
Capturing and Using Knowledge
about the Use of Visualization Toolkits

Nicholas Del Rio
University of Texas at El Paso

Paulo Pinheiro da Silva
Pacific Northwest National Laboratory

Abstract

When constructing visualization pipelines using toolk-
its, developers must understand what sequencing of op-
erators will transform their data from its raw state to
some requested visual representation. In some cases, the
requested visual representation must be generated from
hybrid pipelines, composed of both toolkit-based and
custom operators. Traditionally, developers learn about
how to construct these visualization pipelines by word
of mouth, by reading documentation and by inspecting
code examples, all of which can be costly in terms of
time and effort expended.
The Visualization Knowledge Project (VisKo) is built
on a knowledge base of visualization toolkit operators
including rules for how operators are chained together
to form pipelines. VisKo helps scientists by automati-
cally generating and suggesting fully functional visual-
ization pipelines, alleviating scientists from having to
write any pipeline code. This paper reports on the kinds
of knowledge required to support automatic pipeline
generation as well our successes when applying VisKo
to a number of visualizations scenarios spanning geo-
physics, environmental and materials science.

Introduction
Visualization toolkits such as Generic Mapping Tools
(GMT) (Wessel and Smith 1998), Visualization Toolkit
(VTK) (Schroeder, Martin, and Lorensen 1998), and NCAR
Command Language (NCL) (NCAR 2012) provide sets
of visualization specific functions (e.g., format and data
type conversion), known as operators, from which scientists
chain together to form visualization pipelines. Visualization
pipelines are operator sequences that transform data from its
raw form into graphical or textual representations that are
more easily digested by scientists. In an ideal setting, em-
ployed visualization toolkits would support documentation
that address concerns of scientists, including understanding
whether toolkits: (1) are capable of generating requested vi-
sualizations, (2) are capable of ingesting input datasets in
formats they naturally reside, (3) are equipped with suffi-
cient documentation describing the behavior of each sup-
ported operator and how they can be combined.

Each unmitigated concern has consequences pertaining
to what toolkit scientists may choose to employ and how
much effort they may have to expend to construct required

pipelines. If (1) is not addressed, then scientists must look
to another toolkit to generate the required visualization. If
(2) is not addressed, then scientists are left with the task of
corralling their data into formats that that toolkit can ingest,
which may involve writing custom code or reusing opera-
tors from other packages that perform the required transfor-
mations. If concern (3) is not addressed, the pipeline devel-
opment process may fall back to trial-and-error, which can
be very time consuming considering the number of different
operator sequence combinations.

In this paper we present the Visualization Knowledge
Project (VisKo http://trust.utep.edu/visko) that provides
an approach for automatically constructing visualization
pipelines provided a knowledge base of visualization toolkit
operator capabilities. The VisKo knowledge base is a formal,
reusable, and machine readable alternative to typical toolkit
manuals written in natural language, e.g. English. By cap-
turing and using knowledge about the use of visualization
toolkits, VisKo can overcome the limitations of constructing
visualization pipelines when concerns (1)-(3) are difficult to
mitigate.

The paper begins with a description of how to manu-
ally configure pipelines that generate volume renderings and
highlights the knowledge needed by scientists to construct
these kinds of visualization pipelines. The next section de-
scribes the VisKo ontology set and how it captures and struc-
tures the knowledge necessary to construct a pipeline with
the use of VTK. The paper then describes the VisKo system,
which leverages a knowledge base of visualization toolkit
operators in order to automatically construct pipelines. The
paper then follows with a report on our success with apply-
ing VisKo to a number of different fields ranging from en-
vironmental to material sciences. We then follow with a dis-
cussion of the scientific impact as well as future challenges
faced with maturing VisKo. Finally, the paper closes with
related work and conclusion.

Generating Volume Visualizations using VTK
VTK is a toolkit suited for generating 3D visualizations. For
the pipeline example in this paper, we leverage VTK to gen-
erate volume renderings of a 3D seismic model of a subter-
ranean region of the Earth. Our seismic models are simple
3D grids of velocity values with the following properties:
the 3D grid is encoded as a flat binary array stored in lit-

AAAI Technical Report FS-12-03 
Discovery Informatics: The Role of AI Research in Innovating Scientific Processes

14



Figure 1: Volume Rendering of Velocity Model

Figure 2: Volume Rendering Pipeline

tle endian, each grid cell stores a single scalar, each scalar
represents a floating point value. From velocity models, sci-
entists can learn about the density and geologic composition
of a region. Figure 1 presents a volume rendering of a seis-
mic velocity model. The holes or gaps in the image are a
result of missing seismic information.

