
PROBE: Periodic Random
Orbiter Algorithm for Machine Learning

Larry H. Smith
lsmith@gmail.com

Won Kim and W. John Wilbur
wonkim@ncbi.nlm.nih.gov
wilbur@ncbi.nlm.nih.gov

Computational Biology Branch
National Library of Medicine
National Institutes of Health
Bethesda, MD 20894, USA

Abstract
We present a new algorithm, which we call PROBE, to find
the minimum of a convex function. Such a minimization is
important in many machine learning methods, including Sup-
port Vector Machines (SVM). We show that PROBE is a
viable alternative to published algorithms for SVM learn-
ing with several important advantages. PROBE is a sim-
ple and easily programmed algorithm, with a well-defined,
parametrized stopping criterion; it is not limited to SVM, but
can be applied to other convex loss functions, such as the Hu-
ber and Maximum Entropy models; and its time and memory
requirements are consistently modest in handling very large
training sets.

Introduction
As databases have continued to grow in size, it is not uncom-
mon to have need for machine learning applied to millions
of training data points. A good example is MEDLINE R©

(McEntyre and Lipman 2001), a citation database with ap-
proximately 20 million journal articles in the biomedical
field. Articles in MEDLINE are assigned Medical Subject
Headings MeSH R©, see (NLM 2011) from a controlled vo-
cabulary by human indexers. Typically an article is assigned
about a dozen such MeSH terms. We are interested in ma-
chine learning to predict which MeSH terms should be as-
signed to an article, and its binary equivalent, to decide
whether a given MeSH term should be assigned to a given
article.

Previously, because of the large number of data points,
Support Vector Machine (SVM) learning was not practi-
cal for the MeSH problem. As an alternative, for example,
Bayesian methods were used to reduce the size of the train-
ing space in order to make classifier training more feasible
(Sohn et al. 2008). But advancing computer hardware tech-
nology has made it possible to apply SVM algorithms di-
rectly to this problem. We developed the PROBE algorithm,
a gradient descent convex minimization algorithm, and used

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it successfully for large scale machine learning (for exam-
ple, (Smith and Wilbur 2009)). We will describe this algo-
rithm, demonstrate its effectiveness on the MeSH problem,
and compare its performance to some published SVM algo-
rithms that are now feasible for the MeSH problem.

We surveyed the published algorithms for SVM learning
on large data sets, and chose two for comparison: SVMperf
and Pegasos. SVMperf is based on the dual formulation and
uses an efficient cutting plane algorithm (Joachims 2006).
On our MEDLINE corpus, since some of classification tasks
are highly imbalanced, SVMperf terminated without pro-
ducing a usful result with its default stopping parameter
ε = 0.1, but we were able to make a minor parameter adjust-
ment ε = 0.01 to get very reasonable results. For the rest of
cases other than the imbalanced classification tasks, we used
the default stopping parameter ε = 0.1 in SVMperf. Pegasos
is a gradient descent algorithm (Shalev-Shwartz, Singer, and
Srebro 2007) that takes advantage of the particular form of
the SVM loss function. The weakness of Pegasos is that it
does not specify an objective stopping criterion, and so for
comparison purposes only, we ran it for 500 iterations and
used the iteration that produced the best result on the test set.
Because Pegasos has no stopping criterion, we also explored
LibLinear for algorithm timing comparisions and here we
used its default stopping parameter(Fan et al. 2008).

We have yet to discover a useful theoretical bound on
the number of iterations that PROBE may need to achieve
a given accuracy. Though such a bound might be interest-
ing, it would likely have little practical significance. In ev-
ery approach to SVM learning that we are aware of, the
theoretical inequalities relating the number of iterations to
the convergence error (on the training set) are not useful
in practice. For example, the cutting-plane algorithm SVM-
perf (Joachims 2006) has a time complexity that is linear in
the size of the data. But if we calculate the predicted bound
for the number of iterations from equation (1) of that pa-
per for the MeSH problem, with our λ = 6.4 × 10−7 and
R = 33.2 and error bound ε = 0.01, we arrive at a bound
on the number of iterations of 1.4× 1014. Likewise, the Pe-

AAAI Technical Report FS-12-05
Information Retrieval and Knowledge Discovery in Biomedical Text

59

gasos algorithm (Shalev-Shwartz, Singer, and Srebro 2007)
gives a bound on error that is O(log T/T), where T is the
number of iterations. Using the formula from Theorem 1 of
that paper to calculate the error with our parameters, gives a
bound of T > 5×1012 iterations to achieve an average error
less than 0.01. If these algorithms actually performed near
their bounds, they would not be found useful. But algorithms
for SVMs often perform much better than their theoretical
bounds, and moreover, they are not judged by how well they
handle arbitrary training sets. Rather, they are judged to be
useful depending on how efficient and accurate they are on
real world problems.

Before proceeeding with the paper, let us establish the ter-
minology we use for SVM. We assume that we are given m
training examples, where each example has a vector xi of
features and a class yi = ±1. The object is to find a weight
vector w such that the dot product xi · w predicts yi. For
SVM learning, the regularized “hinge” loss function

f(w) =
λ

2
‖w‖2 +

1

m

m∑
i=1

[1− yi(xi · w)]+ (1)

is minimized, where

[h]+ =

{
h if h ≥ 0

0 otherwise.

