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Abstract

We present Global-Local POS tagging, a framework
to train generative stochastic Part-of-Speech models on
large corpora. Global Taggers offer several advantages
over their counter parts trained on small, curated corpus,
including the ability to automatically extend and update
their models to new text. Global Taggers also avoid a
fundamental limitation of current models, whose per-
formance heavily relies on curated text with manually
assigned labels. We illustrate our approach by training
several Global Taggers, implemented with generative
stochastic models, on two large corpora using high per-
formance computing architecture. We further demon-
strate that global taggers can be improved by incorpo-
rating models trained on curated text, called Local Tag-
gers, for better tagging performance derived from spe-
cific topics.

Background

As digital libraries approach the totality of the global bib-
liome, automated mining of knowledge from large collec-
tions of free text becomes increasingly important. The de-
sign of probabilistic text-mining applications is typically
a substantial collective effort; it often involves the joint
work of experts in computational linguistics, computer sci-
ence, and statistical modeling. When the target corpus is
specialized, replete with jargon, with exotic named enti-
ties, and thousands of novel relations types, as the case
in biomedicine, domain experts are generally required as
well. A deep analysis of sentence structure and meaning
extraction almost invariably requires part-of-speech tagging
(POS tagging) of sentences. Once upon a time this task was
performed exclusively by hand (Greene and Rubin 1971;
Klein and Simmons 1963), but nowadays, it is mostly ac-
complished by algorithms which have undergone intense
evolution over the past four decades.

POS taggers are currently widely used and readily avail-
able for practical applications. Earlier successful taggers,
such as Brill’s algorithm (Brill 1992), incorporated a man-
ually crafted set of deterministic rules. More recently, the
technology has evolved towards the use of stochastic tag-
gers based on explicit statistical models. For example, some
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of more popular stochastic taggers currently utilize Hidden
Markov Models (HMM) (Brants 2000), Maximum entropy
Markov Models (MEMM) (Toutanova et al. 2003) and Con-
ditional Random Field (CRF) Models (Lafferty 2001). Ac-
cording to Wikipedia, the best performance for English text
is currently obtained by such probabilistic models. The state-
of-the-art accuracy performance evaluated on the Treebank
Wall Street Journal (Treebank WSJ) corpus is near 97.3%
accuracy per token, which is hypothetically close to the up-
per limit of optimal performance achievable by taggers im-
plemented using statistical modeling (Manning 2011).

In this study, we examine stochastic POS tagging and
address the following problems. First, we compare global
training performance of a set of stochastic POS tagging
models by optimizing their parameters with respect to very
large corpora. Second, we suggest some new variations
of previously implemented generative models, and demon-
strate the utility of high performance computing architec-
tures for iterative training over very large datasets. Finally,
we document an improvement of POS tagging performance
for diverse corpora.

Most of the currently utilized stochastic POS tag-
gers were trained on small hand-tagged corpora such as
Brown (Kucera and Francis 1967), Treebank WSJ (Marcus,
Marcinkiewicz, and Santorini 1993), and GENIA (Tsuruoka
and Tsujii 2005). As a result, models trained on small man-
ually curated corpora are often applied to analysis of unseen
text that is several orders of magnitude larger than the train-
ing set.

For example, the MEDLINE database currently includes
26 million publication entries(as of April 2012), approxi-
mately 0.1 billion sentences, and 2.3 billion token occur-
rences (8.2 million unique words). Likewise, Wikipedia con-
tains a collection of 60 million sentences and 8.7 million
unique words. By comparing corpora of this size to those
used to train existing POS taggers (shown in Table 1), it is
obvious that those taggers were trained on comparably tiny
pieces of text. Therefore, when such models are applied to
large amounts of previously unseen text, their performance
is very likely to degrade significantly because most of the
words are novel. In fact, prior studies have demonstrated that
the per token accuracy performance of state-of-the-art tag-
gers degrades to 91.0% when applied to previously unseen
words(Toutanova et al. 2003). To avoid this scenario when



Table 1: Commonly used combinations of POS taggers and the training corpora.