The VTK-based pipeline that generates the volume is pre-
sented in Figure 2. In this graphical pipeline notation, all the
larger circles, except for the final circle without any outgoing
edges, represent visualization toolkit operators while the ar-
rows represent the flow of data from one operator to the next.
For example, the output of float2ShortThrService
flows as input to the next operator in the sequence, in this
case vtkImageDataReaderService, and so on and so
forth until the data has been transformed into a JPEG image
that can be presented by the browser-image-viewer
(i.e., a Web browser represented by the circle without any
outgoing arcs). Additionally, the pipeline reveals the param-
eter sets of each operator denoted as dots feeding into the
operators, such as offset and scalingFactor param-
eters of float2ShortThrService.

In order to construct the pipeline in Figure 2, scien-
tists must know that vtkVolumeService is an opera-
tor that generates the required volume geometry and asso-
ciated retinal properties (e.g., color, opacity, orientation),
thus addressing concern (1) in the introduction. In terms
of information visualization, vtkVolumeService rep-
resents a Mapper, or an operator that is able to extract
presentational information, such as geometry, color, and
spatial orientation, from data that is otherwise devoid of
this information. In addition, scientists must know that
vtkImageReaderService is a suitable operator for
converting the raw velocity model (i.e., the 3D grid en-
coded as a binary array) into vtkImageData format,
an encoding of the 3D grid that can be consumed by

Figure 3: View Ontology

vtkVolumeService and thus addressing concern (3).
However, vtkVolumeService is highly configurable

and can be set to use different kinds of ray casting al-
gorithms to generate volumes. If vtkVolumeService
is employing a vtkVolumeRayCastMapper, as is the
case in our example, then the vtkImageData that is
ingested must consist only of short integers. Our in-
put velocity model is composed of floating point values
and so our pipeline must begin execution with a custom
float2ShortThrService operator, which transforms
the raw velocity model into an array of short integers thus
addressing concern (2). It is knowledge about these kinds
of restrictions that we want to capture in our VisKo knowl-
edge base that we believe can save scientists considerable
time and effort when developing visualization applications.
Additionally, having access to a framework that allows for
the reuse of custom non-toolkit specific operators, such as
float2ShortThrService, would also reduce costs as-
sociated with development.

VisKo Visualization Ontologies
The goal of our VisKo knowledge base is to enable ma-
chines to automatically compose visualization pipelines,
which traditionally are constructed manually. We therefore
need to encode the visualization knowledge that can be ex-
tracted from toolkit manuals into formal statements that
can be processed by reasoning agents configured to con-
struct pipelines. We have proposed to encode the visualiza-
tion knowledge using the Web Ontology Language (OWL)
(Hitzler et al. 27 October 2009), which can be processed
by existing open source inference engines such as Pellet
(Sirin et al. 2007). Our resultant ontology is decomposed
into three sub-ontologies VisKo-View, VisKo-Operator, and
VisKo-Service, which specialize in the kinds of views and
data types that can be generated, the operators that gener-
ate those views and data types, and the services that imple-
ment the operators respectively. The set of ontologies can be
downloaded from http://trust.utep.edu/visko/ontology.

VisKo-View Ontology
One of the first inquiries a scientists will have when con-
sidering a toolkit is what views can the toolkit generate. A
view in this context refers to a data type along with presenta-
tional information such as color, size and any textual adorn-
ments. The view ontology, presented in Figure 3, defines a
class View and captures relationships between views and
data types through the property basedOnDataType.

15



Figure 4: Operator Ontology

Additionally, the ontology classifies data types based on
whether they are graph or geometric based, where Graphs
are typically reserved for information visualization scenar-
ios and Geometries are more commonly used in sci-
entific visualization. The solid directed arcs refer to the
hasSubClass property, indicating that the target class is
a specialization of the source class. To further refine the
class Geometry, we imported geometric data types from
an ESIP datatype ontology (ESIP 2007), which includes
but is not limited to: Points, Surfaces, Volumes,
Grids, Meshes and Curves. We will see in the next sec-
tion how we can describe the behavior of mappers, such as
vtkVolumeService, by referencing particular views.