The parameter λ ≥ 0 is called the regularization parameter.
The function f is non-negative and convex, and if λ > 0
(which we assume in this paper) then it has a unique mini-
mum. It is also useful to note that f(0) = 1, so the minimum
attainable value lies somewhere between 0 and 1.

The remainder of the paper is organized as follows. In
section PROBE Algorithm we describe an inequality that
motivated the algorithm, followed by the algorithm itself. In
section Analysis of Algorithm the general behavior of the
algorithm is described with a hypothetical explanation. Sec-
tion Methods lists the experiments performed, the training
corpora used, and the data that was collected. The perfor-
mance of PROBE is compared with SVMperf and Pegasos
in Section Results and Discussion, and this is followed by
a demonstration of PROBE applied to alternative loss func-
tions. Conclusions are summarized in section Conclusions.

PROBE Algorithm
Here we describe an inequality that motivated the PROBE
algorithm, the algorithm in pseudocode, and some optimiza-
tions that are used in our current implementation.

Inequality
Our analysis is closely related to the inequality for convex
functions that forms the basis for the Stochastic Gradient
Descent (SGD) algorithm of (Zhang 2004). Assume f(w) is
a non-negative, convex function with minimum at w∗. Let g
denote a subgradient of f . Given an estimated weight vector
wt, and parameter η, define the update rule

wt+1 = wt − η g(wt).

Then we can write

‖wt+1 − w∗‖2 = ‖wt − w∗ − η g(wt)‖2

= ‖wt − w∗‖2 + η2‖g(wt)‖2 − 2η g(wt) · (wt − w∗)

= ‖wt − w∗‖2 + η2‖g(wt)‖2 − 2η (f(wt)− f(w∗))

+ 2η (f(wt)− f(w∗)− g(wt) · (wt − w∗)) .

Note that, by convexity, the last term here is non-positive
because

g(wt) · (w∗ − wt)− (f(w∗)− f(wt))

= − [(f(w∗)− f(wt))− g(wt) · (w∗ − wt)] .

Thus we obtain the inequality

‖wt+1 − w∗‖2 ≤
‖wt − w∗‖2 + η2‖g(wt)‖2 − 2η (f(wt)− f(w∗)).

(2)

Let us set
∆ = f(wt)− f(w∗)

and note that ∆, which varies with t, is positive until we
reach the minimum value of f . When ∆ is positive we can
always choose η > 0 to make η2‖g(wt)‖2 − 2η∆ is neg-
ative. Simple calculus shows that the minimum of this ex-
pression occurs at

η =
∆

‖g(wt)‖2
(3)

and the value at this minimum is

min
{
η2‖g(wt)‖2 − 2η∆

}
= − ∆2

‖g(wt)‖2
. (4)

PROBE
The idea of our algorithm, shown in Algorithm 1, is to use
an estimate of f(w∗) at each step for determining η. To
this end the algorithm keeps track of two things. First, the
smallest value of f seen in all prior steps is denoted by
fmin. Clearly, f(w∗) ≤ fmin, but the difference is unknown.
Since f is assumed to be non-negative, the actual value
of f(w∗) is some fraction below fmin. We estimate this
fraction and call it φ, with 0 ≤ φ ≤ 1, so that the estimated
value of f(w∗) is (1 − φ)fmin. This leads to the estimate
∆ = f(wt) − (1 − φ)fmin, and the corresponding η from
(3).

Algorithm 1. The PROBE algorithm. Given a loss function
f and sub-gradient ∇f , use PROBE gradient descent to
find fmin and optimal weight vector wmin. Given: upticks
to end-of-cycle, ccf (2), ratio of lower bound estimate to
current minimum, γ (2/3), tolerance, ε (0.05), and initial
weight vector, w1 (0).

fmin = f(0) = 10100

w0 = w1 = 0
ccf = 0
cycle-iteration = 0
cycle-type = normal-cycle
φ = γ

60

repeat with t = 1, . . .
cycle-iteration= cycle-iteration+1
if f(wt) > f(wt−1) then ccf = ccf + 1
compute f(wt), g = ∇f(wt)
update fmin, wmin
if ccf = 2 then

// update the estimated lower bound
switch (cycle-type)
normal-cycle:

// if no new minimum, try increasing
// lower bound
if fmin = last-fmin then

φ = γφ
cycle-type = test-cycle

end if
test-cycle:

// restore previous lower bound to retest
φ = γ−1φ
// Note, cycle-average() ≡ X
// where
X = (last-fmin − fmin) / cycle-iterations
last-average = cycle-average()
cycle-type = retest-cycle

retest-cycle:
// if retest bound was not better,
// make new estimate permanent
if cycle-average() ≤ last-average
then φ = γφ
cycle-type = normal-cycle

end switch
ccf = 0
cycle-iteration = 0
last-fmin = fmin

end if
if φ < ε then return (fmin, wmin)
// use estimated lower bound to compute η,
// and update weights
∆ = f(wt)− (1− φ)fmin
η = ∆/|g|2
wt+1 = wt − η g

end repeat
It remains to describe how the value of φ is updated. This
update depends on the behavior of f(wt). On the majority
of steps, f(wt) decreases. But, increases can occur for one
of two reasons. Either φ is too large, causing ∆ to be too
large, in which case φ needs to be decreased. Or, it is pos-
sible for the function to increase on a step even though the
value of φ is satisfactory. This latter can happen because we
generally will not be moving in the exact direction of w∗.
We cannot tell which is true, so our algorithm explores both
possibilities, by alternately decreasing and increasing φ until
evidence accumulates to justify a permanent decrease.

