
CYRENE (of which RT, KS, TJ and SI are a part), the 
most relevant publications in which pertinent information 
can be found often contain diagrams and graphs of a 
particular type (referred to by the team as the 
quintessential diagrams and the quintessential graphs). We 
focus here on the diagrams, which typically display short 
sequences of DNA, marking conserved regions, motifs or 
sites that are involved in the regulatory module described 
in the paper. Figure 1 shows an example of such an image, 
taken from one of the papers used to curate information 
into Cyrene (Ulvila et al, 2004).  
 

The document classification task is thus to identify, among 
a set of candidate publications already containing basic 
terms such as “regulation” or published in the relevant 
journals (such as Molecular and Cellular Biology), those 
that are most likely to contain experimentally validated 
information about cis-regulatory elements and modules. 
We address this task using both a text-based classifier 
(briefly mentioned here), and an image-based document 
classifier, where we focus here mainly on the latter. In the 
next section we discuss the data and the methods that we 
use for training and testing such a classifier. 

Data and Methods 
The Dataset: CYRENE-related Articles 
The CYRENE team of curators has initially identified a set 
of 271 publications containing experimentally-validated 
information about cis-regulatory modules. To obtain this 

set, they read through a subset of publications in a selected 
set of about 60 journals (primarily drawing on the main 
journals that publish in the area, including: The Journal of 
Biological Chemistry, Molecular and Cellular Biology, 
Development, Gene & Development, Developmental 
Biology, The EMBO Journal, Gene, Biochemical and 
biophysical research communications, PNAS, Nucleic 
Acids Research), published after 1985. A keyword search – 
based on keywords such as regulatory, transcription, DNA 
element, DNA motif – was applied to the many thousands 
of resulting articles, to reduce the set to those articles likely 
to discuss gene regulation. The resulting set of a few 
thousands articles, was examined by the curators to 
identify the ones showing experimentally validated cis-
regulatory modules, thus forming the set of 271 articles. 
The latter is the positive set, i.e. the set of Relevant articles 
for the classification training/testing process. 

Many of the remaining published articles were rejected 
from the CYRENE-relevant dataset. A small subset of 
those irrelevant publications, consisting of 78 articles, were 
identified and kept by the curators, and were the basis of 
our negative set of Irrelevant articles. As the resulting 
overall set is highly unbalanced for classification purposes, 
(271 positive examples and only 78 negative), we selected 
an additional set of 143 negative examples from the 
Journal of Molecular Cellular Biology – which is a journal 
from which about 20% of the 271 relevant articles 
originate. The negative documents were selected by going 
through the same volumes from which relevant articles 
were obtained, and identifying 10-20 articles that were not 
judged to be relevant by the curators – in each of these 
volumes. Selecting irrelevant articles from the same 
volumes in which relevant articles were found ensures that 
the overall style and discourse remain similar across the 
relevant and the irrelevant articles. That is, there is no shift 
in time and in the overall discussion areas between the 
subset of relevant articles and the subset of irrelevant 
articles. If such a shift existed, it could over-simplify the 
learning task of separating the relevant from the irrelevant 
articles, as separation could have then relied on differences 
in language and style, as opposed to on the difference in 
actual contents. The resulting dataset thus consists of 271 
positive examples (CYRENE-relevant articles) and 221 
negative examples (articles that are irrelevant for 
CYRENE). The PDF of the complete articles was obtained 
for 264 of the relevant articles and for 220 of the irrelevant 
ones. We further describe the training and the testing of an 
image-based document-classifier later in this section. 

Representation and Classification of Image Panels 
Multiple groups have already noted that figures in 
biomedical publications often consist of multiple 
subfigures or panels, (Murphy et al, 2001; Shatkay et al, 
2006; Yu et al, 2010), as demonstrated in Figure 2. Each 

