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Abstract

In the real world we observe a proliferation of regional
dialects and jargons. Most of the research on naming
conventions focuses on how to explain the process that
allows a single naming convention to establish itself.
This paper presents a different approach that aims to in-
vestigate why different conventions may emerge and co-
exist for a certain amount of time. The naming game is
an abstraction of lexical acquisition dynamics, in which
n agents try to find an agreement on the names to give
to objects. To understand how different heterogeneous
conventions emerge, I discuss a naming game model
that takes into account experimental data on human and
animal learning.

Introduction
Real communities evolve conventions on how to name ob-
jects, sometimes a unique convention emerges, but in other
cases sub-communities agree on different regional conven-
tions. One case of regional conventions are the different
names used in the United States for soft drinks, soda-coke-
pop (Von Schneidemesser 1996). A different case is the his-
torical evolution in Vulgar Latin of two distinct terms for
the English yes, hoc ille (“this (is) it”) and hoc (“this”),
which morphed in oc and oı̈l. The naming game is a par-
ticular case of opinion dynamics where the agents are en-
dogenously indifferent toward the possible options, but may
change their preferences in response to the behavior of the
other agents. A similar situation is encountered when we
analyze wireless telecommunications markets in Western
countries, where different companies offer similar products,
and the customers final choice is influenced mostly by other
customer choices and less by the particular subscription of-
fer.

A formal approach to study the influence on networks,
and the evolution of convention is referred to as the naming
game. The naming game models a situation where a collec-
tion of agents come to agreement on the name of an object
through a dynamic process involving interactions between
pairs of agents. This game has been studied by a number of
scholars in such areas as physics (Baronchelli et al. 2006),
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artificial life (Steels 1996), theoretical economics (Lu, Ko-
rniss, and Szymanski 2009), theoretical biology (Nowak,
Plotkin, and Krakauer 1999), computer science (Bistarelli
and Gosti 2010), and social behavioral modeling (Gosti and
Batchelder 2011). In a typical study a communication net-
work is assumed, and rules are set up for the selection of the
sequence of agent pairs, for the communication of propos-
als, and for the update of the agents’ states.

An important part of the naming game literature has fo-
cused on particular classes of communication networks,
and discusses how different network structures qualita-
tively effect the evolution of conventional naming systems.
Among different network structures studied are completely
connected networks (Baronchelli et al. 2006), regular lat-
tices (Lu, Korniss, and Szymanski 2008), random geo-
metric graphs (Lu, Korniss, and Szymanski 2006), small
world graphs (Liu et al. 2009), dynamic networks (Nardini,
Kozma, and Barrat 2008), and empirical social networks
(Lu, Korniss, and Szymanski 2009). Some other research is
more concerned with how agents invent new words (Brigatti
and Roditi 2009), or with different selection rules for the
words that are proposed in the interactions (Barrat et al.
2007). Moreover, other works focus on different selection
rules for sequences of agents-pair interactions (Tang et al.
2007).

This paper studies the linear operator naming game,
which is a model of the naming game that considers an up-
date rule for the speaker and the listener that is motivated by
Herrnstein’s probability matching experiments. I run the lin-
ear operator naming game on two directed graphs, where on
each of a series of discrete trials one agent communicates
a proposed name for an object according to a production
probability distribution to another agent, and following this
communication each of these agents may update their pref-
erence on the possible names for the object. Convergence of
the system occurs when all the agents choose the same word
for the object.

The simulations on these two directed graphs show how
heterogeneous convention can evolve and persist for a cer-
tain amount of time as an effect of two very different causes:

1. Cultural role models.

2. “Apparently” persistent heterogeneous conventions.

Cultural role models are individuals that influence other peo-
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ple’s naming behavior, but who are not influenced by agents
who do not belong to their cultural clique. I present a formal
definition of a cultural role model in a later part of the pa-
per. Such individuals may be, but are not restricted to, poets,
story tellers, cultural icons, managers, scientists, or influen-
tial politicians. For example, Steve Jobs influenced many
customers to use particular names for his products. More-
over, cultural role models are often associated with linguis-
tic change. For example, the Langue d’oı̈l is associated with
the heroic poem “La Chanson de Roland”, and the Langue
d’oc is associated with the lyric poetry of “Troubadours”.

“Apparently” persistent heterogeneous conventions are
more subtle. These are unstable states in which the popula-
tion is still in the process of finding an agreement on a final
naming convention. Therefore, for a considerable amount of
time, parts of the system continue to switch from one con-
vention to the other, and other parts behave as if they agree
on a final local convention. Nevertheless, the system may
bounce out of this state and converge to a single final con-
vention. Because, this situation is rarely assumed, an ob-
server that is confronted with this situation may erroneously
conclude that different local cultural role models are com-
petitively influencing part of the population to switch from
one convention to the other. This research posits the ques-
tion: what are the possible causes of language heterogene-
ity?