We take 0 < γ < 1 as the factor to multiply φ when de-
creasing it (we use γ = 2/3). Initially, we take φ = γ. We
also choose an integer ccf > 0 as a parameter of the algo-
rithm, such that after ccf observed function increases, we
will say that a cycle ends (we use ccf = 2). There are three
kinds of cycle. At the end of the default “normal-cycle”, if
the minimum value fmin was unchanged during the cycle,

then we decrease φ
φ = γ φ. (5)

We then continue to complete another cycle, which we call a
“test-cycle.” At the end of a test-cycle, we restore φ for one
“retest-cycle,”

φ = γ−1 φ.

At the end of the retest-cycle we decide whether to per-
manently decrease φ, and base this on the observed fmin
over the previous two cycles. If fmin went down as much or
more (per iteration) during the test-cycle as during the retest-
cycle, then the estimate for φ is permanently decreased, us-
ing (5). Otherwise, the current value is retained and the al-
gorithm continues with a normal-cycle.

Finally, we take ε > 0 as a parameter of the algorithm and
terminate the algorithm whenever

φ < ε.

We used ε = 0.05 in all applications in this paper.

Optimizations
The majority of calculation in PROBE is computing f
and its sub-gradient g, and some optimizations are possi-
ble. Training examples that are non-violators (that is to say
1− yi(xi ·w) < 0) do not contribute to the calculation, and
they can be skipped. To take advantage of this, we consider
all examples to be either active or dormant. All examples be-
gin as active. Active examples are used in the calculation and
their violator status is evaulated at every step. Only when an
active example has been a non-violator for 10 consecutive
steps, it transitions to dormant status. Dormant points remain
dormant for from 5 to 15 steps, randomly determined, and
are then tested for violator status. If they are non-violators,
they return to dormant status for another 5 to 15 steps. If
instead they are violators, on that step they are transitioned
to active status. As training progresses, the number of active
examples is frequently reduced by up to 80%, resulting in a
time savings per iteration of about the same percentage.

Leaving examples out of the loss calculation can po-
tentially cause problems for the PROBE algorithm. If the
dropped examples become violators before being looked at
again, then the calculated loss may be artificially low, result-
ing in a recorded value for fmin that may be too low for the
algorithm to achieve in subsequent iterations. We have seen
this happen occasionally, but only with very small training
sets.

Analysis of Algorithm
The PROBE algorithm is a conservative gradient descent
algorithm, and so it cannot fail to progress towards mini-
mizing the function f . But unlike classical gradient descent
algorithms, the path taken by the PROBE algorithm is not
monotonic. For Figure 1, we selected three MeSH terms and
graphed the distance ‖wt − w∗‖ between the weight vector
at each PROBE iteration, wt, and the eventual weight vector
produced by the algorithm, w∗. It is clear (especially for the
MeSH term rats, wistar) that the PROBE estimate occasion-
ally moves decisively away from the limit. Figure 2 graphs
the value of f(wt), and it can be seen that for all three MeSH

61

terms the function value periodically increases, whether wt

has moved away from the w∗ or not. Of course, these func-
tion increases determine the cycle boundaries, at which point
the value of φ used in the algorithm is re-evaluated.

We compare the progress of PROBE with two idealized
algorithms. The inequality (2) with η defined by (3) guaran-
tees progress towards w∗. We therefore define the PROBE*
algorithm to be

wt+1 = wt −
f(wt)− f(w∗)

‖g(wt)‖2
g(wt).

For PROBE*, the distance to w∗ decreases by at least the
amount calculated from (4), provided f(wt) > f(w∗). We
define the IDEAL algorithm by choosing the point on the
gradient line with minimum distance to w∗. This is found by
projection,

wt+1 = wt −
g(wt) · (wt − w∗)

‖g(wt)‖2
g(wt).

For w∗ and f(w∗), we use the limit obtained by the PROBE
algorithm itself. The true w∗ may be a significant distance
from this approximation, and f(w∗) may be slightly less.
Nevertheless, it can be shown that both of these idealized
algorithms have f(wt) converging to f(w∗), as long as
f(wt) > f(w∗) continues to be true.

The graphs in Figure 1 also include the distance ‖wt−w∗‖
for these two idealized algorithms. Both the IDEAL and
PROBE* algorithms exhibit monotonic progress towards
w∗, with the IDEAL algorithm always closer to w∗ than the
PROBE* algorithm. In the case of genes, p16, the IDEAL
algorithm has f(wt) < f(w∗) on iteration 178 when ‖wt −
w∗‖ = 0.350138, whereas PROBE finds the minimum w∗

on iteration 254, and terminates on iteration 257. The rate of
convergence for these idealized algorithms can also be ob-
served to slow, which we believe is caused by the gradient
near w∗ pointing at a near right angle from it.