Name Training Corpus Word Occurrences Samples Corpus Year

Brill tagger ! Brown Corpus > 1,01 million 500 samples 1967
TnT tagger Treebank WST * 1.20 million | 50,000 sentences 1993

3

St\?anO;g(;{%gger 1.0 Treebank 3 WSJ 1.04 million | 43,746 sentences 1999
Treebank 3 WSJ 1.04 million | 43,746 sentences 1999

GENIA Tagger ’ GENIA corpus ’ 0.52 million | 18,534 sentences 2005
PennBiolE corpus 8 2,257 entities N/A 2004

MedPost ° manually curated MEDLINE 0.16 million | 5,700 sentences 2004

applying POS taggers to new text that is millions of times
larger than their training sets, we were motivated to use as
much text as possible for a POS tagger training. We called
such a tagger constructed in this fashion a Global Tagger,
in that it literally covers all words in the corpora of interest
such that the performance drop on unknown words should
be greatly reduced. The Global Tagger idea seemed very
attractive because theoretical analysis and empirical evalu-
ations have both shown that performance improves consis-
tently upon training with larger text. Moreover, the Global
Tagger should be able to assign tags to new words as its
underlying model automatically and continuously adapts as
new data arrives. If this procedure were to go on continu-
ously, the Global Tagger should be able to learn POS in-
formation from an exhaustive set of language-specific sen-
tences.

We present our approach to training Global POS tag-
gers using corpora derived from Wikipedia and MEDLINE,
which we define as our training corpus. The corpora were
tagged automatically by two high quality Off-the-shelf POS
taggers, denoted as initial taggers; then, the tagged training
corpora were used to reconstruct a set of novel POS Taggers,
implemented using generative models. This training proce-
dure of Global Tagger does not require any curated text; its
performance only relies on the quality of the initial taggers
and the richness of training data. The approach is similar
to the construction of unsupervised or semi-supervised POS
taggers. The obtained Global Tagger should work well given
that the initial tagger is adequate and the training corpus is
large. Moreover, the generative model underlying the Global
Tagger should enable it to adapt to the new text iteratively,
i.e., the generative model becomes updated and enriched as
parameters estimates for new words are obtained.

The performance of the Global Tagger can be further
improved when curated text is available. In the literature,

!(Brill 1992)

%(Kucera and Francis 1967)

3(Brants 2000)

*(Marcus, Marcinkiewicz, and Santorini 1993)
3(Toutanova et al. 2003)

%(Gimnez and Mrquez 2004)

7(Tsuruoka and Tsujii 2005)

8(Mcdonald et al. 2004)

°(Smith, Rindflesch, and Wilbur 2004)
http://aclweb.org/aclwiki
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stochastic taggers generally outperform rule-based ones;
moreover, discriminative models usually perform better than
generative models '°. The advantage of discriminative mod-
els, such as entropy based models (Berger, Pietra, and Pietra
1996) is their ability to incorporate a lot of features extracted
from curated text. To achieve this, discriminative models re-
quire pre-tagged corpora of high quality (such tags are de-
noted as true labels). Unfortunately, in text mining, labeled
data is always in short supply especially when the size of
text is large, supporting the merit of our Global Tagger. If the
curated text is available, we can combine generative and dis-
criminative approaches and interpret these techniques within
a single framework. An intuitive strategy is to implement a
new tagger built upon the Global Tagger by incorporating
more features generated from curated labels. We call this
new method a Local Tagger, where the term “local” im-
plies that the curated text is a specific subset of the entire
text universe. It also characterizes the fact that curated labels
and the extracted features are corpus-specific. For example,
the labels and features extracted from curated MEDLINE
text are specific to biomedical corpora, which could be dis-
parate from those extracted from other text sources, such as
the Wall Street Journal. The advantage of Local Taggers is
that they can improve the performance of a Global Tagger
in certain cases, especially when the text originates from a
source similar to the one used to create the Local Tagger.
There is also another advantage: information contributed by
the Local Tagger can be fed back to the Global Tagger in a
form of active learning that lets the true labels provided by
the human curators correct the mistakes made by the Global
Tagger.