In physics, a concept analogous to “apparently” persistent
heterogeneous convention is the concept of metastability. A
system at a metastable state is a system that can stay for a
very long time in a state that is “less stable” then the true
stable state of the system, for example, a glass is a solid
at an amorphous state which is “less stable” compared to
the crystal state. Dall’Asta et al. (2006) demonstrate the
existence of metastable states in naming games. Further-
more, they show how this metastable states persist for long
periods of time, and rigorously analyze their convergence
time. Nevertheless, they do no discuss the consequences that
these metastable states have on the evolution of heteroge-
neous conventions, and, consequently, they do not consider
the implication that metastable states have on our ability as
external observers to draw conclusions on the stability of
real world systems.

This paper is divided into five main sections. After the
introduction, the next section presents some background on
the naming game. Then, I present the rules of the linear op-
erator naming game on a digraph. After that I discuss two
simulation studies that illustrate how heterogeneous conven-
tion may emerge, and finally I discuss the conclusions and
some plans for future work.

Background
Brief Review on Naming Games
The naming game (Steels 1996; Baronchelli et al. 2006;
Nowak, Plotkin, and Krakauer 1999; Komarova, Jameson,
and Narens 2007) describes a set of problems in which a
number of agents search for an agreement on a name for
each object in a set representing the agents environment.
Each naming game is defined by an interaction protocol that

leads to a dynamical system that evolves over time.
In formal game theory terms, a naming game is an single

shot interaction among two or more players, in which one
player takes the role of speaker and the others take the role
of listeners. This interaction takes place in a context, which
defines a subset of possible objects from the set of all objects
in the environment. The speaker chooses one object to be
the topic, and calls it with a name, if the listeners recognize
the correct topic the interaction is a success. If the listeners
do not recognize the correct topic, the speaker shows which
object is the topic (De Vylder and Tuyls 2006).

In a repeated naming game, at each naming game inter-
action, a different subset of the population and a different
context are randomly selected. Through these repeated in-
teractions, and consequently through many trials and error,
the agents come to a conventional naming system.

Originally, the naming game was developed for the evo-
lution of naming conventions among robotic agents in a real
(not simulated) environment (Steels 1999; Steels and Kaplan
2002). Nevertheless, an ample part of the research in this
area discusses computer simulation experiments on small
populations of autonomous agents in absence of central con-
trol (Steels 1996; Nowak, Plotkin, and Krakauer 1999).
These simulation experiments give us a lot of evidence on
the viability of the decentralized evolution of naming con-
ventions, but the answers we get are bound to the parame-
ters that were expressed in the simulation. In Baronchelli
et al. (2006), the authors present argumentations on how
a naming game model scales to large populations in com-
plex social networks. But only a few papers (De Vylder
and Tuyls 2006; De Beule, De Vylder, and Belpaeme 2006;
Gosti and Batchelder 2011) present analytical discussion of
the naming game.

Moreover, a related game is the signaling game (Skyrms
2010), which is a formal approach to the evolution of con-
ventions (Lewis 1969). In the signaling game the agents
evolve signaling conventions to communicate private in-
formation on the state of the world. A number of re-
searchers have analyzed this game (Huttegger and Zoll-
man 2011) both at the theoretical level (Pawlowitsch 2008;
Hofbauer and Huttegger 2008; Argiento et al. 2009), and at
simulation level (Barrett and Zollman 2009). Moreover, ex-
perimental economists have investigated the signaling game
(Blume et al. 1998; 2002).

In this paper, as in Baronchelli et al. (2006), there is only
one object, and time is discrete. Moreover, as in Gosti and
Batchelder (2011), I consider an arbitrary directed graph to
represent the underlining communication network. A di-
rected graph is a graph which has directed edges, or arcs, in
the place of undirected edges. In this paper, in accordance
with graph theory terminology, I use the term digraph as an
abbreviation of the term directed graph. Furthermore, in ac-
cordance with graph theory convention a digraph is a pair
D = 〈N,V 〉, where N is the set of agents and V ⊆ N ×N
is a set of ordered pair ofN , or arcs. The arcs on this digraph
determine the possibilities for agent communication, where
each arc (ordered pair) represents, respectively, a potential
speaker and listener. For instance, the advantage of using a
digraph is that it can represent cases in which an agent A
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directly influences agent B, but agent B does not influence
agent A.