These examples also show that the PROBE algorithm
sometimes converges more rapidly than these idealized al-
gorithms, and is able to approach a minimum at a compara-
ble rate without making use of a predetermined value of w∗

or f(w∗). Unlike the PROBE* algorithm, the PROBE algo-
rithm may step away from the limit w∗, which must be a
consequence of temporary overestimation of φ. Such jumps
are seen in Figure 1 for rats, wistar. But even when wt is not
moving away from w∗, the value of f(wt) periodically in-
creases, as can be seen in Figure 2 where f(wt) is graphed.
We believe that this behavior is beneficial to PROBE. In the
region of the minimum, the negative of the sub-gradient of f
can point in a direction that is nearly 90◦ away from w∗. But
for larger values of f(wt), the gradient is restricted to have
a more advantageous angle. Intuitively speaking, each time
PROBE steps decisively away from the minimum, it enters
a “new” region of the space, where the gradient points to-
wards the minimum, but from a “new” direction. PROBE
then progresses towards the minimum from this direction,
and when it eventually attains a new fmin, the weight vector
reflects a “new” facet of the learning problem. Thus, on each
successive cycle, a new facet may be discovered.

Table 1: Corpora in this study. Given for each corpus is the
number of defined subproblems, the number of examples,
the number of features, and the number of examples used in
training and testing.

Corpus Name subproblems examples features training testing
REBASE 1 102,997 2,032,075 68,666 34,331

MDR Dataset 3 620,119 738,104 413,414 206,705
Newsgroups 20 20,000 98,587 13,334 6,666

Industry Sectors 104 9,555 55,056 6,371 3,184
WebKB 7 8,280 69,911 5,522 2,758
Reuters 10 27,578 46,623 9,603 3,299
MeSH 20 19,506,269 66,208,706 13,004,182 6,502,087

The predictive power of minimizing the loss function on
the training set can be assessed by observing the result-
ing performance on unseen test data. Figure graphs the
precision-recall break-even (BE) performance on the test set,
calculated at 10 iteration intervals of the PROBE algorithm
and the same three MeSH terms as above. For two of the
three MeSH terms, the BE increases steadily, albeit at a de-
creasing pace. For one of the MeSH terms, the BE declines
slightly after reaching an early maximum, which can be in-
terpreted as “over training.”

Methods
We applied the three machine learning algorithms, PROBE,
Pegasos, and SVMperf to several classic machine learning
problems as described here. We then measured performance
and timing in order to evaluate the viability and advantages
of the PROBE algorithm for machine learning.

Small Corpora
We evaluated the machine learning algorithms on 6 corpora,
each of which is associated with one or more classification
problems. The corpora and sizes are listed in Table 1, in-
cluding the sizes of the training and test sets used. These
data sources were prepared previously by the authors and
documented in (Wilbur and Kim 2009). We repeat the de-
scriptions here.

REBASE: The version of REBASE (a restriction enzyme
database) we study here consists of 3,048 documents com-
prising titles and abstracts mostly taken from the research
literature. These documents are all contained in MEDLINE.
We have applied naı̈ve Bayes (MBM) to learn the difference
between REBASE and the remainder of MEDLINE, and ex-
tracted the top scoring 100,000 documents from MEDLINE
that lie outside of REBASE. We refer to this set as NRE-
BASE. These are the 100,000 documents which are perhaps
most likely to be confused with REBASE documents. We
study the distinction between REBASE and NREBASE.

MDR dataset: The MDR dataset contains information
from CDRHs (Center for Device and Radiological Health)
device experience reports on devices which may have mal-
functioned or caused a death or serious injury. The reports
were received under both the mandatory Medical Device Re-
porting Program (MDR) from 1984 to 1996, and the volun-
tary reports up to June 1993. The database contains 620,119

62

Figure 1: Distance ‖wt−w∗‖, from estimated weight vector to eventual PROBE limit on each iteration of the PROBE, PROBE*,
and IDEAL algorithms (described in section). Three MeSH terms from the MEDLINE corpus are shown.

Figure 2: The value of SVM loss f(wt), on each iteration of the PROBE algorithm. Three MeSH terms from the MEDLINE
corpus are shown.

reports that are divided into three disjoint classes: malfunc-
tion, death and serious injury. We studied the binary classi-
fications for each of the three classes in the MDR set. The
MDR set was used by (Eyheramendy, Lewis, and Madigan
2003) to study naı̈ve Bayes models.

20 Newsgroups: A collection of messages, from 20 dif-
ferent newsgroups, with one thousand messages from each
newsgroup. The data set has a vocabulary of 64,766 words.
This data set has been studied by (McCallum and Nigam
1998), (Eyheramendy, Lewis, and Madigan 2003), (Ren-
nie et al. 2003), (Madsen, Kauchak, and Elkan 2005) and
(Schneider 2005).

Industry Sectors: The industry sector data set contains
9,555 documents distributed in 104 classes. The data set has
a vocabulary of 55,056 words. This data set has been stud-
ied by (McCallum and Nigam 1998), (Rennie et al. 2003)
and (Madsen, Kauchak, and Elkan 2005).

WebKB: This data set (Craven et al. 1998) contains web
pages gathered from university computer science depart-
ments. These pages are divided into seven categories: stu-
dent, faculty, staff, course, project, department and other.
We study the assignment of each of these category terms

to documents as an independent binary decision. We do not
exclude stop words to follow the suggestion of (McCallum
and Nigam 1998). This data set has also been studied by
(McCallum and Nigam 1998) and (Schneider 2005).

Reuters: The ModApte train/test split of the Reuters
21578 Distribution 1.0 data set consists of 12,902 Reuters
newswire articles in 135 overlapping topic categories. Fol-
lowing several other studies, we build binary classifiers for
each of the ten most populous classes.