VisKo-Operator Ontology
We have already encountered two kinds of operators
in the volume visualization pipeline presented in Fig-
ure 2: the float2ShortThrService format con-
verter and the vtkVolumeService view mapper that
generated the volume view. In addition to the oper-
ators FormatConverter and Mapper, the VisKo-
Operator ontology captures two other types of operators:
DataFilter and DataConverter.

Although there exist four distinct operator subclasses in
VisKo-Operator, scientists only assert instances of a few se-
lect classes. Figure 4 presents the VisKo-Operator ontol-
ogy from the perspective of scientists, which presents the
classes Viewer, Operator and its subclass Mapper. Ad-
ditionally, this subset of the ontology also defines the prop-
erties used to the describe operators’ and viewers’ inter-
faces, which are defined in terms of the input and output
DataType and Format. Some data formats are capable of
encoding a multitude of different data types, such as netCDF
(UCAR 2012) that encode arrays of arbitrary dimensions.
This flexibility is the reason our operator interfaces pair for-
mat descriptions with the data types they encode. Mappers,
in addition to supporting input/output type and format prop-
erties, are also associated with the property mapsToView
that specifies the particular view the mapper is responsible
for generating. The DataType class is defined in VisKo-
View, previously presented, while the Format class is bor-
rowed from the Proof Markup Language (PML-P) prove-
nance ontology (McGuinness et al. 2007).

Figure 2 also presented the
browser-image-viewer, which introduced the
notion of a viewer. In Visko-Operator, the Viewer class

Figure 5: Inferred Operator Concepts

is responsible for presenting a particular view to the screen
and in our ontology, presented in Figure 4, the interaction
between scientists and viewers is not modeled. The most
we can assert about a viewer is its input interface, which is
also defined in terms of input type and input format. This is
evident with the browser-image-viewer, which has
an ingoing arc (i.e., data flowing in) but no outgoing arcs.

Although the few constructs presented in 4 allow us
to describe the interfaces of operators in enough detail to
support automatic chaining, scientists might want further
information about operators’ roles. We can automatically
elaborate on the classification of operators by inspecting
their input/output data type and format interfaces. Figure
5 presents the three additional subclasses that can be used
to further classify instances of the generic class Operator.
DataFilters can be identified because they are oper-
ators that have the same input and output interface (i.e.,
the same input/output data type and format). This sug-
gests that no structural changes to the data are made but
that only some form of sub-setting or filtering is applied.
DataTranformers are operators that have differing in-
put and output data types. For example, most gridding al-
gorithms such as minimum curvature or near-neighbor are
considered transformers because they convert their irregu-
larly distributed input 2D point data into 2D grids. Finally,
FormatConverters can be identified by checking if the
input and output formats differ while the input and output
data types remain identical. float2ShortThrService
is an example of a converter because only the encoding (i.e.,
the format) of the 3D grid being processed is altered.

VisKo-Service Ontology
Only interface requirements of operators can be described
using the VisKo operator ontology. However, the Visko-
Service ontology represented in Figure 6 augments these op-
erator descriptions with information about where and how
to invoke services that implement these interfaces. The ex-
ecution details are described in terms of the Web Ontology
Language Service (OWL-S) ontology (David Martin 2005),
which defines a comprehensive set of classes and proper-
ties needed for describing executable Web services. The
implementsOperator is our property that associates
OWL-S service descriptions with operators.

There are benefits to keeping invocation details about op-
erators separate from the more abstract operator descrip-
tions. Using Visko-Operator, we can describe an opera-
tor gridding, which ingests 2D point data encoded as
an XYZ ASCII table and generates a 2D grid encoded
in netCDF (UCAR 2012); using our classification rules,
we would infer that this gridding operator is of type

16



Figure 6: Service Ontology

DataTransformer. In GMT (Wessel and Smith 1998)
there are two implementations of this gridding data trans-
former, grdContour.exe and surface.exe, which
each support a different gridding algorithm. Using VisKo-
Service, we can state that both these gridding services im-
plement the single gridding transformer, thus informing our
system that both grdContour.exe and surface.exe
can fulfil the abstract operator requirements.

The InputParameterBindings class models a
list of parameter bindings (i.e., a parameter and asso-
ciated input value). Typically, operators composing vi-
sualization pipelines are heavily parameterized and the
InputParameterBindings allows us to specify a set
of hard-coded values that can be fed into the operators in
the case when scientists are unsure what values to use. The
challenge of working with parameters is elaborated on in the
discussion section.

