
Reasoning about Chemical Reactions using the Situation Calculus

Arman Masoumi
Ryerson University

Department of Computer Science
Toronto, Ontario, Canada

{arman.masoumi@ryerson.ca}

Mikhail Soutchanski
Ryerson University

Department of Computer Science
Toronto, Ontario, Canada
{mes@cs.ryerson.ca}

Abstract

We explore applicability of the situation calculus, the well-
known logical framework developed in Artificial Intelligence
for representation of dynamic systems, to the task of rep-
resenting knowledge about processes, actions and events in
the natural sciences. In this paper, we concentrate on a case
study in the area of organic chemistry. More specifically, we
adapt the situation calculus to the task of automating organic
synthesis planning on a qualitative level, where the objec-
tive is to identify a chain of chemical reactions transform-
ing the given initial molecules into the desired goal molecule.
We present two approaches for reasoning about reactions in
organic chemistry: a “micro” approach and a “macro” ap-
proach. The “micro” approach is a low level approach that ex-
plicitly represents the most elementary interactions between
molecules during a single chemical reaction, namely the split-
ting and forming of bonds between atoms. In contrast, the
“macro” approach is a higher level approach that treats each
chemical reaction (a set of splits and formation of bonds) as
an elementary action. Both approaches are implemented in
PROLOG. Declarative heuristics are defined to reduce the
search space and help the program to find the correct syn-
thesis routes more quickly. We hope that the lessons learned
from our successful case study can have discovery potential
in other bio-medical sciences. We discuss briefly how the
proposed approaches can contribute to solving other research
problems and to communicating pathways.

1 Introduction
In Artificial Intelligence (AI), the situation calculus (SC) is
one of the most popular and well-known logical formalisms
for representation of and reasoning about the effects of ac-
tions and events. The situation calculus was first introduced
by John McCarthy in the 1960s. The version of SC that
we use here follows (Reiter 2001). A recent new fragment
(Yehia and Soutchanski 2012) of SC enables seamless in-
tegration of traditional ontologies with reasoning about ac-
tions. More specifically, any OWL2 ontology can be used
to annotate logical axioms specifying effects of actions. The
general SC has been already applied in several areas, but,
surprisingly, to the best of our knowledge, not for the pur-
poses of automating discovery in natural sciences. We hy-
pothesize that, as a well-explored logical framework with

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

known reasoning mechanisms, SC offers significant poten-
tial for representation and reasoning about dynamics in the
sciences (including biological pathways and physiological
processes). In our paper, we concentrate on a case study
related to the computer-assisted organic synthesis (CAOS)
problem. This problem is important in drug discovery and
in the field of organic chemistry in general. We show that
this problem can be conveniently formulated as a planning
problem in SC. We consider two different approaches to ax-
iomatizing chemical reactions in SC: a “micro” approach
and a “macro” approach. We argue that the planning prob-
lem can be made computationally feasible by using declar-
ative heuristics that reduce the search space significantly.
We have successfully implemented both approaches in PRO-
LOG. Our program can compute a sequence of chemical re-
actions capable of producing a desired target molecule from
initially available molecules. Using our PROLOG program
we can successfully solve a variety of instances of the CAOS
problem. We report run-time data collected when the plan-
ning problem is solved with or without declarative heuristics
for several target molecules. Our data show that the heuris-
tics help the program to find the correct synthesis route more
quickly. Our research can be useful not only for solving
the organic synthesis planning problem, but also for solv-
ing other practical computational problems. Also, since our
research can be applied in other areas beyond organic chem-
istry, we hope that the lessons learned from our successful
case study can have the potential of facilitating discovery in
the biomedical sciences. In Section 6, we argue briefly why
the proposed approaches can facilitate accomplishments in
the biomedical sciences.

2 Background
To make our paper readily comprehensible we review both
the situation calculus and the basics of organic chemistry.

The situation calculus (SC) is a predicate logic language
for axiomatizing dynamic worlds. In recent years, it has been
considerably extended beyond the original language to in-
clude stochastic actions, concurrency, continuous time, etc,
but in all cases, its basic ingredients consist of actions a,
situations s and fluents (Reiter 2001). Actions, A(~x), where
~x is a tuple of distinct object variables, are first order logic
(FOL) terms consisting of an action function symbol A and
its arguments ~x. A situation is a first-order term denoting a

AAAI Technical Report FS-12-03
Discovery Informatics: The Role of AI Research in Innovating Scientific Processes

35

sequence of actions. Such sequences are represented using a
binary function symbol do: do(a, s) denotes the sequence re-
sulting from adding an action term a to the sequence s. The
special constant S0 denotes the initial situation, namely the
empty action sequence. Every situation refers uniquely to a
sequence of actions. SC includes the predicate Poss(a, s) to
characterize actions a that are possible to execute in s, and
the predicate s1 � s2 to specify precedence between situ-
ations s1 and s2. As usual, we say that a situation calculus
formula ψ(s) is uniform in s, if s is the only situation term
mentioned in ψ(s), the formula ψ has no occurrences of the
predicates Poss,≺, and has no quantifiers over situations.
Fluents F (~x,s) are predicates with the last argument s being
a situation. Their truth values may depend on actions in s.