Figure 1. An example of a DNA-rich diagram of the type that is over-
represented in articles discussing cis-regulatory elements. Taken 
from PMID 15115437, Figure 7. (Ulvila et al, 2004. Image obtained 
from PubMed Central). 
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panel typically consists of an individual image, and as 
such, when considering images, we separate figures into 
individual panels. To obtain images and image panels from 
the PDF file we use a tool that we have developed for this 
purpose, based on the Xerox Rossinante utility 
(https://pdf2epub.services.open.xerox.com/). A full 
description of this tool is to be published elsewhere.  
As noted earlier, articles that discuss cis-regulatory 
modules are typically characterized by an over-
representation of image panels containing DNA 
information, such as the one shown in Figure 1. As such, 
we hypothesized that being able to identify such images 
automatically – and identifying articles that show an over-
abundance of such images, would help in identifying 
relevant documents for the CYRENE database. Again, we 
refer to image panels that show DNA regions, as DNA-rich 
image panels. To automatically identify such panels, we 
aim to train a classifier to distinguish between DNA-rich 
images and all other images. To attain this goal we need:  
a) A set of positive image panels that contain DNA 
sequences, and a set of negative images panels, which do 
not contain DNA sequences; and 
b) An image representation using features that expose the 
DNA-content. Once such features are identified, all the 
images in the positive and in the negative set can be 
represented as a weighted vector of these features, and a 
classifier that aims to distinguish between the two types of 
images can be trained and tested. 
To achieve goal (a) above, we identified a set of 88 DNA-
rich image panels, and 100 image panels that do not show 
DNA sequences. We use this set of 188 panels to train and 
test a classifier that distinguishes between DNA-rich and 
non-DNA-rich images. 
To represent images as feature-vectors, so that the panel-
classification task could be attempted, we introduce a 
novel OCR-based representation (aim b above). We apply 
an optical character recognition (OCR) tool, ABBYY 
Finereader (http://finereader.abbyy.com/) to all the panels, 
and obtain all the characters that occur in each panel. We 
count the number of times each character (A-Z, 0-9, Other) 
occurs, and represent each panel as a 37-dimentional 
feature vector <w1…w37>, where wi denotes the frequency 
of the ith character in the panel. An example of the 
character frequency distribution for two different image 

panels is illustrated in Figure 3 (in which we only show the 
first 26 characters A-Z). The top-left panel in the figure is a 
DNA-rich panel, and as such its character frequency 
distribution shows four distinct peaks at A, C, G and T. In 
contrast, the top-right does not display a DNA sequence, 
and as such its associated character distribution assigns 
relatively low, similar values to quite a few characters 
including A, E, F, and I, and low values to C and G. 
Notably, the overall character-distribution is quite robust to 
OCR errors, as mis-reading some characters has only a 
small, local impact on the overall magnitude of character 
counts and on the distribution as a whole. 
We have also experimented with a similar, but more 
compact representation using a 5-dimensional vector, 
collapsing all characters except for A, C, G and T, into 
“Other”, while registering the frequencies of A, C, G, and 
T.  As shown later, the two representations perform at 
about the same level in our experiments. For comparison, 
we have also used a simple gray-scale histogram 
representation of all images and trained a classifier under 
this representation, as further discussed in the Experiments 
and Results section. Each of the 188 image panels is 
represented as a feature vector (under each of the feature 
types). To train and test classifiers using these 
representations, we use the standard WEKA tools (Witten 
and Frank, 2005) to train and test a decision-tree classifier, 
using the J48 algorithm. Further details regarding these 
experiments are provided in the Experiments and Results 
Section, as well as in a more extensive report soon to 
appear (Shatkay et al, 2012). 

Representation and Classification of Articles 
So far we described the representation and classification of 
image panels. However, our goal is to classify complete 
articles based on their relevance (or there lack-of) to 
CYRENE. The total dataset of identified articles consists 
of 271 positive (relevant) examples, and 221 negative 
(irrelevant) examples; from those we have obtained the full 
PDF text files for 264 positive and 220 negative articles . 

Given an article d in the dataset, we create an image-based 
representation for it, by examining each image panel 
within the article and tagging it as DNA-rich or non-DNA-
rich. While ultimately this step will be done automatically 
using the classifier trained on image data as described at  
the end of the previous section, in the experiments 
described here we used manual tagging of the images, to 
ensure independence between the results reported here for 
the image-classification step and those reported for the 
document-classification step. This issue is revisited in the 
Conclusions section. We then count how many panels in 
the article are DNA-rich and how many are not. For an 
article d, let Ad denote the number of DNA-rich panels in it, 
and Nd denote the number of non-DNA-rich panels. The 
article d is then represented as a simple 2-dimensional 
vector of the form:  

Figure 2  An example of a composite figure, consisting of multiple 
image panels. Taken from PMID 17332747, Figure 2. (Takasaki et 
al, 2007.  Image obtained from PubMed Central). 
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< Ad /(Nd +Ad) ;  Nd /(Nd+Ad) >,               (Eq. 1) 

that is, the article is represented based on the relative 
frequency of its DNA-rich panels, and its relative 
frequency of non-DNA-rich panels. Using this simple 
representation of all 484 articles for which we have access 
to the full PDF, we again test and train a decision-tree 
classifier using the standard WEKA tools. 