Other concepts defined in Figure 6 include Toolkit,
which represents the different visualization toolkits such as
GMT, NCL, and VTK. Services can be associated with
a toolkit and this information is useful if scientists want to
filter pipelines by what toolkit supports them.

Composition Rules
The portions of the VisKo ontologies presented thus far
are only used to describe the operators and services of a
toolkit but do not contain knowledge about how to com-
pose these operators into pipelines. For this task, VisKo
relies on OWL2 (Hitzler et al. 27 October 2009) prop-
erty chains to identify possible pipelines given our knowl-
edge base. Consider our search space as a graph where
nodes represent Format instances and edges indicate that
formats canBeTranformed to another format. In order
for a canBeTransformed edge to exist between for-
mat nodes A and B, there must exist an operator that has
inputFormat A and outputFormat B. Thus our search
graph contains all possible combinations of format transfor-
mations where only a subset of the paths may yield mean-
ingful visualizations. This graph is just one way in which we
can view our VisKo knowledge base that is focused only on
the perspective of format transformations, as shown in Fig-
ure 7. Although we must also consider data type transfor-
mation paths, the approach is identical to analyzing format
paths and so its description is excluded from this document.

Given our format transformation graph, one natural task
is to check whether some format can be transformed into
another. In the case of our velocity model volume visual-

Figure 7: Format Transformation Paths

izations, we need to check if BINARYFLOATARRAYLEN-
DIAN (i.e., the format velocity models are encoded in)
can be transformed into a JPEG image, the format our
Browser-Image-Viewer can consume. We employ
transitive OWL2 property chains to make all transformations
explicit so that we can pose simple queries to answer these
kinds of questions. The following horn rules represent these
transitive OWL2 property chains in a more human friendly
format than the RDF/XML format they reside in our ontol-
ogy.

isFormatInputTo(?Fmt1, ?A) :- inputFormat(A, Fmt1)
canBeTransformedTo(?Fmt1, ?Fmt2) :- isFormatInputTo(Fmt1, A),

outputFormat(A, Fmt2).
canBeTransformedTo(?Fmt1, ?Fmt2) is a transitive rule

The first rule, isFormatInputTo is a simple
inverse property of the asserted inputFormat.
isInputFormatTo serves as an antecedent to the
canBeTransformedTo rule, which is transitive and
states Fmt1 can be transformed to Fmt2 if there is a service
that has an input format of Fmt1 and an output format of
Fmt2. Since this rule is transitive, we can infer if Fmt1 can
be transformed to another Fmt3 though a sequence of one
or more transformer operators. OWL2 inference engines
such as Pellet (Sirin et al. 2007) can be triggered to apply
the composition rules to the asserted knowledge base and
infer the canBeTransformedTo relationship between
all applicable formats. The derivation trace (i.e., proof)
that Pellet uses to infer canBeTransformedTo relationships
contains the order of operators needed to transform our
input format into a target format.

The VisKo Knowledge Base In Use

Before our VisKo system can generate visualization
pipelines, a knowledge base of toolkit operators must be
constructed. This is a challenging step because it requires
that some human or automated scraper extract information
from toolkit manuals and encode this information as triples
conforming to our VisKo ontology set. Once we have our
asserted model of toolkit operators, we can apply the com-
position rules and generate an inferred model from which we
can use to automatically generate visualization pipelines.

17



Subject Predicate Object
float2ShortThrService is a Operator
float2ShortThrService inputFormat BINARYFLOATARRAYLENDIAN
float2ShortThrService outputFormat BINARYSHORTINTARRAYLENDIAN
float2ShortThrService inputDataType 3DGrid
float2ShortThrService outputDataType 3DGrid
vtkImageDataService is a Operator
vtkImageDataService inputFormat BINARYSHORTINTARRAYLENDIAN
vtkImageDataService outputFormat VTKIMAGEDATASHORTINTS
vtkImageDataService inputDataType 3DGrid
vtkImageDataService outputDataType 3DGrid
vtkVolumeService is a Mapper
vtkVolumeService mapsTo Volume
vtkVolumeService inputFormat VTKIMAGEDATASHORTINTS
vtkVolumeService outputFormat JPEG
vtkVolumeService inputDataType 3DGrid
vtkVolumeService outputDataType 3DGrid