A basic action theory (BAT) D is a set of axioms for a
domain theory written in SC with the following five classes
of axioms to model actions and their effects (Reiter 2001).
(We give examples of axioms in the subsequent sections.)
In axioms, all free variables (typically starting with lower
case letters) are implicitly universally (∀) quantified at front.
Read the symbol ∧ as ‘and’, ∨ as ‘or’, ∃ as exists, ¬ as ‘not’.
Action precondition axioms (PA)Dap: There is one axiom
for each action term A(~x), with syntax Poss(A(~x), s) ↔
ΠA(~x, s). Here, ΠA(~x, s) is an uniform formula composed
from fluents with free variables among ~x, s. These are the
preconditions of action A: A is possible if and only if (use
the bi-conditional↔ for iff) the condition ΠA(~x, s) holds.
Successor state axioms (SSA) Dss: There is one axiom for
each fluent F (~x, s), with syntactic form F (~x, do(a, s)) ↔
ΦF (~x, a, s), where ΦF (~x, a, s) is a formula uniform in s
with free variables among a, s, ~x. Each SSA is as follows:
F (~x, do(a, s))↔

∨
i a=PosActioni(~x) ∧ γ+i (~x, s) ∨

F (~x, s) ∧ ¬
(∨

j a=NegActionj(~x) ∧ γ−j (~x, s)
)
,

where PosActioni is an action that makes the fluent F true
and γ+i (~x, s) is the formula expressing a context in which
this positive effect can occur; similarly, NegActionj is an ac-
tion that can make the fluent F false if the formula γ−j (~x, s)
holds in s. If the executed action a is none of these, then the
truth value of F remains unchanged (a has no effect). SSAs
characterize the truth values of the fluent F in the next situ-
ation do(a, s) in terms of fluents in the situation s and they
represent non-effects of actions compactly.
Unique name axioms for actions and object constants
Duna: These state that the actions of the domain and the
constants are pairwise unequal.
Initial theoryDS0

: Specifies initial (incomplete) knowledge.
This is a set of sentences whose only situation term is S0.
Foundational axioms Σ: Sentences about the relation s1 �
s2 of precedence between situations s1 and s2 (Reiter 2001).

Below we summarize basic notions from aliphatic or-
ganic chemistry. (However, SC can be also used to reason
about reactions of compounds with rings, such as benzene.)
Molecules are formed by bonded atoms. Chemical valence
is described as the number of bonds an atom can form. For
example, a carbon atom can form four bonds, and it can
also form at most two double bonds, e.g., in carbon diox-
ide CO2, i.e., it has valence number of 4, while an oxygen
atom has valence 2 and bonds with at most two atoms, e.g.,

in water H2O; hydrogen has valence 1. Molecules are cat-
egorized into chemical classes based on their constitutive
functional groups. Functional groups are specific groups of
atoms within a molecule that are responsible for chemical
characteristics of the molecule. The molecules that have the
same functional groups behave similarly in chemical reac-
tions. For example, alkanes, alcohols and esters are some
of the well-known chemical classes that display unique be-
haviors in reactions. The main functional groups of these
chemical classes are alkyl, hydroxyl and ester, respectively.
Alkyls, usually denoted by R, are chemical compounds that
consist solely of acyclic single bonded (univalent) carbon
and hydrogen atoms such that all atoms have saturated bonds
except for one carbon atom that can react (alkyls can exist
as a straight chain of carbons or as branched chains of car-
bon atoms, known as isomers). For example, methyl CH3-
and ethyl CH3−CH2- are alkyls. A hydroxyl group OH- is
an oxygen atom O that is bound with a hydrogen atom H.
The ester functional group has the form COO−R, where
R is an alkyl. Alkanes are compounds in which the alkyl
functional group bonds with a hydrogen atom. For example,
methane CH4 is an alkane. An alcohol R−OH is a compound
in which a hydroxyl functional group -OH is bound to a car-
bon atom in an alkyl R: for instance, methanol CH3−OH
and ethanol CH3−CH2−OH are alcohols. Esters are com-
pounds of the form R−COO−R′, where both R and R′ are
alkyls, and an oxygen atom has a double bond with carbon.
Primary alkyl halide is R−X, where X is a halogen (e.g., F,
Cl, Br, I).

A moiety (i.e., a portion) is generally used to signify part
of a molecule that may include either a whole functional
group or part of a functional group as substructures. For ex-
ample, an ester R−COO−R′ has an ester functional group
(COO−R′) and is composed of an alkoxy moiety (-OR′) and
an acyl moiety (RCO-). Another example is alcohol R−OH
which is composed of a hydroxyl moiety OH and an alkyl
moiety R.

Computer-assisted organic synthesis aims to use comput-
ers to help chemists in the process of designing multistep
synthesis of organic compounds. It has been an active area
of research for a long time (Corey and Wipke 1969; Vléduts
1963). The 1990 Nobel Prize in Chemistry was awarded to
E.J. Corey for the “development of the theory and method-
ology of organic synthesis”. A variety of systems have been
developed that help to find a sequence of chemical reactions
synthesizing a target compound (Corey and Cheng 1995;
Chen 2006; Todd 2005; Cook et al. 2012). It is interesting
to realize that the technique of retrosynthetic analysis popu-
lar in CAOS literature resembles the technique of regression
invented independently in AI (Waldinger 1975) and used ex-
tensively in SC for reasoning about the effects of actions
(Reiter 2001). We hope that our paper will stimulate the dis-
covery of other links and analogies with AI that will help to
advance research in organic chemistry and related sciences.

3 Representing Chemical Reactions in SC
It is common to think of molecules as graphs, where the ver-
tices of the graph represent the atoms forming the molecule
and the edges of the graph represent the chemical bonds

36

between the atoms. Fujita introduces Imaginary Transition
Structure (ITS), a formalism to model chemical reactions
(Fujita 2001; 1986). A somewhat related approach was de-
veloped by G.E. Vladutz, who defined “superimposed reac-
tion graphs ” and, by omitting atoms, which do not partic-
ipate in bond alterations, a sub-graph called “superimposed
reaction skeleton graph” (Vléduts and Geivandov 1974). In
ITS, three kinds of bonds are defined depending on the role
they play in a chemical reaction: out-bonds (bonds that exist
only in the starting stage, but disappear after the reaction),
in-bonds (bonds that exist only in the product stage, but not
before the reaction), and par-bonds (bonds that exist in both
starting and product compounds; these remain unchanged).
This definition of bonds can be matched well in SC, if we
introduce a fluent for bonds. When writing SSAs for bonds,
we consider the bonds that will be formed (the fluent be-
comes true), the bonds that will be split (the fluent becomes
false), and the bonds that do not change as a result of an
action. Thus, we seek to write general axioms representing
the effects of a class of chemical reactions by using the ITS
definition for chemical reactions.

There are two approaches to writing axioms for a chem-
ical synthesis design problem using SC: one using micro
actions, the other using macro actions. The differences be-
tween the two approaches and their requirements will be dis-
cussed later. Here we explain what they have in common.