Influence in Networks and Opinion Dynamics

Recent developments in communication technology have
changed the way organizations perceive networks and es-
pecially informal influence networks. Social scientists and
modelers, as well as private organizations, have developed
interests in finding ways to measure the influence of peo-
ple in these networks (Irfan and Ortiz 2011; Verbeke et al.
2012). If we consider options that are endogenously equably
preferable, then it is easy to see how the naming game is a
particular case of opinion dynamics. From this prospective,
measuring the influence of agents corresponds to the estima-
tion of the underlying directed graph. Consequently, if we
take into account the necessary precautions, we can carry
over the conclusions presented in this paper to the general
problem of measuring influence.

In particular, there are some analogies with the wireless
telecommunication market in Western countries. As a matter
of fact, in many Western countries there are more subscrip-
tions than inhabitants (Verbeke et al. 2012). This situation
forces the companies to consider customer retention strate-
gies. As a result, wireless telecommunication companies are
particularly concerned with customers churns. A customer
churn is a group of customers which collectively decides to
switch provider. Therefore, to prevent customer churns it
is important to determine whether, the churn is caused by
an influential customer (“customer role model”), or if it is
caused by the instability of the customer behavior.

The Linear Operator Naming Game

Some Notation

In the linear operator naming game, as in the minimal nam-
ing game (Baronchelli et al. 2006), there are n agents,
N = {ai|1 ≤ i ≤ n}; and one object with m possi-
ble names, W = {wk|1 ≤ k ≤ m}. Furthermore, as
in the digraph naming game (Gosti and Batchelder 2011)
the communication structure is represented by a digraph,
D = 〈N,V 〉, where V ⊆ N × N is a binary relation
on N . The members of V are potential speaker-listener
pairs of agents, v = (as, al). Discrete time is denoted by
T = {t|t = 1, 2, . . .}.

What distinguishes the linear operator naming game from
the minimal naming game is that the agents’ learning pro-
cess is the Linear Operator model (Norman and Yellott
1966). This learning model was introduced to explain data
from Herrnsteins probability matching experiments. In this
framework, each agent ai has assigned a production prob-
ability distribution pi,t(wk), which specifies the probability
that, at time t, the agent ai chooses to produce word wk ∈
W , formally pi,t(wk) = Pr(wk|ai, t). The global state of
the system at any time point t denoted by pt = 〈pi,t(wk)〉
is a vector of the production probabilities of all agents ai for
each word wk.

The Rules of the Game
I define the linear operator naming game algorithm as a
set of four rules. The first rule defines the state of the
agents at time t = 1, the second rule describes how the
speaker-listener pairs are selected, the third describes how
the speaker selects a word to communicate to the listener,
and the fourth describes how the system updates its state.

R1 Initial State At time t = 1, the production probability
of each agent is a uniform distribution over the words,
pi,t=1(wk) = 1/m.

R2 Selection At each time t, the speaker-listener pair, Vt ∈
V , is determined independent of previous selections with
uniform probability, ∀v ∈ V , Pr(Vt = v) = 1/|V |.

R3 Speaker Rule Suppose at time t the state is pt, and the
selected arc is vt = (as, al) ∈ V , then as probabilis-
tically selects a word Bt at random from its production
probability distribution Pr(Bt = wk|as, t) = ps,t(wk).

R4 State Change Suppose as is the speaker, al is the lis-
tener, and that ps,t(wk) and pl,t(wk) are their respec-
tive production probability distributions at time t. More-
over, suppose w? is the word produced at time t. The
function that defines the change in the speaker’s and lis-
tener’s production probability distributions, ps,t+1(wk)
and pl,t+1(wk) at time t+ 1 is

pi,t+1(wk) =

{
(1− θ)pi,t(wk) + θ, if wk = w?

(1− θ)pi,t(wk), otherwise
(1)

where i ∈ s, l and θ is an arbitrary parameter that quan-
tifies how much the speaker and the listener reinforce the
spoken word w?. At any time t, only the speaker and
listener for that time point change their production prob-
ability distributions, and all the other agents maintain the
production probability distributions they had after the pre-
vious time point, t− 1.

Rule 4 is the rule that distinguishes the linear model nam-
ing game from the minimal naming game and the digraph
naming game. This state change rule, or update rule, can be
thought of as a specific type of reinforcement learning.

Simulation Results
Cultural Role Models and Heterogeneity
A cultural role model is an agent that influences the con-
vention of other agents, but the cultural role model is not
influenced itself by agents who do not belong to its cul-
tural clique. To produce a formal definition of a cultural
role model I recall the formal concepts of a path relation and
a path graph.

Definition 1 (Path) Let G = 〈N,V 〉 be a directed graph
and a, b ∈ N . Then there is a path from a to b in case
either a = b or there is a sequence of two or more arcs
v0, v1, . . . , vn′ such that v0 = (a, a1), vn′ = (an′ , b), and
vi ∈ V for each i ∈ {0, . . . , n′}.
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Definition 2 (Path Graph) Let D = 〈N,V 〉 be a directed
graph. The path relationP ⊆ N×N is defined by ∀a, b ∈ A,
aPb⇔ there is a path from a to b, and the path digraph of
D is denoted by PD = 〈A,P 〉.