We present our Local Tagging approach using curated
Treebank WSJ and GENIA text, and we propose a Global-
Local approach to constructing POS taggers using large cor-
pora. The performance of the Global Taggers and Local
Taggers was evaluated on the Treebank WSIJ test set and
the GENIA corpus. For Global Taggers, the simplest model
achieved 96.46% per token accuracy on the WSIJ test corpus
and 98.25% on the GENIA corpus. The best performance on
the WSJ corpus obtained by the set of Global Taggers was
based on a third order bidirectional HMM (96.80%). The
best performance on the GENIA corpus was obtained by a
third order unidirectional HMM (98.37%). When using cu-
rated label information, the performance of Local Taggers
increased significantly, the simplest model obtained 96.76%



and the best performer obtained 96.94% on WSJ, which are
both comparable to the state-of-the art performance given in
the literature need reference and numbers for the state-of-
the art. The idea of tagger adaptation has been formulated
with regard to hand-curated domain-specific resources. For
example, the Chamiak-Lease parser (Lease and Charniak
2005) retrains the originally WSJ-trained tagger on hand-
annotated MEDLINE corpus. In contrast to using only small
hand-labeled corpora, we propose in addition utilizing for
the tagger re-training enormous unlabeled corpora to obtain
global probability estimates that improves the POS tagging
of unseen words over the off-the-shelf taggers. Our approach
relies solely on tag predictions and probability estimates ob-
tained from a very large corpus. To our knowledge, no previ-
ous approach has attempted to process corpora of this scale
or has proposed similar ideas.

Experimental Setup

Two large training corpora were used in our experi-
ments. We constructed a large Wiki corpus (roughly 7.76
GB in total size) from a snapshot of the all English-
language articles in Wikipedia (as of October 2011).
We downloaded Wikipedia articles, converted the result-
ing XML files to flat text using the WP2TXT software
(http://wp2txt.rubyforge.org/), and substituted all the non-
unicode characters with white spaces. We also retrieved a
snapshot of the entire MEDLINE corpus (roughly 14 GB
in total size) from NCBI (in April 2012). We applied two
high-quality initial taggers, the Stanford Tagger (model:
left3words-wsj-0-18.tagger) (Toutanova et al. 2003) and the
GENIA Tagger (Tsuruoka et al. 2005), on both corpora. The
obtained tagged corpora cannot be considered as curated, as
they likely contain errors, however, we assumed that such
tagged corpora likely contain enough reliable information to
reconstruct high-quality Global Taggers.

We created the nine Global Taggers by implementing dif-
ferent generative models that assign hidden variables (POS
tags) Y that maximize the likelihood P(X,Y|®), where X
is the observed corpus X and ® is vector of all model pa-
rameters. We assume independence among M sentences in
corpus,

M o
P(X,Y|©) =[] P(x’,y’|©),
j=1

ey

where x7 and y” are respectively the sequence of tokens and
tag sequence of the j—th sentence. The baseline model was
simplest one assuming each observed token along with its
context in a sentence being independently emitted by a latent
tag variable, according to

P(x),y’|®) = P(x’ly’,©)P(y’|©®) )
N; o .
=[1P@Ey, ©)PHIO),  (3)

i=1

where 77 is the set of token-level features of word 2/ at the

i—th word of sentence j, yf is the 7—th latent variable of sen-
tence j. Within each sentence, we further define the emission
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probability and drop notations 7 and ® for simplicity,

P(Zilyi) = P(wilyi) P(@i-124ly: ) P(2ivi01|ys)
P(ziazivialy),

“4)

as independent combination of emission probabilities of a
single token z;, two token bigrams x;_;x; and x;x;,1, and
one token trigram w;_1x;T;.1. Statistics reflecting sizes of
the corpora are given in Table 2.

Table 2: The sizes of training corpora and token-level fea-
tures in our experiments.

Wiki MEDLINE

Corpus size 7.76 G 14 G
No. of sentences 59,695,940 | 100,290,897
T; 8,722,021 8,224,949

i1 T4 105,010,091 | 100,751,602
TiTivl 100,006,646 94,377,260
Ti_1XiTie1 379,376,196 | 462,750,572

The other eight models are variants of the Hidden Markov
formalism, defining P(y’|®) in (2) by high order transi-
tion probabilities and various inference directions. We com-
pared first order, second order and third order transitions (or-
ders higher than three were not considered for the sake of
efficiency). We compared the inference directions such as
left-to-right, right-to-left, and bidirectional. All models used
the same set of token level features as the baseline models
adopted in (4).