When solving an organic synthesis problem, there needs
to be a set of chemical compounds to initiate the chemical
reactions. This set of initial molecules is defined in the initial
theory (DS0), which can be incomplete (if our initial knowl-
edge is incomplete). The object constants (typically starting
with a capital letter) in our axioms represent the physical
atoms from the periodic table. Any number of atoms can
be introduced using situation independent predicate symbols
corresponding to the common names of the atoms. For ex-
ample, Hydrogen(H ′) means that the constant H ′ repre-
sents a hydrogen atom. Similarly, we can introduce pred-
icates for a group of atoms. For example, Halogen(x) is
true if x belongs to the Halogen group in the periodic ta-
ble (e.g., x might be Fluorine or Chlorine). Molecules are
formed by bonds between the atoms; hence, a few fluents are
introduced to determine whether an atom is bound to another
in any situation. The fluent Bond(x, y, s) is true if atom
x has a single bond with atom y in situation s. Similarly,
the fluent DoubleBond(x, y, s) is true if there is a double
bond between x and y in s. To represent bonds created by
electrons shared within a ring we can introduce the fluent
ContinuousBond(x, y, s). The initial theory includes for-
mulas about the bonds between the atoms corresponding to
the starting stage molecules. For example, a water molecule
H2O in the initial situation S0 can be represented as
Hydrogen(H ′) ∧Hydrogen(H ′′)∧

H ′ 6=H ′′ ∧Oxygen(O)∧
∀x(Bond(x,O, S0)→ (x=H ′ ∨ x=H ′′))∧
∀y(Bond(H ′′, y, S0)→ y=O)∧
∀y(Bond(H ′, y, S0)→ y=O).

Additionally, in order to represent the reacting sub-graphs
of each molecule, we need to characterize molecules as
instances of chemical classes and identify their functional

groups. To achieve this, several well-known chemical con-
cepts are introduced as abbreviations. These concepts might
include alkyl, alcohol, ester, ether, water, etc. We do not
need SSAs for these abbreviations since they are definitions
that can be expanded on demand. We allow only one atom as
an object argument in each abbreviation. We call that atom
the key atom. Having only one object argument in the abbre-
viations facilitates translating them to concepts in a descrip-
tion logic (Baader et al. 2003). The key atom of a molecule is
nondeterministically picked out from a set of candidates that
are generated based on identifying the moieties that com-
pose the molecule. More specifically, the key atom is se-
lected out of those atoms which belong to a moiety of the
molecule and bond to another moiety, i.e., the key atom is
one of the active end vertices bridging two moieties. For ex-
ample, in alcohol R−OH, the carbon of the alkyl R and the
oxygen of the hydroxyl group OH are two candidates for be-
ing the key atom. The abbreviation of alcohol with oxygen
as the key atom would be this:

Alcohol(o, s)
def
= Oxygen(o) ∧ ∃=2 x(Bond(o, x, s))∧

∃=1 h(Hydrogen(h) ∧Bond(o, h, s))∧
∃=1 c(Alkyl(c, s) ∧Bond(o, c, s)),

where ∃=1 (∃=2, respectively) is a counting quantifier say-
ing that there exists exactly one (there are exactly two, re-
spectively) entities for which quantified formula holds. No-
tice that in the abbreviation for alcohol we use another ab-
breviation, namely Alkyl(c, s). The key atom of an alkyl is
the carbon atom that is not saturated with hydrogen or other
carbon atoms, but can form a bond. Similarly, by choosing
the oxygen in a water molecule H2O to be the key atom, the
abbreviation for water would be:

Water(o,s)
def
= Oxygen(o) ∧ ∃=2 x(Bond(o, x, s))∧

∃=2 h(Hydrogen(h) ∧Bond(o, h, s)).
Each abbreviation essentially describes all the atoms that

are connected in the molecule and all the bonds among them.
Analogously, we introduce some abbreviations for formu-

las that characterize our desired target situation. The abbre-
viationGoal(s) is used to characterize whether the sequence
of actions represented by s is our goal. Goals depend on the
planning instance we would like to solve. For example,

Goal(s)
def
= (∃o)Alcohol(o, s).

This formula states that our goal is to reach a situation s in
which a key atom o belongs to an alcohol molecule.

The atoms, the initial theory, the abbreviations for chemi-
cal compounds and the goal states are defined in the same
way in both micro and macro approaches. In addition to
these, we need some PAs to specify when actions are pos-
sible. Also, SSAs are needed to determine the effect of the
actions on bonds. However, each approach requires a differ-
ent set of situation calculus actions. Consequently, we need
a different set of PAs and a different set of SSAs for each ap-
proach. The next two subsections explain these approaches
in detail.

3.1 Micro Approach
The micro approach considers the most elementary ac-
tions possible in the process of a chemical reaction, namely

37

splitting and forming bonds between atoms. According to
this approach, one chemical reaction translates into a se-
quence of actions. The micro approach needs only two ac-
tions, splitBond and formBond, since any chemical re-
action can be represented in terms of these elementary ac-
tions. For example, splitBond(C1,O1,1) means that a sin-
gle bond between the atom C1 and the atom O1 splits,
while formBond(C1,O1,1) means that a single bond forms
between C1 and O1. These actions can also represent
formation or splitting of multiple bonds. For example,
splitBond(C1,O1,2) and formBond(C1,O1,2) represent
splitting and formation of double bonds betweenC1 andO1.

Furthermore, in addition to the fluents representing bonds
between atoms, we need to introduce some auxiliary fluents
for keeping track of bonds between the key atoms of the
intermediate compounds. The reason we need such fluents
is that we are faced with intermediate molecules in this ap-
proach; that is, the imaginary sub-molecules that are created
when a chemical reaction has started, but has not yet com-
pleted. It is easy to introduce these intermediate molecules
if a reaction mechanism is known in advance. Otherwise,
the axiomatizer may need to guess different alternative in-
termediates. We have to write SSAs for the effects of the ac-
tions on these fluents. An example of such SSAs would be:
HydrogenSeparatedFromStrongAcid(h, do(a, s))↔
∃x(a=splitBond(h, x, 1)∨a=splitBond(x, h, 1))∧

Strong acid(h, s) ∧Hydrogen(h) ∨
HydrogenSeparatedFromStrongAcid(h, s)∧

¬∃x(a=formBond(h, x, 1) ∨
a=formBond(x, h, 1)).