MeSH Indexing
We define a corpus based on the MEDLINE database. As
mentioned in the introduction, there are nearly 20 million
articles in MEDLINE and each article was represented in
the corpus as an example whose features consisted in the
words in the title and abstract. We divided this corpus into
two thirds for training (13,004,182 entries) and one third for
testing (6,502,087 entries).

Each of the articles is also annotated with a set of zero
or more manually assigned MeSH headings. There are over
25 thousand terms in the MeSH vocabulary, giving rise to
as many possible subproblems on this corpus. In (Sohn et

63

Figure 3: The precision-recall break-even (BE) on the test set, calculated on every tenth iteration of the PROBE algorithm.
Three MeSH terms from the MEDLINE corpus are shown.

al. 2008), twenty MeSH terms were selected for a machine
learning study, representing a range of frequencies, with the
most frequent of the MeSH terms (“rats, wistar”) appearing
in 158,602 examples, and the least frequent (“genes, p16”)
in 1,534. Each of the 20 MeSH terms is listed in Table 2
along with their frequency in the training and test sets. Also
shown in Table 2 are seven additional MeSH terms that were
selected for algorithm timing.

Machine Learning Parameters
The regularization parameter for the SVM loss function on
the small problems was defined by

λ =
X

m

where m is the size of the training set, and X = 〈‖x‖〉2 is a
normalization factor equal to the average euclidean norm of
the examples in the training set. The regularization parame-
ter for all MeSH problems is

λ =
X

108

which is a value that we have found to be optimal in past
experiments. The normalizing factor is the same in all MeSH
problems resulting in λ = 6.4 × 10−7. For SVMperf, the
equivalent parameter is

C =
1

100 λ

which for the MeSH problems is C = 1.6× 104.1
The PROBE algorithm used ε = 0.05 for termination.
Pegasos, which has no termination condition, was run for

100, 200, 300, 400, and 500 iterations, and for comparision

1The documentation for SVMperf states “. . .Clight = Cperf ∗
100/n, where n is the number of training examples. Note also that
the C values given in (Joachims 2006) should be divided by 100 for
equivalent results and that the epsilon values should be multiplied
by 100.” The values of C and ε quoted throughout this paper are
the actual values used with the SVMperf program.

purposes, the run with the best break-even precision on the
test set was selected. We also used the full training set to
calculate the gradient on each iteration (that is, At = S in
the notation of (Shalev-Shwartz, Singer, and Srebro 2007)),
and incorporated a bias term.

For SVMperf, the termination condition is controlled by
the paramater ε, which has a default value of 0.1. However,
we found that the value of ε needs to be tuned in order to get
a reasonable result from SVMperf. For the first 20 MeSH
terms in Table 2, SVMperf terminated on the first iteration
using the default parameter, essentially assigning all exam-
ples to the negative class. We suspect this is caused by the
low frequency of the positive set for these terms. When we
decreased ε to 0.01, the results were much more favorable.
When we applied SVMperf to the last 7 MeSH terms in Ta-
ble 2, which have higher positive set percentage. we used the
default value of ε = 0.1. With the default value SVMperf
did not terminate within 24 hours on some of these MeSH
problems. We believe this was due to insufficient memory
(needed> 48G). Therefore, we only report the results where
available. We make no claim that we have used the best
value of ε for any of these problems, but staid close to the
recommeded default value.

Evaluation
We give two measures of performance, the Mean Average
Precision (MAP) and precision-recall break-even (BE, also
called R-precision), both described in (Wikipedia 2011).
Both measures are based on the ranking of the test set ob-
tained from the weights produced by training, and have a
value 1 when all of the positives in the test set are ranked
higher than all the negatives (these calculations also aver-
age over ties in the ranking). The MAP values are often
larger than the corresponding BE by a small amount, but for
comparison purposes the two measures generally lead to the
same conclusions.

Results and Discussion
We compare the performance of the PROBE, Pegasos,
and SVMperf algorithms and discuss these results in sec-

64

Table 2: MeSH terms used in this study with the MEDLINE
corpus. Given for each MeSH term is the number of posi-
tives and percent of total. The first twenty MeSH terms are
used for performance comparisons in section , and the last
seven are used for timing and memory measurements in sec-
tion .

Set MeSH Term Number Percent
M1 rats, wistar 158,602 0.81%
M2 myocardial infarction 120,300 0.62%
M3 blood platelets 59,614 0.31%
M4 serotonin 57,790 0.30%
M5 state medicine 38,514 0.20%
M6 urinary bladder 37,312 0.19%
M7 drosophila melanogaster 27,426 0.14%
M8 btryptophan 24,424 0.13%
M9 laparotomy 13,178 0.07%
M10 crowns 11,962 0.06%
M11 streptococcus mutans 5,960 0.03%
M12 infectious mononucleosis 6,388 0.03%
M13 blood banks 5,302 0.03%
M14 humeral fractures 4,959 0.03%
M15 tuberculosis, lymph node 4,229 0.02%
M16 mentors 4,935 0.03%
M17 tooth discoloration 2,357 0.01%
M18 pentazocine 2,093 0.01%
M19 hepatitis e 1,479 0.01%
M20 genes, p16 1,534 0.01%

M21 pathological conditions, signs and symptoms 3,728,620 17.1%
M22 therapeutics 2,825,173 13%
M23 pharmacologic actions 2,334,464 10.7%
M24 enzymes 2,112,806 9.7%
M25 population characteristics 1,198,585 5.5%
M26 reproductive physiological phenomena 997,813 4.6%
M27 terpenes 211,839 1.0%

tion Performance. The time and memory requirements for
PROBE, SVMperf and LibLinear are compared in section
Timing and Memory. In section Alternative Loss Func-
tions, the PROBE algorithm is used to minimize the modi-
fied Huber loss and Maximum Entropy loss functions, where
neither Pegasos nor SVMperf are applicable.