Figure 8: Asserted Model

Figure 9: Inferred Model
Subject Predicate Object
BINFLOATARRAYLEND canBeTransTo BINSHORTARRAYLEND
BINFLOATARRAYLEND canBeTransTo VTKIMAGEDATASHORTINTS
BINFLOATARRAYLEND canBeTransTo JPEG
BINSHORTARRAYLEND canBeTransTo VTKIMAGEDATASHORTINTS
BINSHORTARRAYLEND canBeTransTo JPEG
VTKIMAGEDATASHORTINTS canBeTransTo JPEG

Constructing a Knowledge Base of Operators
Using the VisKo ontological concepts and properties, we
can describe the VTK toolkit operators composing our vol-
ume generation use case. Figure presents our asserted
toolkit model, describing the operators comprising the VTK
pipeline in Figure 2. The statements below describe only
a fraction of the VTK operator suite, which contains hun-
dreds of operators. In practice, our current asserted knowl-
edge base is hosted on GitHub (GitHub 2012) and contains
12 DataTransformers, 9 Mappers, 7 Viewers, 5
Toolkits, and 129 Parameters.

The statements in Figure are triples where, the operator
in question (i.e., the subject) is described in terms of its rela-
tionship (i.e., predicates) to other objects. In our framework,
these descriptions are actually encoded in RDF/XML and it
is these descriptions that comprise our asserted knowledge
base that the Pellet reasoner applies our composition rules
to generate the inferred model presented in 9.

Visualization Queries
Provided an operator knowledge base of both asserted and
inferred statements, we have developed a web applica-
tion that generates pipelines which can generate visual-
izations requested by scientists. This system is known as
VisKo (http://trust.utep.edu/visko) and accepts visualization
requests specified in a query-like form we refer to as Visu-
alization Queries. An example visualization query that re-
quests for a volume visualization is shown in Figure .

The query requests that the dataset vel.3d should
be visualized as a volume that can be viewed us-

VISUALIZE vel.3d
AS volume
IN mozilla-firefox
WHERE FORMAT = BINARYFLOATARRAYLENDIAN

AND TYPE = Seismic-Velocity-Model

Figure 10: Visualization Query for Volume Visualization

Figure 11: Format Transformation Paths

ing mozilla-firefox, where the format of vel.3d is
BINARYFLOATARRAYLENDIAN. Additionally, the
query specifies that vel.3d contains a data type
Seismic-Velocity-Model, a type that is a sub-
class of 3DGrid. Our VisKo system will perform a series
of steps to identify the pipeline required to generate the
requested volume. Firstly, the system will issue a SPARQL
query to determine whether the source format, in this case
BINARYFLOATARRAYLENDIAN, can be transformed to
some target format operated on by some viewer contained
within mozilla-firefox, in this case a JPEG. If
true, we can use the proof that Pellet used to infer the
canBeTransformed to identify what sequences of
operators are needed to support the transformation. VisKo
will then remove all operator pipelines that fail the data type
restriction, which ensures that the output data type of an
operator must match the input data type of the next operator
in a given sequence.

Once operator sequences that fail the data type restric-
tions have been removed, we can query for the service im-
plementations of each operator and return the sequences of
services back to the user as a pipeline result, shown in Fig-
ure 11. In this example, VisKo was able to generate two dif-
ferent pipelines that satisfy the visualization request, differ-
ing only in the output format of the resultant volume, PNG
and JPEG. In some cases, VisKo is able to generate over
15 pipelines that satisfy a single query, by using different
combinations of intermixed operators from different toolkits
(e.g., toolkit hybrid piplines). From the pipeline result table,
scientists have the options to (1) execute the pipeline, (2) set
operator parameter bindings, and (3) browse a description of
the pipeline in either a textual or graphical form such as the
image presented in Figure 2.

Pipeline Execution

Upon selecting to run a given pipeline, VisKo will invoke
each service in succession, similarly to how UNIX systems
execute command-line pipes by forwarding the output of
each service as an input to next service in the sequence. In
our query example, the input data vel.3d is forwarded to the
first service of the pipeline and is transformed until it is pro-
cessed by the final operator, upon which a URL to the resul-
tant visualization is presented to the user.