The fluent HydrogenSeparatedFromStrongAcid(h, s)
holds if h is a hydrogen ion (a proton) separated from a
strong acid in the situation s. This fluent is true in do(a, s)
if and only if the most recent action a split the bond of the
hydrogen ion from a strong acid, or if the hydrogen ion had
been separated from a strong acid in previous situation s,
and it did not form a new bond.

We have to axiomatize when it is possible to split or form
bonds between atoms. There is one PA for each elementary
action. Each PA covers all the possibilities for every pair of
atoms at each intermediate stage of a reaction, e.g.,
Poss(splitBond(x,y,1),s)↔ ΠC−O ∨ΠH−O ∨ · · · ,

where ΠC−O, one of the disjunctive sub-cases, stands for:
Carbon(x) ∧Oxygen(y) ∧ Ester(x, s) ∧Bond(x, y, s)∧
∃h, o′ (Hydrogen(h) ∧Oxygen(o′)∧

Water(o′, s) ∧ Strong acid(h, s)).
This specifies a precondition for a carbon atom x to split
its bond with its oxygen neighbor y. Specifically, it is pos-
sible to split the single bond between the key carbon atom
and its single bonded oxygen neighbor in an ester molecule
when both a molecule of water and a molecule of strong
acid are present. To visualize this sub-case consider Fig-
ure 1. Here, we have an ethyl acetate, which is an ester,
with a water molecule H2O and a molecule of hydrochlo-
ric acid HCl, which is a strong acid. Therefore, all the con-
ditions of this disjunctive sub-case ΠC−O are satisfied. The
Ester(x, s) identifies the C atom and Bond(x, y, s) iden-
tifies the neighbor O atom in the ester molecule in situa-
tion s (distinguished by the arrow pointing at them). There

is also an oxygen atom o′ that determines the presence of a
water molecule, Water(o′, s), and a hydrogen atom h that
determines a molecule of a strong acid, Strong acid(h, s).
Therefore, it is possible to split the bond between C and O.

Figure 1: splitBond between carbon and oxygen atoms

The above example characterizes executability of an ac-
tion initiating a chemical reaction, namely the ester and
water reaction. But in the micro approach, we also need
a precondition sub-case for every step of a chemical re-
action. In other words, we need a sub-case for continu-
ing an already started chemical reaction. These sub-cases
take advantage of the auxiliary fluents that were introduced
earlier to keep track of key atoms in intermediate com-
pounds participating in each step. For example, in the sit-
uation resulting from executing the splitBond(C,O,1) ac-
tion discussed above, there is a sub-molecule that was
formerly part of the ester molecule. We identify it using
the active carbon atom and represent it with the auxiliary
CarbonFromPartialEster(c,s) fluent. The following dis-
junctive sub-case ΠH−O specifies when the second step of
this reaction (splitting bond between H and O of a water
molecule) is possible:
Hydrogen(x) ∧Oxygen(y) ∧Water(y, s)∧
Bond(x, y, s) ∧ (∃c)CarbonFromPartialEster(c, s).
This sub-case states that it is possible to split the bond

between a hydrogen atom and the oxygen atom of a water
molecule if there is a carbon atom present that split from
an ester. In Figure 2, you can see this second step of the
chemical reaction. Here the carbon atom separated from an
ester, CarbonFromPartialEster(c, s), is identified with
an arrow on the left hand side. Since there is such an atom
and there is a molecule of water, it is possible to split the
bond in the water molecule. The arrows on the right hand
side of the figure point to the atoms in the water molecule
that can split the bond.

The PA for the formBond action is similar. In general,
in the micro approach, each of the two PAs for splitBond
and formBond actions is a (potentially long) disjunction of
conditions similar to those mentioned above.

Finally, we need to write SSAs for the fluents that rep-
resent bonds between the atoms. These SSAs determine
the direct effect of the actions on the Bond(x, y, s) and
DoubleBond(x, y, s) fluents. Other bonds are similar.

The SSA for the Bond fluent in the micro approach is
quite simple, since there are only two actions. It is as fol-
lows:

Bond(x, y, do(a, s))↔ (a=formBond(x, y, 1)∨
a=formBond(y, x, 1)) ∨ (Bond(x, y, s)∧
a 6= splitBond(x, y, 1) ∧ a 6= splitBond(y, x, 1)).

38

Figure 2: splitBond between hydrogen and oxygen of water

This SSA states that two atoms have a single bond if and
only if the last action added a single bond between them (the
order of appearance of the atoms in the action is unimpor-
tant), or they already had a single bond and the last action
did not split that bond.

To discuss the scalability of the axiomatization in the mi-
cro approach assume we have N reactions in our knowledge
base (KB), where each reaction has at most M elementary
steps (splitting and forming bonds). The PAs have syntax
Poss(act(x, y, z),s)↔ Π1∨Π2∨· · · , where act(x, y, z) is
either splitBond(x, y, z), or formBond(x, y, z), and each
Πi (which represents a condition for the i-th pair of atoms)
is a formula composed from fluent literals or abbreviations.
Suppose each precondition sub-case in Πi mentions at most
K literals to specify when one elementary step between a
pair of atoms can proceed in a reaction. Therefore, each PA
will have on the order of O(N ·M ·K) sub-cases. In prac-
tice, M and K are small constants, meaning there is an up-
per bound on the number of steps in reactions and on the
number of literals needed to specify each precondition sub-
case. Therefore, when the number of reactions N grows, the
length of the PAs grows linearly.