Performance
Table 3 lists the results for PROBE, Pegasos, and SVMperf
on each of the small corpora. The data includes the Mean
Average Precision (MAP), precision-recall break-even (BE),
and the number of iterations. Each column in the table is the
average over the subproblems defined in each corpus. Con-
sidering MAP and BE, none of the algorithms is superior to
the others in every case. However, the Pegasos results are
not objective since its stopping criterion was based on the
test set.

Table 4 is a similar table for the 20 MeSH terms, includ-
ing a grand average. Again, there is no single algorithm that
is superior to the others on all MeSH terms. And although
the average MAP and BE is better for PROBE than both Pe-
gasos and SVMperf, this fact may not be statistically signif-
icant. The previous machine learning study on these MeSH

Table 3: Results on small corpora for the three machine
learning algorithms PROBE, Pegasos, and SVMperf. Given
for each corpus is the average over all subproblems of
the Mean Average Precision (MAP), precision-recall break-
even (BE), and number of iterations.

PROBE Pegasos SVMperf
Corpus Name MAP BE Iter MAP BE Iter MAP BE Iter
REBASE 0.838 0.789 192.0 0.824 0.784 400.0 0.820 0.794 91.0
MDR Dataset 0.943 0.912 185.3 0.945 0.912 433.3 0.944 0.914 337.0
Newsgroups 0.843 0.802 173.4 0.840 0.803 210.0 0.840 0.803 88.8
Industry Sectors 0.888 0.837 254.4 0.893 0.845 115.4 0.858 0.804 56.0
WebKB 0.775 0.752 169.1 0.782 0.757 114.3 0.758 0.731 97.4
Reuters 0.935 0.897 168.6 0.928 0.899 230.0 0.930 0.887 84.3
Average 0.869 0.832 190.5 0.869 0.833 250.5 0.858 0.822 125.8

terms ((Sohn et al. 2008), cited in the introduction) had a
best result of 0.515 for mean average precision (Table 1 of
that paper, column OTS CMLS), compared with 0.560 ob-
tained here by PROBE and 0.534 by SVMperf. This shows
the advantage of applying an SVM to the full set of training
data.

The number of iterations is an indicator of the amount of
work being done by these algorithms. In each algorithm, an
iteration corresponds roughly to a complete pass through the
training set. Without optimization, the total time for machine
learning would be a multiple of this number. However, the
PROBE algorithm uses an optimization that requires only
a subset of the training set to be considered, and the SVM-
perf algorithm uses a very similar optimization. Whereas our
implementation of Pegasos did not have this optimization.
Given those caveats, the number of iterations required on the
small corpora by SVMperf was generally less than PROBE,
which was less than Pegasos. On the MeSH terms, the num-
ber of iterations required by PROBE was less than Pegasos,
but SVMperf exhibits a steady increase in the number of re-
quired iterations as the size of the positive set increases and
the average number of iterations for SVMperf on the MeSH
terms was larger than Pegasos. We believe this was due to
the choice of ε = 0.01 which forced SVMperf to perform
a more accurate calculation. But this seemed necessary on
these very imbalanced sets.

We conclude from this that the PROBE algorithm pro-
duces performance results that are not inferior to either
Pegasos or SVMperf, and the amount of computation by
PROBE is also comparable to Pegasos and SVMperf.

Timing and Memory
An objective timing comparison could not be made for Pe-
gasos, because it lacks a stopping criterion. The SVMperf
algorithm was observed to converge very quickly in some
cases, relative to PROBE, but the time increased with the
number of positives in the training set. To further explore
this, we selected seven additional MeSH terms (listed in Ta-
ble 2), with larger positive sets ranging from 1% to 17%.

The BE, number of iterations, elapsed time (wall clock)
and resident RAM usage for these seven MeSH terms, are
shown in Table 5 for PROBE, SVMperf and LibLinear. For

65

Table 4: Results on MEDLINE corpus for the three ma-
chine learning algorithms PROBE, Pegasos, and SVMperf.
For each of twenty defined MeSH terms is the Mean Aver-
age Precision (MAP), precision-recall break-even (BE), and
number of iterations. The last row averages over the twenty
MeSH terms.