18



Figure 12: Isosurfaces Visualization of Velocity Model

Successful Applications of VisKo
The first application of VisKo was to generate GIS based
visualizations of gravity data sourced from the PACES
initiative (PACES 2002), where 2D plots, raster images,
and contour maps were generated. More recently, VisKo
has been employed to support a number of different
scientific visualization scenarios, encompassing a number
of different data formats, data types and views. We have
used VisKo to visualize time series and scatter plots
sourced from aerosol data gathered from NASA’s Giovanni
(http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html)
as well as seismic velocity models generated from the
CYBER-ShARE initiative at the University of Texas at El
Paso (CYBER-ShARE 2012). In addition to the volume
visualization presented in Figure 1, VisKo is also able to
generate an isosurfaces rendering of the same velocity
models presented in Figure 12, thus providing scientists
with different views or perspectives of a single dataset.
Finally, we have used VisKo to automatically coordinate
the preprocessing stages of a materials science pipeline,
employing tessellation generation services to construct a
mesh that can be fed into a complex simulation.

Discussion
Scientific Discovery Enabled by VisKo
In VisKo, scientific discovery is enabled by the declarative
nature of its visualization requests that do not require scien-
tists to know all available data analysis capabilities to com-
pose responses to these requests, i.e., build pipelines. This
means that, for example, for a gravity contour map, mea-
sured data can be interpolated by either a near-neighbor or
minimal curvature algorithm, even if the scientist was only
aware of the availability of a minimal curvature interpola-
tion service. In this case, it may be that the near-neighbor
algorithm produces better results that may eventually lead to
discoveries that were not enabled by the minimal curvature
algorithm. Thus, VisKo may enable scientists to make new
scientific discoveries and also learn about new data analysis
capabilities.

Visualization Parameters
Properly setting operator parameters that yield useful visual-
izations is a very challenging task, and unfortunately VisKo
prescribes no solution for this problem. Although VisKo can
store preconfigured parameter values, these values are not
guaranteed to be useful for every dataset. From our experi-
ence, we have observed that even with correct pipeline se-
quences, poor parameter values can yield empty visualiza-

tions, or even worse, misleading representations. For exam-
ple, in our volume example, incorrectly setting the opacity
function can hide many features that scientists may regard
as interesting. Similarly, when generating isosurfaces, too
many surfaces can create noisy images and setting too few
can hide features in the data.

We have proposed to augment the VisKo pipelines with
a prepossessing stage that may provide scientists with a
good range of usable parameter values. Our first task was
to break up the parameters into two classes, which we re-
fer to as data-driven and visualization-driven parameters
classes. Data-driven parameters are typically associated with
the structure or characterization of data and include parame-
ters such as dimensionality, scalar range, and byte-order. We
believe that we can deploy services to inspect data and ex-
tract the values to these kinds of parameters. Values bound
to visualization-parameters, which include opacity function,
color functions, and isoline/surface intervals may be more
challenging to infer due to the preferential nature of these
values. Many of these parameters could be set if properties
of the data, such as spatial or scalar value density distribu-
tions were known, but in general these values must be set by
scientists themselves.

Related Work
Duke and Brodlie (Duke, Brodlie, and Duce 2004) pro-
posed a visualization ontology that was initially sketched in
a workshop report (Brodlie ). In this work, they describe vi-
sualization in similar terms as VisKo: visual representations
(i.e., views), techniques and renderings (i.e., operators), and
services. Additionally, they describe how a visualization on-
tology might be segmented according to different concerns:
World of Representation, World of Users, World of Data,
and World of Techniques, which in our ontology correspond
roughly to VisKo-view, visualization queries, types and for-
mats, and VisKo-operator respectively. Duke and Brodlie
(Duke, Brodlie, and Duce 2004) also speak of a separation
of concerns between logical and physical layers, where log-
ical layers may refer to our interface descriptions of pipeline
operators in the Visko-Operator ontology and the physical
layer may correspond to our OWL-S services referenced in
Visko-Service.

However, to the best of our knowledge, Duke and Brodlie
have not actually defined rules to aid in the automated com-
position of pipelines. Our approach relies on the progression
of data through different formats and data types, which are
not explicitly defined by Duke and Brodlie. Additionally, our
model is founded on combining operators that can generate
a visualization that some target viewer can display. This no-
tion of a target viewer is absent in the Duke and Brodlie
ontology.