There are two kinds of SSAs in the micro approach, one
for the bond fluents and another one for auxiliary fluents.
The SSAs for the bond fluents do not change when the num-
ber of reactions increases in KB. Therefore, the SSAs for
the bond fluents stay the same regardless ofN . However, as-
suming each reaction hasM steps, we need on averageM/2
auxiliary fluents for each reaction (since each split in a re-
action requires introducing a new auxiliary fluent). Suppose
that the context condition formulas in the SSAs for the aux-
iliary fluents need at most K literals, where K is a constant.
Clearly, when N grows, the number of auxiliary fluents and
the number of SSAs for auxiliary fluents grow linearly, but
the lengths of the corresponding SSAs are independent of
the number of reactions N .

3.2 Macro Approach
The other approach is to consider macro actions, meaning
that each action in SC represents one full real chemical
reaction. Our reactions are generic in the sense that they
represent a class of individual reactions between similar
molecules. This approach requires that all the atoms partici-
pating in a chemical reaction (all those atoms which change
bonds) be listed as arguments in the action. In particular,
this requirement accounts for stoichiometry of chemical re-
actions. For example, the ammonia NH3 synthesis reaction
N2 + 3 H2 −−→ 2 NH3 can be represented by the action term

hydrogenationOfNitrogen(n′, n′′, h1, h2, h3, h4, h5, h6),
where the arguments n′, n′′ account for 2 nitrogen atoms,
and h1, h2, h3, h4, h5, h6 account for 6 hydrogen atoms. As
an example of actions in the macro approach, consider the
ester water reaction (e w r action), which we write using
long names of variables to suggest participating molecules:

e w r(carbOfEster1, oxOfEster2, hydOfWater3,
oxOfWater4, hydOfAcid5, acidAnion6)

This action represents the chemical reaction between an es-
ter and a water molecules when an acid catalyst is present.
We intentionally consider same reaction that was discussed
before to illustrate the differences between the approaches.

It is worth noting that since splitting and forming of the
bonds happen in a “package” in the macro approach, that is
the chemical reaction is considered as a whole, there is no
need to introduce auxiliary fluents to keep track of key atoms
in intermediate chemical compounds. Each action will split
and form the relevant bonds in one step. In other words,
since there will be no intermediate state where a chemical
reaction is in-progress, there is no need to keep track of in-
termediate key atoms. Consequently, this approach is con-
venient when order of bond formation and cleavage steps is
incompletely known or when the mechanism of a chemical
reaction should be treated as “black-box”.

As usual in SC, we need to write a PA for each (re-)action.
An example of a PA in the macro approach is the following:
Poss(e w r(carbOfEster, oxOfEster, hydOfWater,

oxOfWater, hydOfAcid, acidAnion), s) ↔
Carbon(carbOfEster) ∧Oxygen(oxOfEster)∧

Ester(carbOfEster, s)∧
Bond(carbOfEster, oxOfEster, s)∧

Hydrogen(hydOfWater) ∧Oxygen(oxOfWater)∧
Water(oxOfWater, s)∧

Bond(oxOfWater, hydOfWater, s)∧
Hydrogen(hydOfAcid) ∧ Strong acid(hydOfAcid, s)∧

Bond(hydOfAcid, acidAnion, s),

whereWater andEster are abbreviations. This example of
a PA in the macro approach is simply describing when it is
possible to perform the reaction between an ester and water:
namely, we should have an ester molecule, a molecule of wa-
ter and a molecule of strong acid. It also gives significance
to the arguments of the action and defines each argument’s
role in the reaction. For example, the second argument gets
significance because it is defined to be the oxygen that has a
single bond with the key carbon atom of the ester molecule.

In the macro approach, there is one action per reaction.
Therefore, the SSA for the Bond fluent can be long, since
we need to take into account the effects of all the (re-)actions
on this fluent. Moreover, the SSA has to represent changes
in bonds between all atoms participating in a reaction. For
simplicity, assume we had only one action e w r. As a re-
sult of the e w r reaction, a few bonds will break and a few
new bonds will be formed. The reaction is represented in
Figure 3.

Let us explain the logic of SSAs in the macro approach using
an example. Consider the partial SSA for the Bond fluent:

39

Figure 3: The ester and water reaction e w r produces an al-
cohol CH3−CH2−OH and a carboxylic acid CH3−COOH.

Bond(x, y, do(a, s)) ↔
(∃ o, h, h′, z)(a=e w r(x, o, h, y, h′, z)) ∨ (. . .)
∨ Bond(x, y, s)∧
(¬∃h, o, h′, z)(a=e w r(x, y, h, o, h′, z)) ∨ (. . .) .

The first line of the right hand side accounts for the bonds
that will be formed as a result of the reaction. Recall that in
the definition of e w r, the first and fourth arguments stand
for the carbon atom of the ester molecule and the oxygen
atom of the water molecule respectively, both marked with
arrows on the left hand side of Figure 3. Thus, if the last ac-
tion was e w r and x and y are the first and fourth arguments
of the action, then there will be a bond between them in the
situation that results from this reaction. Other combinations
of arguments of an e w r action (or any other actions) that
cause formation of bonds should be part of the disjunction
on the first line to account for all bond formations.

The last line of the SSA accounts for the bonds that will
split as a result of this reaction. Recall that the first and sec-
ond arguments of an e w r action represent carbon of ester
and oxygen of ester, respectively, both marked with the ar-
rows on the right hand side of Figure 3. Thus, if the last ac-
tion was e w r with x and y as first and second arguments,
the Bond fluent will become false for x and y, meaning that
this bond splits in the next situation. Other combinations of
arguments of an e w r action (or any other action) that cause
a bond cleavage should be part of the disjunction on the last
line of the SSA to account for all bond cleavages.

The middle line of the SSA accounts for the non-effect of
the actions. If the last executed action occurs neither in the
first part (bond formation), nor in the last part (bond cleav-
age), then there is a bond between x and y if only if they had
already a bond in the previous situation, since the executed
action has no affect on the bond between the atoms x and y.