Finally, to compare the image-based classification to a 
text-based classification, we obtain the title and abstract of 
each article as they appear in PubMed and represent each 
article using a set of unigrams and bi-grams derived 
directly from the resulting corpus of text. Stop-words are 
excluded, and rare and frequent terms are removed. 
Moreover, as we have done before (Brady and Shatkay, 
2008) terms that are uninformative for distinguishing 
between relevant and irrelevant documents (as measured 
within the training set, in each iteration of the cross-
validation runs) are removed from the vocabulary. The 
vector representation for each article d is a simple binary 
vector of the form <dt1,…,dtn>, where dti = 1 if the ith term 
in the corpus-vocabulary is present in article d, and 0 
otherwise. Given the relatively large number of features 
involved in such a representation (about 550 terms per 
vector), we use WEKA’s naïve Bayes classifier (rather 
than decision tree), to train/test a classifier from the text 
representation of articles. 

Experimental Setting 
The experiments we carry out aim to examine two 
hypotheses: First, whether the OCR-based representation 
of image panels, as described earlier, is indeed effective for 
distinguishing DNA-rich image panels from non-DNA-rich 
ones, within biomedical publications; Second, whether the 
relative abundance of DNA-rich panels in a published 
article provides an effective means for assessing the 
article’s relevance to the CYRENE dataset. 

 

 

Accordingly two sets of experiments are described below: 
The first is concerned with image panel classification using 
OCR-based representation of image panels. The second set 
of experiments is focused on article classification, where 
the image-based representation of articles is used.  
Classification of Image-Panels using OCR-based 
Representation: To evaluate the effectiveness of the OCR-
based representation for distinguishing between DNA-rich 
and non-DNA-rich image panels, we use 188 image panels 
that were manually annotated for this purpose (as discussed 
in the previous section). For each of these image panels we 
construct three different representations, as follows: 
1) A 37-dimentional feature vector <w1

p  … w37
p >, where 

the weight in each of the first 36 positions corresponds to 
the relative abundance of each of the 36 characters (A-Z3, 
0-9) in the panel, while the 37th position corresponds to the 
relative abundance of all other characters combined. Thus 

wi

p
 denotes the frequency of the ith  character among (A-

Z,0-9,Other) in the image panel, that is: 

wi
p = # of times character ci  occurs in  panel p

Total#of  character occurrences in  panel p
 .  

An example of such a representation is shown in Figure 3. 
 

2) A 5-dimentional feature vector <w1
p  … w5

p>, where the 

weight in each of the first 4 positions, w1
p - w4

p  is the 
respective frequency of the characters A, C, G and T in the 
panel p, while w5

p  is the frequency of all other characters 
combined.  

                                                
3 While we use the upper case notation A-Z here, any capital letter X 
denotes here an occurrence of either the small (x) or the capital (X) letter 
within the image; the counts of small and capital occurrences are 
combined for each letter. 

Figure 3. An example of two distinct panels (top two panels). The respective character frequency distribution (shown only for the letters a-z) 
is provided below each of the panels. The top left panel (from Kamachi et al, 1995. Image btained from PubMed Central) shows a DNA-rich 
image, which translates to peaks on A, C, G and T in the character distribution, while the top right panel (from  Wang et al, 2000. Obtained 
from PubMedCentral) does not display a DNA sequence, and shows a close-to-uniform distribution of all letters, all with low frequency. 
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3) A simple gray-scale histogram representation. That is, a 
256-dimensional vector < w1

p  … w256
p >, where the weight 

wi
p  is the number of pixels in panel p whose intensity level 

is i. 
Under each of the representations we use WEKA’s 
standard tools to train and test a decision tree classifier, 
using stratified 5-fold cross validation. That is, both the 
100 positive examples and the 88 negative examples are 
partitioned into 5 subsets; 4/5 of both the positive and the 
negative examples are used for training while 1/5 are used 
for testing. The process is iterated 5 times, where a 
different 1/5 is left out at each iteration. To ensure stability 
of the results, we use five complete runs of 5-fold-cross-
validation for each of the representations (a total of 25 runs 
per representation).   

Classification of Articles using Image-Based 
Representation: To evaluate the utility of our image-based 
representation for the actual article-classification task, 
namely, separating CYRENE-relevant from non-
CYRENE-relevant publications, the 484 pre-classified 
articles (264 CYRENE-related, 220 non-CYRENE-related, 
as discussed earlier) are represented using a simple 2-
dimensional representation as described by Eq. 1 above. 
Again, we use WEKA’s tools for training/testing a 
decision tree, but this time the classification is of articles 
rather than of images, and the classes are CYRENE-related 
vs. non-CYRENE-related. We use here five separate runs 
of 5-fold cross validation to ensure stability of the results. 