We also investigated the effects of the training corpus
and initial tagger on the performance of the Global Tag-
gers. With two training corpora and two initial taggers, we
benchmarked four configurations for each Global Tagger.
To evaluate performance, we utilized two curated corpora,
Treebank WSJ and GENIA. In both global and local tagger
evaluations, we used Treebank WSJ 22-24 as the test set,
which is the standard setting adopted by many POS taggers,
allowing performance to be systematically compared. How-
ever, the GENIA abstracts might be derived from part of the
MEDLINE abstracts, but we did not explicitly address this
issue. For global tagger training, neither curated corpus was
used. For local taggers, WSJ 0-21 and a random sample of
70% of GENIA corpus was used in training and the perfor-
mance is validated on WSJ 22-24 and the remaining 30% of
GENIA corpus.

Computational Infrastructure

The computational infrastructure used in our experiments
was the Open Cloud Consortium’s OCC-Y Cluster, which
consists of 60 computational nodes (each node has 8 cores
and 32 G memory, connected by gigabit ethernet). The main
pipeline of text mining was designed and implemented in
Java Apache Hadoop 0.20.203 (http://hadoop.apache.org/).
The Wiki, MEDLINE, and the parametric data required for
model learning were stored within the Hadoop distributed
file system with 1.02 PB configured capacity. The algo-
rithms for corpus tagging, parametric estimation, and model



Table 3: Performance of the Global Taggers. We compared four different global taggers and validated their performance on
two annotated corpora: 1. A global tagger constructed by Wiki corpus and Stanford tagger validated on WSJ ([WS]W); 2.
MEDLINE corpus and GENIA based tagger validated on GENIA ([MG]G); 3. MEDLINE and Stanford tagger validated on
GENIA corpus ([MS]G); 4. Wiki and GENIA validated on WSJ ([WG]W). Their performance is shown in Column 3 to Column
6. The performance of [WG]W on WSJ validation is higher than [WS]W probably because that the Off-the-shelf GENIA tagger

was also trained on the WSJ test data.

Model Transition Probabilities P(y) [WSIW]| [MGIG || [MS]G | [WGIW|
Baseline Y, P(ys) 0.9646 | 0.9825 || 0.9352 | 0.9672
HMM L 1 Py TIN, P(yilyio1) 0.9665 | 0.9829 | 0.9356 | 0.9698
HMMR 1 P(yn) T P(yilyin) 0.9666 | 0.9831 || 0.9358 | 0.9699
HMM R 2 P(yn)P(yn-1lyn) TINT2 P(yilyie1, Yise) 0.9654 | 0.9823 || 0.9359 | 0.9672
HMM LR 1 | P(y)P(yn) TIN3 P(yilyio1, yis1) 0.9676 | 0.9832 | 0.9360 | 0.9703
HMM L2 R1 | P(y1)P(y2lyr)P(yn) TIN5 P(yilyi-o, i1, Yis1) 0.9680 | 0.9833 || 0.9366 | 0.9703
HMM L1 R2 | P(y1) P(yn) P(yn-1lyn) TTiss” P(ilti1, yis1, yiv2) | 0.9676 | 0.9830 || 0.9364 | 0.9703
HMM L3 Py P(yaly)) P(yslyr, y2) Ty P(yilyi-s, yi—2,yi-1)) | 0.9676 | 0.9837 || 0.9363 | 0.9711

training were implemented in the Map/Reduce framework
(Dean and Ghemawat 2008), where data was shuffled, sorted
and aggregated as text based key-value pairs. The Stanford
Tagger was implemented in Java so we embedded its APIs
directly in our pipeline. The GENIA tagger was originally
written in C++, we parallelized it on large corpora using
Hadoop Streaming. In our platform, tagging the entire Wiki
corpus took approximately about 30 minutes for GENIA
tagger and 20 minutes for Stanford left3words tagger. Tag-
ging the entire MEDLINE corpus took 45 minutes and 30
minutes for the GENIA Tagger and the Stanford Tagger, re-
spectively. When training the models over the entire Wiki
and MEDLINE corpora, the space required to store all the
required parameters was quite large. To speed up the compu-
tation, when the trained models were applied to a specific set
of new data, we extracted all of the feature occurrences from
the new text, looked up the parametric data corresponding
to the extracted features, and then stored the results either in
memory or in a database.