As for scalability of axiomatization in the macro approach
when the number of reactions in the KB grows, assume
we have N reactions. Obviously, each reaction requires a
PA, and formulation of each PA requires at most K (a con-
stant number) literals, which can be fluents or abbreviations.
Therefore, when N grows, the number of PAs grows lin-
early, but their length is independent of N . Additionally,
each reaction affects at most M (a constant number) bonds.
These effects have to be specified in the SSAs for the bond
fluents. Therefore, the length of the SSAs for bond fluents
has growth rate O(N ·M), that is linear with respect to N .

4 Declarative Heuristics
In Section 6, we discuss what challenges can be addressed
using our approaches, but in this section we concentrate on

one of the discovery challenges - the CAOS problem. This
problem can be cast in AI terms as the planning problem.

To solve the chemical organic synthesis problem, we need
to find the right route from the set of initial states to one
of the goal states. That is, we need to search for the cor-
rect route (sequence of actions) in the state space. In order
to transform the initial state to the goal state we use a sim-
ple iterative deepening depth-first planning algorithm with
declarative heuristics. It is important to avoid the useless ac-
tions that distract from progressing to the goal, and declar-
ative heuristics are designed for this purpose. Declarative
heuristics eliminate the useless parts of the search space and
leave us with actions that are likely to reach our goal: a target
molecule with desirable properties.

Two factors contribute to the termination time of a plan-
ning program. One factor influencing termination time is the
time it takes to find in each situation what actions are possi-
ble, and another is the search for the right route to the target
molecule from the starting materials. Two classes of declara-
tive heuristics are introduced to help reduce the time needed
to find the right route. Declarative heuristics are written us-
ing an abbreviation called Useless(a, s), which holds if the
action a is useless in the situation s. All that remains to be
done is checking to see if the action a is useless or not, when
considering the action as a possible continuation in s.

(1) Avoiding duplicate reactions. Imagine a situation
where we have more than one instance of some molecule
that can undergo a chemical reaction. For example, we know
that esters and water react, and in our system we may have
two identical ester molecules, and two molecules of water.
In our set of the planning problems that we tried to solve, it
was unnecessary to repeat the exact same chemical reaction
(e.g., the ester-water reaction) if we had already taken that
action once before.

In order to write declarative heuristics, we need to intro-
duce new “marker” fluents that state whether an action has
happened previously or not. In both micro and macro ap-
proaches, we need to write SSAs for fluents of this kind as
well. Consider an example of this class of heuristic in the
macro approach. Let the fluent ExecutedEWR(s) hold if
the e w r action was previously executed in the situation s.
The SSA for this fluent is obvious. Then, the axiom
Useless(e w r(c, o′, h′, o′′, h′′, x), s)↔

ExecutedEWR(s)
specifies that it is useless to re-execute the e w r action if
we had already done so. As another example for the micro
approach, consider the fluent HasSplitAlcohol(s), which
holds if a specific O−H bond in an alcohol was split in the
situation s. Then, the axiom
Useless(splitBond(o, h, 1), s)↔ Hydrogen(h)∧
Alcohol(o, s) ∧Bond(o, h, s) ∧HasSplitAlcohol(s)

states that it is useless to split the bond inside an alcohol
molecule, if we had previously done so. For simplicity of
presentation, this heuristic is written here with the implicit
assumption that there is only one reaction that splits an al-
cohol molecule and therefore it is redundant to repeat it; this
heuristic can be generalized.

(2) Avoiding reactions irrelevant to the taken route. In
our set of experiments, it is useless to perform a chemical re-

40

action that is irrelevant to the actions that have been taken so
far. Reaction “A” is deemed to be irrelevant to reaction “B”
if “A” does not use (directly or indirectly) the products of the
reaction “B” in any way. Note that “A” might be irrelevant
to “B”, but “B” might be not irrelevant to “A”.

The irrelevant reactions can be easily identified if we draw
a graph of possible reactions (see Figure 4). In this graph,
rectangles represent chemical compounds and ellipses rep-
resent chemical reactions. Edges going from compounds to
reactions mean that the chemical compounds participate in
the corresponding reactions. The edges going from chemi-
cal reactions to compounds mean that those compounds are
products of the corresponding chemical reactions. The out-
going dotted edges in the graph mean that, as a result of the
specific chemical reaction, one of the two (or more) com-
pounds indicated by the dotted edges will be produced, but
not both. A reaction “A” is irrelevant to reaction “B”, if there
is no path from “B” to “A”. For example, in the sample
graph of reactions depicted in Figure 4, if the “Alcohol-and-
StrongBase” reaction were to generate a hydrogen molecule
and not water, the “CarboxylicAcid-and-Base” reaction and
the “Ester-and-Water” reaction would be irrelevant to the
“Alcohol-and-StrongBase” reaction.

Figure 4: A graph of the reactions used in our program

Note that the lack of a path from the reaction “A” to reac-
tion “B” means that “B” does not use any of the products of
“A” in any way, neither directly, nor indirectly. This heuris-
tic can be expanded so that a reaction “A” might be consid-
ered irrelevant to reaction “B”, if the reaction “A” produced
a product that was useful for reaction “B”, but that product
existed regardless of whether the reaction “A” occurred.

5 Implementation and Experiments

Both the micro and macro approaches have been imple-
mented in ECLiPSe PROLOG. Subsequently, numerous
planning problems corresponding to the graph in Figure 4
have been solved. The number of actions that are needed to
complete a chain of chemical reactions depends on which
approach is chosen (micro vs. macro). The micro approach
requires noticeably more actions since one chemical reaction
consists of several elementary actions of splitting/forming
bonds between atoms. By contrast, in the macro approach,
the number of actions constituting a desired chemical syn-
thesis equals the number of chemical reactions in the chain.

In one of the planning problems that have been success-
fully solved, in the initial state, the existing molecules are an
ester R1−COO−R2, a molecule of water H2O, a molecule of
hydrochloric acid HCl, ethyl fluoride CH3CH2F as the alkyl
halide, and a molecule of sodium hydride NaH as the base.
The chain of reactions consists of four chemical reactions.
First (refer to Figure 3), the ester, water and hydrochloric
acid react to produce an alcohol and a carboxylic acid. Sec-
ond, the alcohol that was produced undergoes a chemical
reaction with the sodium hydride and as a result, an alkox-
ide salt and a hydrogen molecule are produced. The third
reaction is the reaction between the alkoxide salt and the
ethyl fluoride which produces an ether and the salt sodium
fluoride. The fourth reaction is between the ether that was
previously produced and the hydrochloric acid, which is a
mineral acid. This reaction produces an alkyl halide and an
alcohol. Below, you can see the initial state given that the
starting ester is ethyl acetate.