We also tested a text-based representation of the articles, 
employing a simple bag-of-words model, as a point of 
comparison. We used text taken only from the article’s title 
and abstract, rather than the full-text PDF (see Shatkay et 
al, 2012, for a discussion of this choice). The titles and the 
abstracts of the 484 articles – both positive and negative 
examples – were tokenized to obtain a dictionary of terms 
consisting of single words (unigrams) and pairs of 
consecutive words (bigrams), where words were stemmed 
using the Porter stemmer (Porter, 1997), and standard stop-
words removed. Rare terms (appearing only in a single 
article) as well as very frequent ones (occurring in more 
than 60% of the articles) were also removed.  The 
remaining set of terms was further reduced by selecting 
only distinguishing terms. These are terms whose 
probability to occur in positive (CYRENE-relevant) 
articles is statistically significantly different from their 
probability to occur in negative (non-CYRENE-relevant) 
articles. This is done following a procedure we have used 
in an earlier work (Brady and Shatkay, 2008). The 
resulting vocabulary of about 550 terms is used to 
represent each article d as a 550-dimensional vector of 
binary values, < w1

d  … w551
d >, where wi

d =1 if the ith term, 

ti, occurs in document d, i.e. ti ∈ d , and wi
d =0 otherwise.  

We use the naïve Bayes classifier in the WEKA tools,  (as 
opposed to a decision tree, because of the higher-
dimensionality of the representation), and employ 10-fold 
cross validation to train and test the classifier (for a more 
complete version of the work, in which 5-fold cross 
validation was used, see Shatkay et al, 2012). 
The performance of all the classifiers described above is 
evaluated using the standard measures of Precision, Recall, 
F-measure, and overall accuracy (Acc) formally defined as:  
Recall= TP

TP+FN
 ;  Precision= TP

TP+FP
;

 
F =

2 ⋅Precision ⋅Recall
Precision+ Recall

 ;   Acc= TP+TN
TP+FN +TN +FP

  '
 

where TP, FP, TN, and FN denote the number of true 
positives, false positives, true negatives and false 
negatives, respectively. Notably a “positive” instance is a 
DNA-rich panel in the context of panel-classification, 
while it is a CYRENE-relevant article in the context of the 
article classification task.  

Table 1. Image-panel classification performance, averaged over 
5 independent runs of 5-fold cross validation. The top two rows 
show results (Precision, Recall, Accuracy and F-measure) when 
the panel is represented using OCR-based features, while the 
bottom row shows results obtained using a gray-scale histogram 
representation. Standard deviation is shown in parentheses. 

 

Results 
Image-Panel Classification: Table 1 summarizes the 
average image-panel classification results obtained from 
running five runs of stratified 5-fold cross validation, under 
each of the three image-panel representations we have 
used, as described above. The top two rows show the 
precision, recall, accuracy and F-measure when the OCR-
based features are used to represent each image panel. The 
topmost results are of using a 37-dimensional vector, 
where the counts for each of the 26 alphabet letters and 
each digit (0-9) form separate feature values, and the 
counts for all other non-alphanumeric characters are 
grouped together into the 37th feature value. The middle-
row shows the results for a more condensed 5-dimensional 
representation, where separate counts are calculated only 
for the letters A,C,G,T, and all other characters are 
grouped together into a fifth feature.  
 

The top two rows show an average precision above 0.9 
while the average recall is about 0.9. The second row 
shows slightly higher values than the first, but these 
differences are not statistically significant (p>>0.1).  

In contrast, the third row, where image panels are 
represented based on their gray-scale histogram, shows 
a significantly lower performance on all measures. The 

Panel Representation Avg Prec. 
(STD) 

Avg Recall 
(STD) 

Avg Acc.  
(STD) 

Avg F  
 

OCR: A-Z,0-9; Other 0.92 (.015) 0.89 (.015) 0.91 (.012) 0.90 
OCR: ACGT; Other 0.93 (.006) 0.90 (.014) 0.92 (.007) 0.92 
Gray-scale Hist. 0.64 (.009) 0.66 (0.00) 0.67 (.008) 0.65 
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Table 2. Article classification results, averaged over multiple 
cross-validation runs. The top row shows the results from using 
an image-panel based representation of each article, i.e. as a 2-
dimensional vector representing the proportion of DNA-rich 
panels and of non-DNA-rich panels. The second row shows the 
results when using a standard binary term-vector representation, 
over a set of 551 distinguishing terms.  

 
difference in performance with respect to the top two rows 
is highly statistically significant (p<0.0001). 