Other authors have proposed models for the purpose
of taxonomizing the set of available visualization tech-
niques, such Chi’s Data State Model (Chi and Riedl 1998;
Chi 2002), which characterizes different visualization tech-
niques according to how data is transformed from its raw
value (i.e., initial state) to the view (i.e., final state). In the
data state model, operators are classified according to what

19



state in the pipeline they operate in and thus require a white-
box understanding of visualization applications. Of course,
the goal of his work is to provide an understanding of the
internals of visualization applications in order to be able
to compare among techniques. In open world environments
such as the Web, we need a more black-box approach to
classification, such as the Visko-Operator ontology which
classifies operators based on their input/output data type and
format interfaces.

Conclusions
VisKo ontologies have been used to model visualization pro-
cesses, providing a way for scientists to encode their knowl-
edge about visualization toolkits and for machines to facil-
itate the scientists’ task of building visualization pipelines.
The paper described how visualization pipelines were auto-
matically derived by OWL reasoners through the applica-
tion of pipeline composition rules. These pipelines although
conceptual, may have an executable binding, in which case
VisKo provides a fully implemented infrastructure that au-
tomates the process of generating visualizations. We have
shown that in the presence of these capabilities, scientists
can declaratively request for visualizations using a query-
like language without specifying any executable details such
as what operator or services should participate in the gener-
ation of requested visualizations.

Acknowledgements
We would like to acknowledge NASA’s Dr. Gregory Lep-
toukh who was a strong supporter and visionary our our
work. We would also like to acknowledge the Cyber-
ShARE center (http://cybershare.utep.edu/) at the University
of Texas at El Paso for funding support.

References
Brodlie, K. W. Visualization Ontologies.
http://www.nesc.ac.uk/talks/393/vis ontology report.pdf.
Chi, E. H.-h., and Riedl, J. 1998. An operator interaction
framework for visualization systems. In INFOVIS ’98: Pro-
ceedings of the 1998 IEEE Symposium on Information Visu-
alization, 63–70. Washington, DC, USA: IEEE Computer
Society.
Chi, E. H. 2002. Expressiveness of the data flow and data
state models in visualization systems. In AVI ’02: Proceed-
ings of the Working Conference on Advanced Visual Inter-
faces, 375–378. New York, NY, USA: ACM.
CYBER-ShARE. 2012. University of Texas at El Paso
CYBER-ShARE Center. http://cybershare.utep.edu/.
David Martin, Mark Burstein, e. a. 2005.
OWLS: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/.
Duke, D. J.; Brodlie, K. W.; and Duce, D. A. 2004. Building
an ontology of visualization. In Proceedings of the confer-
ence on Visualization ’04, VIS ’04, 598.7–. Washington,
DC, USA: IEEE Computer Society.

ESIP. 2007. Earth Science Information
Partners ESIP Federation Datatype Ontology.
http://wiki.esipfed.org/index.php/Data-Service-Ontologies.
GitHub. 2012. Github social coding. https://github.com/.
Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P. F.;
and Rudolph, S., eds. 27 October 2009. OWL 2 Web Ontol-
ogy Language: Primer. W3C Recommendation. Available
at http://www.w3.org/TR/owl2-primer/.
McGuinness, D.; Ding, L.; Pinheiro da Silva, P.; and Chang,
C. 2007. PML2: A Modular Explanation Interlingua. In
Proceedings of the AAAI 2007 Workshop on Explanation-
aware Computing.
NCAR. 2012. NCAR command language reference manual.
http://www.ncl.ucar.edu/Document/Manuals/Ref Manual/.
PACES. 2002. Pan American Center
for Earth and Environmental Studies. re-
search.utep.edu/Default.aspx?alias=research.utep.edu/paces.
Schroeder, W.; Martin, K. M.; and Lorensen, W. E. 1998.
The visualization toolkit (2nd ed.): an object-oriented ap-
proach to 3D graphics. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc.
Sirin, E.; Parsia, B.; Cuenca Grau, B.; Kalyanpur, A.; and
Katz, Y. 2007. Pellet: A practical OWL-DL reasoner. Web
Semantics 5:51–53.
UCAR. 2012. Network common data form netcdf.
http://www.unidata.ucar.edu/software/netcdf/.
Wessel, P., and Smith, W. H. F. 1998. New, improved ver-
sion of generic mapping tools released. EOS Transactions
79:579–579.

20