The first reaction was described in Figure 3. The follow-
ing describes the rest of the reactions with the assumption of
starting with ethyl acetate as the ester.

The 2nd reaction produces an alkoxide salt CH3CH2ONa:

The 3rd reaction produces an ether CH3CH2−O−CH2CH3:

The 4th reaction produces an alkyl halide CH3CH2−Cl:

41

The table below shows the time in seconds taken (on a
desktop computer with 3.10GHz CPU and 4Gb memory) to
discover a chain of 4 chemical reactions (which includes 18
micro actions) that creates an alkyl halide and an alcohol
starting from an ester and a water molecule. The column on
the left specifies which ester molecule was actually present
initially. The ester molecules are sorted in the order of grow-
ing complexity.

Micro (18 actions) Macro (4 action)
Methyl acetate 1.30 sec 0.02 sec
Ethyl acetate 1.31 sec 0.03 sec
Methyl butyrate 1.28 sec 0.02 sec
Isopropyl acetate 1.56 sec 0.03 sec
Butyl butyrate 2.64 sec 0.09 sec

The results above were achieved without using heuristics
in a simple environment, where there is only one instance
of each molecule. In a more complex environment, where
there are more than one instance of each molecule, it is pro-
hibitive to use the program without heuristics. The table be-
low shows how long it takes for the micro program without
heuristics to solve a planning problem that requires the num-
ber of actions specified in the table, in an environment where
there are two instances of each starting molecule.

Number of actions Elapsed Time
1 action 0.02 sec
2 actions 1.37 sec
3 actions 606.47 sec

The same complex planning problem can be solved much
faster when we take advantage of the heuristics explained
above. The tables below confirm this fact in a similar
environment with two instances of each of the starting
molecules. For the micro approach, the dependency of time
(in seconds) on the number of actions is the following:

#Acts 1 2 3 4 5 6
Time 0.03 1.73 3.24 5.12 7.36 10.56

#Acts 7 8 9 10 11 12
Time 14.57 18.74 23.48 28.84 48.13 41.96

For the Macro approach:
Number of actions No Heuristics With Heuristics
1 action 0.02 sec 0.06 sec
2 actions 0.02 sec 0.09 sec
3 actions 4.69 sec 5.09 sec
4 actions 152.47 sec 12.06 sec

These data show that, using a simple-minded planner with
natural heuristics, our program can quickly discover non-
trivial sequences of reactions by itself. Overall, this demon-
strates the viability and potential of our SC-based logical
representation of chemical reactions.

6 Discussion and Future Work
We demonstrated that SC can be used successfully to reason
about reactions in organic chemistry. We illustrated our pro-
posal with reactions involving single bonds between atoms,
but reactions with double bonds (e.g., halogen addition reac-
tions of alkenes) and with triple bonds (e.g., hydrogen addi-
tion reactions of alkynes) can be easily formulated as well.

So far in this paper, we focused on applying the situa-
tion calculus to solving the organic synthesis planning prob-
lem. It is clear that the automated organic synthesis is com-
putationally intractable without heuristics when the num-
ber of reactions is large. However, our results indicate that
with suitable domain dependent declarative heuristics, the
program can quickly discover chains of reactions synthe-
sizing the target compound. Also, the declarative heuris-
tics can be supplemented with more traditional numeri-
cal heuristic functions. In (Vléduts and Geivandov 1974;
Todd 2005), the CAOS problem is compared to playing
chess: in both cases the computer programs have to search
through a vast number of possible actions. Pursuing this
analogy, one might expect that future organic synthesis pro-
grams enhanced with advanced heuristics will be able to
solve practically relevant organic synthesis problems (Cook
et al. 2012). Our logical framework represents an advance
over the state of the art in CAOS for at least the following
reasons. First, unlike previous CAOS systems that are pro-
cedural and lack formal logical semantics, our program ben-
efits from an easy-to-understand declarative representation
facilitating human comprehension and elaboration. Second,
our logical representation is based on SC, which is well-
explored in AI, and, as a consequence, it provides immediate
connection with many related results in AI, so that CAOS
can benefit from advancements in AI.

However, the proposed approaches are not limited to or-
ganic synthesis planning. They can be used to solve other
computational problems as well (possibly, with some mi-
nor modifications), e.g., the mechanism elucidation prob-
lem. Mechanism elucidation roughly corresponds to deter-
mining the internal mechanism of a chemical reaction. It is
different from the organic synthesis planning problem, be-
cause it cannot be understood as searching for a sequence
of known chemical reactions. In contrast, mechanism eluci-
dation requires finding a sequence of elementary bond split-
ting/forming operations that constitute a given reaction (in-
formally, process structure of a single reaction has to be de-
termined). It turns out that by utilizing a new set of PAs it
is easy to adapt our micro approach to solve mechanism
elucidation problems. Instead of formulating preconditions
about intermediate molecules – knowledge about them is un-
available when mechanism is unknown – the PAs in the mi-
cro approach should allow execution of the elementary ac-
tions (bond formation or cleavage) under conditions that re-
spect the rules of organic chemistry. For example, as long as
constraints on valences of atoms (and other chemistry con-
straints based on the first principles) are not violated, the ele-
mentary actions should be possible. Thereby, the mechanism
elucidation problem is reduced to the AI planning problem,
where operators are splitting and forming bonds between
atoms, the initial state is characterized by compounds before

42

the reaction starts, and the goal state is a set of molecules
produced by the reaction. Using this reduction, we imple-
mented and solved the mechanism elucidation problem men-
tioned as an example in Section 3.5 of (Valdés-Pérez 1995).
There has been a lot of previous research focused on sci-
entific discovery through heuristic modeling of chemical re-
actions, e.g., the MECHEM program (Valdés-Pérez 1994;
1995). However, our proposal is different from MECHEM
because we propose a more general framework based on
SC for solving a variety of computational problems. The
MECHEM program is focused only on mechanism elucida-
tion problems, while the approaches in our paper have po-
tential for solving other computational problems in addition
to mechanism elucidation.

