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Abstract
We present work that uses agent-based modeling to rep-
resent both intra- and inter-personal interactions to eval-
uate strategies for message targeting aimed at optimiz-
ing technology adoption within a social network. Our
work demonstrates the advantage afforded by consid-
ering both network (structural) and agent (cognitive)
properties of participants in the network when creat-
ing and targeting messages for propagation within a
network to influence adoption behavior. Using previ-
ous empirical work in technology adoption, we discuss
an approach that demonstrates the interaction effects of
structural and cognitive measurements when used for
targeted messaging.

Background
Although decision processes are often described at the
individual level of cognition (e.g. Tversky and Kahne-
mann (1981)), they are subject to social and cultural influ-
ences at both the interpersonal and societal levels. The adop-
tion of new technology depends on various factors, such
as the type of technology, the context or culture in which
the technology is introduced, and the individual decisions
by people within that culture, as most individuals evaluate
an innovation from the subjective evaluations of peers who
have adopted an innovation (see Watts and Dodds (2007)
for a discussion of network-diffused influence). These in-
fluences propagate through the social network as a function
of agent interactions. Diffusion, in this sense, is a special
type of communication concerned with the spread of mes-
sages that are perceived as new ideas. Diffusion of Innova-
tions theory (Rogers 1995), in which an innovation is an idea
or technology perceived as new by the individual, proposes
that diffusion creates a distinct pattern of innovation adop-
tion. Our work provides an evaluation of the optimization
of technology adoption by an exogenous entity, through the
targeting of nodes for influence. These targeted nodes may
by chosen by determining their structural qualities, as deter-
mined by their social network (i.e. as measured by node cen-
trality metrics) as well as cognitive properties of the nodes
(representing individuals) to evaluate the optimization of the
diffusion of adoption behavior in a social network.
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Cognitive Network Model
From a cognitive perspective, an individual’s adoption of
technology requires the integration of multiple attitudes (e.g.
attitudes regarding expectations of performance of the tech-
nology or the effort needed to use the technology). These be-
liefs are modulated through social interaction. The model we
use to represent decision-making for adoption captures both
beliefs and how beliefs change as a result of interactions.
These beliefs are represented within each agent as proposi-
tions that are vertices within a network. Network edges rep-
resent relationships between beliefs. As with other network-
oriented perspectives of cognition (e.g. (Carley 1989)), be-
liefs are represented as a pairing of cognitive concepts. The
resulting belief network created for each agent is a frame-
work for studying the social transmission and subsequent
use of knowledge resulting from agents’ processing of in-
formation.

The particular beliefs instantiated within the model are
based on a combination of results from empirical stud-
ies of technology adoption by Venkatesh et al. (2003).
The UTAUT model combines eight of the most prominent
technology-acceptance models observed in the literature and
provides a definitive list of variables that are critically rele-
vant to an individual’s Behavioral Intention (BI) and Use Be-
havior (UB) for adopting a new technology, including Per-
formance Expectancy (PE), Effort Expectancy (EE), Social
Influence (SI), Facilitating Conditions (FC), and Voluntari-
ness of Use (VoU).

The Socio-Cognitive Network Model
To represent the diffusion of influence, we utilize a socio-
cognitive network model that allows for the representation
of social influences that interact with agents to affect the
agent’s beliefs. In this network model, vertices are individ-
ual agents, and network edges are the cognitive ties (com-
monly shared beliefs), communication links, and social re-
lationships between them (see Easley and Klienberg (2010)
for an introduction to graph theory and its relationship to
social networks). Within the current context, cognitive ties
generally refer to the extent of agreement between the indi-
vidual beliefs of multiple agents. The strength of the cogni-
tive ties (degree of agreement between agents’ beliefs) affect
the degree to which agents influence-and are influenced by-
one another’s beliefs during social interactions. The details
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regarding specific cognitive mechanisms and social factors
utilized in the socio-cognitive network model are described
further in (Briscoe, Trewhitt, and Hutto 2011).

Analysis and Conclusion
Our aim is to understand how to minimize costs associ-
ated with exogenous inputs (e.g. marketing) to maximize
adoption diffusion within a networked population. To evalu-
ate the advantage afforded by utilizing both structural and
cognitive characteristics, we create an agent-based model
(see Bonabeau (2002) for a description of agent models) im-
plemented in the Repast framework (North et al. 2007). We
simulate the social interaction for an agent population over a
discrete time period (600 timesteps), where communication
networks are created using a ’small world’ approach (Watts
and Strogatz 1998).

By comparing overall adoption rates (dependent variable)
across our simulated population (200 agents), we deter-
mine that the rate from targeting nodes based purely on
structural properties (as done, for example, by Kiss and
Bichler (2008)) is significantly less than the rate obtained
when targeting using the combined heuristic. Our analysis
uses node degree as the unit structural property (see Bor-
gatti (2005) for determining appropriate centrality measures
for attitude propagation) and the similarity of beliefs be-
tween a node and its neighbors as the cognitive property.
Figure 1 shows the results of a simple experiment aimed at
demonstrating the improvement. In this experiment, nodes
were ranked by their centrality (structural), then by their be-
lief overlap with their neighbors (cognitive). Highest ranked
nodes were selected by centrality in the centrality-alone case
and by centrality and belief overlap in the combined case.
A t-test shows the statistical significance of the difference:
(p < 0.006).

Our results show that utilizing even coarse approxima-
tions of the cognitive properties of nodes, such as belief
overlap (which we propose as related to cognitive centrality
- a measurable concept that represents an agent’s belief over-
lap with those in his communication network - see Kameda,
Ohtsubo, and Takezawa (1997) for more detail) can change
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Figure 1: Mean adoption for centrality alone heuristic (left)
and combined cognitive/centrality heuristic (right) over 20
simulations. Error bars show the standard error of the mean.

optimal diffusion strategies. Our immediate objectives in-
volve proving that under novel interaction models, influ-
ence diffusion is approximately optimal (Kempe, Klienberg,
and Tardos 2003). Our future work investigates determin-
ing these cognitive properties of nodes from open sources
(e.g. Twitter) and using it along with structural information
found in social networks to provide better prediction of in-
formation dissemination in social media.
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