Article Classification: Table 2 shows average results, 
obtained from running five separate article-classification 
runs of stratified cross validation, using the image-panel-
based representation and the text-based representation of 
articles. Recall that the image-based representation of an 
article is simply a 2-dimensional vector containing the 
proportion of DNA-rich panels and of non-DNA-rich 
panels in the article. The text-based representation is a 551-
dimesnional vector of 0/1 denoting the absence/presence of 
each of the 551 distinguishing terms in the article. Results 
in the first row are based on 5-fold cross validation, while 
results in the second row used 10-fold cross validation 
runs. Results comparing 5-fold cross validation on both 
representations can be found in an upcoming and more 
complete report of this work (Shatkay et al, 2012). 

These results suggest that the image-based classifier 
outperforms the text-based classifier according to all 
measures. The differences in Recall, F-score and Accuracy 
are visible, as well as highly statistically significant 
(p<0.0001). The average precision is only slightly higher 
for the image-based classifier, although this difference is 
still statistically significant as well (p<0.002).  

While the image-based classifier does show here a better 
performance than the text-based classifier, we note that this 
is not the main message we aim to convey. The results 
show that despite its simplicity, the image-based classifier 
performs at a level that is at least comparable to the one 
demonstrated by a text-based classifier. This relatively 
high level of performance suggests that our approach to 
image-based classification can be effective, and can aid in 
improving current biomedical document classification and 
retrieval efforts. We further discuss the results and their 
implications below. 

Discussion and Conclusions 
To summarize, there are two main aspects to the work we 
have presented. First, we introduced new representation of 
biomedical images as distributions of characters, which is 
based on employing OCR. Second, we have demonstrated 

that through the identification and the use of certain image 
types, (in this case DNA-rich images vs non-DNA-rich 
images), one can represent scientific articles both simply 
and effectively, in a way that supports biomedical 
document classification. 

In terms of image-representation, the results shown in the 
first part of the Results section strongly support the 
hypothesis that OCR-based character distribution provides 
a simple but useful representation of images. This type of 
representation is particularly applicable and important in 
the context of biomedical publications, because so much 
biomedical data, including RNA, DNA and Proteins, come 
in the form of character sequences. Moreover, many of the 
images in this domain contain text in various forms for a 
variety of reasons – ranging from sequence data, through 
tags on graphs and on diagrams, to cell-labels or region- or 
organ-labels in fluorescence images.  

We also note that unlike the typical application of OCR for 
obtaining words and text from images (e.g Xu et al, 2008), 
we propose using distributional properties of characters in 
images.  As such, the method is robust to the typically 
noisy OCR process. Missing or mis-reading a few 
characters is highly unlikely to strongly affect the overall 
distribution of characters obtained from an image. 

 In terms of article-representation and classification, this 
work continues along the lines of our own work (Chen et 
al, 2006; Shatkay et al, 2006) and that of others (e.g. 
Rafkind et al, 2006), suggesting that defining certain types 
of images and automatically identifying images of these 
types within articles is useful both for image retrieval in-
and-of itself, and, more importantly as a basis for article 
classification. Clearly, even within the scope of the 
research presented here, there is still much room left for 
further exploration of variants in the choice of vector 
representations, classifiers and even evaluation measures, 
which we plan to do as the next step in this work.   
 

As we have noted earlier, the representation used for 
articles in the articles-classification task relied on manual 
tagging DNA-rich images, rather than on automated 
tagging by the image-classifier. Manual tagging of images 
was used at this stage to focus attention on the merits and 
shortcomings of the article-representation and 
classification, rather than on the possible issues involved in 
the image-classification step itself. We plan to combine the 
image-classifier and the article-classifier into one pipeline 
that will serve in the curation process for CYRENE. We 
are also pursuing the integration of the text- and the image- 
based classifiers. The application of the proposed tools to 
larger and more diverse datasets is another part of our 
planned future research. 

Article 
Representation 

Avg Prec. 
(STD) 

Avg Recall 
(STD) 

Avg Acc.  
(STD) 

Avg F  
 

Img-panel distribution  
(2-dimensional vector) 0.87 (.000) 0.89 (.000) 0.89 (.000) 0.88 

Text (551-dimensional 
vector)  0.86 (.003) 0.86 (.007) 0.85 (.004) 0.84 
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