Another computational problem that can be solved is the
projection problem. The projection problem consists in an-
swering whether a given logical query formula holds after
executing a sequence of ground actions. In chemistry, this
means answering whether a formula characterizing a target
molecule holds after a chain of chemical reactions. From
computational perspective, solving the projection problem
is much easier than solving a planning problem, since no
search is required. The projection problem considered to be
the basic reasoning problem in SC (Reiter 2001). It is worth
noting that the projection problem is undecidable in gen-
eral SC, if the initial theory DS0

is an arbitrary first order
logic theory. But recently, a fragment P of SC was intro-
duced that guarantees decidability of the projection prob-
lem for the BATs conforming to P (Yehia and Soutchan-
ski 2012). For the BATs that satisfy syntactic constraints
in P , the projection problem can be reduced to the satisfi-
ability problem in a description logic ALCO(U), which is
a fragment of a description logic underlying the Web On-
tology Language (OWL2). Consequently, any off-the-shelf
OWL2 reasoner can be adapted to answering the projection
queries in P . Fortunately, we recently found that our macro
approach can be formulated in a lightweight extension of P .
Since description logics are not expressive enough to charac-
terize cyclic molecules (e.g., molecules with rings), more ex-
pressive logic is required to represent them faithfully (Motik
et al. 2009; Magka, Motik, and Horrocks 2012). Our future
work includes exploring whether the projection problem can
be solved for arbitrary complex molecules (e.g., including
those with rings) by appropriately extending P .

It did not escape our attention that the proposed ap-
proaches can be applicable in other areas beyond organic
chemistry. In fact, our research was initially motivated by
desire to develop a SC based representation for biological
pathways that can be seamlessly integrated with existing se-
mantic technologies. We conjecture that an extension of our
logical language might be useful as a general powerful log-
ical language for communicating biological pathways. We
hope that continued successful research along the lines pre-
sented in our paper can have significant impact on improving
scientific processes thanks to this new logical language for
sharing biological pathways. We are going to explore how
our logical framework can be integrated with existing lan-
guages for representation of biological pathways.

Future research plans include extending our logical theo-

ries to represent stereoisomerism and enantiomers. Also, we
would like to further improve the performance of our pro-
grams by introducing new classes of heuristics and taking
advantage of the recent KR research on modularity and de-
composition.

We are looking for collaboration with scientists, in par-
ticular with experts in organic chemistry and in biological
pathways. Interested researchers are welcome to contact us.

7 Acknowledgements
Thanks to the Natural Sciences and Engineering Research
Council of Canada (NSERC) and to the Department of Com-
puter Science of the Ryerson University for providing partial
financial support. We are grateful to Dr. Shinsaku Fujita for
sending us a copy of his book. Thanks to Dr. Gerry Zarnett
for discussions of organic chemistry. The authors express
gratitude to Dr. Eric Harley, Serhei Makarov, Alexander Or-
chard and anonymous reviewers for comments on the pre-
liminary drafts of this paper.

References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; and Patel-
Schneider, P. F., eds. 2003. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University
Press.
Chen, W. L. 2006. Chemoinformatics: Past, present, and future.
Journal of Chemical Information and Modeling 46(6):2230–2255.
Cook, A.; Johnson, A. P.; Law, J.; Mirzazadeh, M.; Ravitz, O.;
and Simon, A. 2012. Computer-aided synthesis design: 40 years
on. Wiley Interdisciplinary Reviews: Computational Molecular
Science 2(1):79–107.
Corey, E. J., and Cheng, X.-M. 1995. The Logic of Chemical
Synthesis. Wiley.
Corey, E. J., and Wipke, W. T. 1969. Computer-assisted design
of complex organic syntheses. American Association for the Ad-
vancement of Science 166(3902):178–192.
Fujita, S. 1986. Description of organic reactions based on imag-
inary transition structures. Journal of Chemical Information and
Computer Sciences 26(4):205–242, and 27(3):99–120.
Fujita, S. 2001. Computer-Oriented Representation of Organic
Reactions. Kyoto (Japan): Yoshioka Shoten.
Magka, D.; Motik, B.; and Horrocks, I. 2012. Modelling structured
domains using description graphs and logic programming. In Pro-
ceedings of the 25th International Workshop on Description Logics
(DL-2012), volume 846.
Motik, B.; Grau, B. C.; Horrocks, I.; and Sattler, U. 2009. Repre-
senting ontologies using description logics, description graphs, and
rules. Artif. Intell. 173(14):1275–1309.
Reiter, R. 2001. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT.
Todd, M. H. 2005. Computer-aided organic synthesis. Chem. Soc.
Rev. 34:247–266.
Valdés-Pérez, R. E. 1994. Heuristics for systematic elucidation of
reaction pathways. Journal of Chemical Information and Computer
Sciences 34(4):976–983.
Valdés-Pérez, R. E. 1995. Machine Discovery in Chemistry: New
Results. Artif. Intell. 74(1):191–201.
Vléduts, G. E., and Geivandov, E. A. 1974. Automated Information
Systems for Chemistry (in Russian). Nauka, Moscow.

43

Vléduts, G. E. 1963. Concerning one system of classification
and codification of organic reactions. Information Storage and Re-
trieval 1(2):117–146.
Waldinger, R. 1975. Achieving several goals simultaneously. Tech-
nical Note 107, AI Center, SRI International. Reprinted in E. El-
cock and D. Michie (Eds.), Machine Intelligence 8. Chichester: El-
lis Horwood, 1977, pages 94-136.
Yehia, W., and Soutchanski, M. 2012. Towards an Expressive Prac-
tical Logical Action Theory. In Proc. of the 25th Intern. Workshop
on Description Logics (DL-2012), 389–399.

44