Performance of Global Taggers

As shown in Table 3, the performance of the generative mod-
els reconstructed on large text was very good. The simple
baseline model obtained a performance of 96.46%, which
was probably better than some complicated state-of-the-art
models trained on small datasets. The good performance is
likely attributed to the fact that large text transforms a lot
of unknown words to known words. In automatically tagged
training corpora, the predictions of unknown words may be
mistaken in some contexts, yet if these words are frequently
observed and correctly tagged in other contexts, their POS
tags may still be learned relatively accurately given the
generous amounts of data. In other words, imagine that if
we have unlimited manpower such that we can curate the
true labels for large training corpora. Given this scenario,
a global tagger based on a simple model should have very
good performance (possibly even better than 96.46%).
Additionally, we increased the complexity of the Global
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Tagger by adding more transition probabilities to its under-
lying model (from the second row in Table 3). We com-
pared the order of transitions within the hidden markov
chain (HMM), and we also compared the directionality of
inference. We name each model according to its order and
inference direction, for example, HMM 1L denotes a first
order HMM with transitions from left-to-right, and HMM
IR implies a first order model with directionality from right-
to-left. Each column in Table 3 displays tagger performance
after training according to a single configuration. Because
the corpora are fixed in both validations (WSJ 22-24 and
GENIA) so there is no variation shown in Table 3. We
also tried 10 random repetitions using 50% of the Wiki and
MEDLINE corpora in tagger constructions and the vari-
ances of obtained performance were respectively smaller
than 0.0003 and 0.0002; thus, the improvements were sig-
nificant over baseline models. Generally, higher order tran-
sitions appeared to steadily improve the performance on all
evaluations. The direction of inference also matters: left-
to-right inference generally outperforms right-to-left one.
We also investigated three HMM models based on bidi-
rectional inference (HMM LR1, HMM L2R1, and HMM
L1R2). The training of these bidirectional, HMM models
can be achieved by a mean field approximation (Forbes and
Peyrard 2003).

We cross-compared performance of Global Taggers us-
ing four different configurations presented in Table 3. On
one hand, Global Taggers trained with Wiki corpus per-
formed better than those trained with MEDLINE in WSJ
evaluation. On the other hand, those trained with MED-
LINE performed better than Wiki in GENIA validation. Us-
ing Stanford Tagger as the initial tagger, the global tagger
trained on MEDLINE corpus performed significantly bet-
ter in GENIA validation than the one trained on Wiki. The
Off-the-shelf Stanford L3W tagger performance on GENIA
corpus was 90.53% whereas our [MS]G models all per-
formed higher than 93%. This indicates that when applying
a non-biomedical tagger to a large biomedical corpus, the



global probability estimates could improve the POS tagging
of biomedical terms over an off-the-shelf tagger.

Performance of Local Taggers

Our experiments showed that the information contained
within the curated data can be transformed to a new set of
discriminative features, as used in MEMM discriminative
models (Toutanova et al. 2003), by conditioning on the to-
kens and tags simultaneously. Combing these features with
the token-level features extracted from a global tagger, the
performance of a local tagger can be further improved. We
obtained new discriminative features for local taggers by im-
plementing the two steps as illustrated in Figure 1: First, we
tagged the curated data using global taggers and obtained
intermediate tags y;. Next, we modeled the tokens x; and
the intermediate tags y; as observations and inferred the set
of hidden variables z; associated with the local taggers. The
statistical models of Local Taggers are exactly the same as
the Global Taggers, where the only difference is that the Lo-
cal Taggers incorporate more features obtained from the cu-
rated text.

Apply Stanford & GENIA Taggers

‘ on unlabeled Wiki and MEDLINE corpora ‘

]

Reconstruct Global Taggers on
automatically tagged Wiki and MEDLINE
Maximize P(x,y) to obtain intermediate tags y

v

Apply Global Taggers on
curated WSJ and GENIA corpora

v

Treat x and y as observations, extract new feature
templates of x and y based on curated labels

v

Reconstruct Local Taggers
on curated WSJ and GENIA corpora
Maximize P(x,y,z) to obtain final tags z

Figure 1: The Global-Local approach of POS tagging.
A Local Tagging model maximizes the likelihood

M
P(X,Y,Z|®) = [[ P(x),y'|z/,@)P(z'|®) (5)

j=1

regarding x, y as observations and z as hidden variables. We
assumed that the features of the global tagger and the local
tagger are independent, thus the emission probability now
becomes

P(x,y'lz’,©) = [[ P(<z],y] >|z’,©)P(2'|©) (6)
=1
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where P(< xf , yf > |z7, @) is the emission probability gen-
erating a set of observations represented by 7 and y; . In our
approach, we define (we omit j and © for simplicity)