PROBE Pegasos SVMperf
Set MAP BE Iter MAP BE Iter MAP BE Iter
M1 0.477 0.489 152 0.471 0.486 500 0.471 0.492 1,384
M2 0.752 0.724 281 0.743 0.714 300 0.726 0.706 1,180
M3 0.695 0.699 274 0.687 0.697 400 0.666 0.681 797
M4 0.685 0.686 254 0.681 0.685 300 0.659 0.666 757
M5 0.302 0.364 237 0.295 0.353 400 0.302 0.354 854
M6 0.551 0.583 274 0.560 0.593 500 0.533 0.569 625
M7 0.686 0.664 167 0.682 0.657 400 0.652 0.651 365
M8 0.606 0.6142 296 0.589 0.610 500 0.585 0.603 662
M9 0.256 0.333 264 0.256 0.338 100 0.234 0.309 564
M10 0.629 0.617 273 0.622 0.618 500 0.612 0.615 266
M11 0.792 0.808 230 0.705 0.733 100 0.766 0.788 144
M12 0.711 0.717 287 0.701 0.710 200 0.683 0.694 258
M13 0.395 0.448 313 0.386 0.459 500 0.358 0.439 219
M14 0.581 0.604 266 0.511 0.554 500 0.556 0.591 182
M15 0.477 0.508 223 0.472 0.503 500 0.464 0.505 209
M16 0.426 0.473 209 0.422 0.473 100 0.376 0.430 319
M17 0.446 0.490 348 0.239 0.301 500 0.397 0.456 151
M18 0.681 0.686 366 0.480 0.555 500 0.613 0.613 250
M19 0.754 0.799 299 0.559 0.626 200 0.707 0.766 41
M20 0.303 0.419 257 0.086 0.178 500 0.314 0.442 84

MeSH Average 0.560 0.586 263.5 0.507 0.542 375.0 0.534 0.568 465.6

those problems where SVMperf produced a result, the aver-
age BE of PROBE (0.62) was about the same as SVMperf
(0.63) whereas the average BE of LibLinear was 0.58. In
four of the seven cases LibLinear yielded a slightly higher
BE than PROBE but when Liblinear performed poorly, it
was much worse than the other algorithms.

All timing was performed on a standalone multi-core
computer with Intel Xeon CPUs at clock speed of 2.67 GHz,
and 48 gigabytes of RAM. The PROBE algorithm took be-
tween 3 and 6 hours per MeSH term. The SVMperf algo-
rithm, on the other hand took more than 10 hours except ter-
penes) whereas the LibLinear took bewteen 1 and 16 hours.

Memory demand showed a similar trend. The PROBE
algorithm required around 16G for each calculation. The
SVMperf algorithm required the minmuim 19.6G, increas-
ing with the number of iterations and the LibLinear required
24.3G.

In addition to differences in the algorithm, we are also
aware of some differences in the way memory is handled by
the three algorithms. Both SVMperf and LibLinear require
input to be in the form of a text file with features represented
by numbers. For the MeSH training these files are about 13G
in size. We assume that most of this data is read into data
structures that are resident in memory. In contrast, input used
by PROBE is stored in a binary file that is around 16G in
size, and is memory mapped, which explains why the total
memory usage was around 16G.

We conclude from this that in some circumstances, partic-
ularly for large training sets with positive sets of significant

Table 5: Timing and memory on MEDLINE corpus for
PROBE, SVMperf and LibLinear. Given for each of seven
defined MeSH terms (listed in Table 2) is the precision-
recall break-even (BE), number of iterations, elapsed time,
and maximum resident computer memory. All timing and
memory measurements were conducted using a standalone
multi-core computer with Intel Xeon CPUs at clock speed
of 2.67 GHz, and 48 gigabytes of RAM.

PROBE SVMperf LibLinear
Set BE Iter Time Mem BE Iter Time Mem BE Iter Time Mem

M21 0.601 231 4:50 19.6E9 > 30:00 0.602 56 11:05 24.3E9
M22 0.564 146 3:05 17.1E9 > 30:00 0.577 168 16:12 24.3E9
M23 0.565 149 3:07 15.7E9 > 30:00 0.587 117 7:49 24.3E9
M24 0.730 190 3:32 20.6E9 3234 39:28 46.3E9 0.738 67 3:49 24.3E9
M25 0.506 172 3:38 14.0E9 0.506 3027 29:04 46.0E9 0.449 108 8:12 24.3E9
M26 0.693 215 3:47 14.1E9 0.693 2348 11:35 26.3E9 0.657 77 3:09 24.3E9
M27 0.662 276 5:33 13.9E9 0.701 1116 3:04 19.6E9 0.621 133 1:51 24.3E9

size, the PROBE algorithm may be a more efficient choice
than either SVMperf or LibLinear.

Alternative Loss Functions
Both Pegasos and SVMperf are algorithms that are specifi-
cally designed to minimize the hinge loss on a training set.
The PROBE algorithm, on the other hand, is a general gra-
dient descent algorithm and can be applied to any convex
function. To illustrate this, we applied PROBE to the mod-
ified Huber loss function (Zhang 2004) and the Maximum
Entropy model (Berger, Pietra, and Pietra 1996), for each
of the 20 MeSH terms of Table 2. The BE for Huber and
MaxEnt are shown for the 20 MeSH terms in Table 6, to-
gether with the previous PROBE SVM and SVMperf val-
ues for reference. The Huber loss function results in equiv-
alent BE to the SVM hinge loss, while the Maximum En-
tropy model is consistently inferior. This illustrates the ef-
fectiveness of PROBE for minimizing arbitrary convex loss
functions. However, we compared PROBE with LBFGS in
the MaxEnt algorithm on some small problems and find that
PROBE is significantly slower (3 to 4 times) so we do not
recommend PROBE for MaxEnt calculations.