4 12
P(<xi,y; >|z) = [] fa(@ilz) [ fo(@hilzs) (D
a=1 b=1

where f, are the conditional probabilities estimated using
the features listed in Table 1 defined in (4), f} are the con-
ditional probabilities using features listed in Table 4. To ob-
tain the estimates of f,, we counted the frequencies of these
features in curated text, then normalized them by the fre-
quencies of the true labels. Thus, we obtained new features
which were used to estimate the joint likelihood of the gen-
erative models underlying the Local Tagger, where tokens
and intermediate tags are all treated as observations.

Table 4: Feature templates using tokens and intermediate
tags in Local Taggers.

No. Template No. Template
fo(1) | iy o (7)) | @ici,y0
[6(2) | wicr,yp fo(8) | i1,y
fo(3) | Wiz2,yi1, 00 | fo(9) | @i, yic1, ¥
fb(4) WYi-1,Yi>Yiv1> | [o(10) | <z, 5, Yie1
5(5) | wi,yis> fo(A1) | @it @4,y
fo(6) | Wi Yiv1,Yiv2> | fo(12) | i, 2501,y

The performance of the Local Taggers was significantly
improved by human curation of POS labels. The baseline
model achieved a 96.76% per token accuracy on the WSJ
corpus with the best performer reaching 96.94%, which
was implemented with several third-order HMM models.
We also validated the Off-the-shelf MEMM taggers using
the same training and test sets. The MEMM models were
trained for 100 iterations using the Stanford POS tagger tool-
box. The performance of our Local Taggers was close to the
MEMM Ileft-3-word (L3W) model, but slightly lower than
the bidirectional model, probably because our initial tag-
gers were based on L3W models. In GENIA validation, our
Local Taggers outperformed both L3W and Bidi Off-the-
Shelf models, which were trained on a combined corpus of
the entire WSJ and a random 70% sample of GENIA (with
10 repetitions). The obtained performance without splitting
training and test data independently was exceptionally high
(99.10% with the Off-the-Shelf GENIA tagger and 99.89%
with our Local Taggers). In our further validation using new
annotated corpora apart from WSJ and GENIA, the Global
and Local Taggers all significantly outperformed the Off-
the-Shelf taggers.

Conclusion

We present Global and Local POS tagging, a framework to
train generative stochastic Part-of-Speech models on large
corpora. This new framework is not a competitor to any ex-
isting approach. Instead, it is a generic approach that should
be able to enhance a diverse set of existing taggers. The
Global Tagger, powered by high performance computing,
enables us to leverage very large corpora. The Local Tagger,



Table 5: Performance of Local Taggers and Comparison to
Off-the-shelf taggers

Model [WSIW  [MG](G30%)

Baseline 0.9676  0.9886 + 0.0002
HMML 1 0.9685 0.9887 + 0.0002
HMMR 1 0.9685 0.9888 + 0.0001
HMML 2 0.9689  0.9887 + 0.0002
HMMR 2 0.9678  0.9886 + 0.0002
HMM LR 1 0.9691  0.9889 + 0.0002
HMM L2 R1 0.9691  0.9890 + 0.0002
HMM L1 R2 0.9694 0.9889 + 0.0002
HMM L3 0.9693  0.9890 + 0.0002
MEMM L3W 0.9691  0.9847 + 0.0002
MEMM Bidi 0.9718  0.9869 + 0.0003

refined by curated tags of high quality, improves the perfor-
mance in specific domains. The interplay of the Global and
Local taggers provides us a rich framework for improving
the accuracy of POS tagging problems in large corpora.

The proposed framework also leaves plenty of room for
further improvement. The strong assumption of indepen-
dence among features can be relaxed so that the weights of
features can be optimized iteratively, as it is done in models
based on CRFs and MEMMs. The effect of label informa-
tion contained within the curated text is not restricted to the
Local Tagger. If we find that the estimates of the token level
features are inconsistent with the estimates provided by the
curated text, we could tailor and update the Global Tagger
model as well. This correction can also be accomplished it-
eratively, and can even involve human curation such that the
framework of Global-Local tagging embeds an active learn-
ing paradigm. Moreover, the proposed framework is ready
for consensus learning and data fusion in a wide range of
data mining applications.
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