Conclusions
We have described a gradient descent algorithm for convex
minimization, called PROBE. When applied to SVM learn-
ing, it performs about the same as published machine learn-
ing algorithms Pegasos, SVMperf and LibLinear, also de-
signed for large training sets. But it has some advantages.
PROBE is a simple and easily programmed algorithm, with
a well-defined, parametrized stopping criterion; it is not lim-
ited to SVM, but can be applied to other convex loss func-
tions, such as the Huber and Maximum Entropy models; and
its time and memory requirements are consistently modest
in handling large training sets. We have successfully used
the PROBE algorithm in several published research projects,
starting with (Smith and Wilbur 2009). We have also used
several implementations of PROBE over the past few years,
and adapted it to take advantage of the advancing computer
technology, including a parallel CPU computation of the

66

Table 6: Results on MEDLINE corpus using PROBE to min-
imize the SVM, Huber and Maximum Entropy loss com-
pared with the results for SVMperf. For each of twenty de-
fined MeSH terms the precision-recall break-even (BE) is
shown. The last row averages over the twenty MeSH terms.

Term PROBE(SVM) PROBE(Huber) PROBE(MaxEnt) SVMperf
M1 0.489 0.490 0.483 0.4916
M2 0.724 0.723 0.710 0.706
M3 0.699 0.698 0.680 0.682
M4 0.686 0.682 0.664 0.666
M5 0.364 0.344 0.361 0.354
M6 0.583 0.576 0.550 0.569
M7 0.664 0.671 0.653 0.651
M8 0.614 0.616 0.577 0.603
M9 0.333 0.345 0.321 0.309
M10 0.617 0.623 0.597 0.615
M11 0.808 0.797 0.723 0.786
M12 0.717 0.724 0.679 0.694
M13 0.448 0.472 0.408 0.439
M14 0.604 0.599 0.541 0.591
M15 0.5075 0.5145 0.4592 0.5046
M16 0.473 0.481 0.401 0.430
M17 0.490 0.503 0.419 0.456
M18 0.686 0.694 0.595 0.613
M19 0.799 0.797 0.746 0.766
M20 0.419 0.399 0.331 0.442

MeSH Average 0.586 0.587 0.545 0.568

gradient. We recommend PROBE as a viable alternative, es-
pecially for large problems with positive sets of significant
size.

Acknowledgments
This research was supported by the Intramural Research
Program of the NIH, National Library of Medicine.

References
Berger, A. L.; Pietra, S. A. D.; and Pietra, V. J. D. 1996. A
maximum entropy approach to natural language processing.
Computational Linguistics 22:39–71.
Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.;
Mitchell, T.; Nigam, K.; and Slattery, S. 1998. Learning to
extract symbolic knowledge from the World Wide Web. In
Proceedings of the 1998 National Conference on Artificial
Intelligence, 509–516.
Eyheramendy, S.; Lewis, D. D.; and Madigan, D. 2003. On
the naı̈ve Bayes model for text categorization. In Ninth Inter-
national Workshop on Artificial Intelligence and Statistics.
Fan, R.; Chang, K.; Hsieh, C.; Wang, X.; and Lin, C. 2008.
Liblinear: A library for large linear classification. Journal of
Machine Learning Research 9:1871–1874.
Joachims, T. 2006. Training linear SVMs in linear time. In
Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 217–226.
Madsen, R. E.; Kauchak, D.; and Elkan, C. 2005. Modeling
word burstiness using Dirichlet distribution. In Twenty Sec-
ond International Conference on Machine Learning, 545–
552.

McCallum, A. K., and Nigam, K. 1998. A comparison of
event models for naı̈ve Bayes text classification. In AAAI-98
Workshop on Learning for Text Classification, 41–48.
McEntyre, J., and Lipman, D. 2001. Pubmed: Bridging
the information gap. Canadian Medical Association Journal
164:1317–1319.
NLM. 2011. MeSH tree structures. Available from National
Library of Medicine Website.
Rennie, J. D. M.; Shih, L.; Teevan, J.; and Karger, D. R.
2003. Tackling the poor assumptions of naı̈ve bayes text
classifiers. In Proceedings of the Twentieth International
Conference on Machine Learning, 616–623.
Schneider, K.-M. 2005. Techniques for improving the per-
formance of naı̈ve Bayes for text classification. In Com-
putational Linguistics and Intelligent Text Processsing, 6th
International Conference, 682–693.
Shalev-Shwartz, S.; Singer, Y.; and Srebro, N. 2007. Pe-
gasos: Primal estimated sub-gradient solver for SVM. In
Proceedings of the Twenty Fourth International Conference
on Machine Learning, 807–814.
Smith, L. H., and Wilbur, W. J. 2009. The value of parsing
as feature generation for gene mention recognition. Journal
of Biomedical Informatics 42(5):895–904.
Sohn, S.; Kim, W.; Comeau, D. C.; and Wilbur, W. J. 2008.
Optimal training sets for bayesian prediction of MeSH as-
signment. Journal of the American Medical Information As-
sociation 15:546–553.
Wikipedia. 2011. Information retrieval — wikipedia, the
free encyclopedia. [Online; accessed 17-August-2011].
Wilbur, W. J., and Kim, W. 2009. The ineffectiveness of
within-document term frequency in text classification. In-
formation Retrieval 12:509–525.
Zhang, T. 2004. Solving large scale linear prediction
problems using stochastic gradient descent algorithms. In
Proceedings of the Twenty-first International Conference on
Machine learning, 919–926.

67