A node a ∈ N is a cultural role model in case ∀b ∈ N ,
bPa ⇒ aPb. Figure 1 shows a weakly connected digraph,
in which two nodes 1 and 2 influence individually node 3
and 5, and together they influence node 4. Nodes 1 and 2
are cultural role models because they are not influenced by
any other node. Moreover, they do not influence each other,
as a consequence they belong to separate cultural cliques.
A priori, we expected that agents 1 and 3 and also agents 2
and 5 would converge to a common name agreement; how-
ever, that word might be different. If this is the case, we
find that two separate parts of the graph converge to stable
heterogeneous naming conventions. It is important to point
out that this is not a global stable state, because we expected
node 4 to continuously oscillate between the two naming
conventions established independently by the two cultural
role models.

1 2

3 4 5

Figure 1: Nontrivial weakly connected digraph with two cul-
tural role models, which do not influence each other.

I ran the linear operator naming game algorithm on this
graph with m = 20 and θ = 0.05, and I observed that in
this case the algorithm run did not converge to an agree-
ment. I define the match between two agents that are con-
nected by an edge as the probability that the two agents pro-
duce the same word at time t, given that they both speak
simultaneously. Provided an arbitrary arc vij = (ai, aj),
and the random variables Wi and Wj , which determine the
words that agents ai and aj produce, the match is defined as
Pr(Wi = Wj |vij , t). The overall network match MG over
the digraph G is therefore the probability that any two agents
connected by an edge say the same word given that they are
both selected to speak at time t with probability 1/|V |. The
network matchMG can be obtained with the following equa-
tion,

MG(t) =
∑
v∈V

Pr(Wi = Wj |vij , t)/|V |. (2)

The network match MG and the pairwise match Pr(Wi =
Wj |vij , t) allow us to measure the level of agreement be-
tween agents. When MG = 0 or Pr(Wi = Wj |vij , t) = 0
the agents never use the same word, therefore the system
does not exhibit a naming agreement. Contrarily, when
MG = 1 or Pr(Wi = Wj |vij , t) = 1 the agents alway use
the same word, therefore the agents share a single naming
convention. At each time t, I measured Pr(Wi = Wj |vij , t)
for the edges (1, 3) and (2, 5), and the total network match
MG(t) for each time interval t. These values are reported
in figure 2. As expected, for large t, MG(t) saturates at a
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Figure 2: Evolution of the three measurements of match,
Pr(W1 = W3|(1, 3), t), Pr(W2 = W5|(2, 5), t), and
MG(t), on a simple nontrivial quasi strongly connected
graph.

suboptimal level below 1, because the agents in the commu-
nication network did not converge to a single conventional
naming system. Contrarily, Pr(W1 = W3|(1, 3), t) and
Pr(W2 = W5|(2, 5), t) converge to a value of one, which
implies optimal agreement. This result proves that two cul-
tural role models that do not influence each other can cause
the evolution of persistent heterogeneous conventions.

“Apparently” Persistent Heterogeneity
I arranged 1000 agents on a cycle graph (Fig. 3), set θ =
0.05, and the number of words to m = 10. I considered a
large graph because previous research on Ising suggests that
a larger graph would be more likely to exhibit heterogeneous
conventions.

Each ∆ > 0 time intervals, I query the production proba-
bilities of each agent, and use these values in the calculation
of the overall word production probability Pr(wk, t),

Pr(wk, t) =
1

n

n∑
i=1

Pr(wk|ai, t), (3)

where I assume that speakers are sampled with uniform
probability 1/n. Figure 4 shows the evolution in time of
the overall word production probability Pr(wk|t) for word
4, word 6, and word 8. Almost all the words except for word
4 and 6 became unused in the first 2 × 109 rounds. From
the figure we see the production probability for word 8 be-
came negligible just before t = 2× 109. In the next 8× 109

rounds, word 4 and 6 compete and alternate in popularity.
Until, word 6 finally takes over word 4 and becomes the
only word spoken by the agents.
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Figure 3: Cycle graph with 10 modes.
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Figure 4: Evolution in time of the overall word production
probability Pr(wk|t), where I assume that speakers are se-
lected with uniform probability 1/n.

Regarding the level of conventionality and agreement in
the network, we expect a network that evolves regional het-
erogeneous conventions to exhibit a high level of agreement
between agents that are connected to each other, and low
level of agreement between agents that are distant from each
other. I use the previously defined network match measure,
Pr(Wi = Wj |vij , t), to measure the degree of agreement
between any two agents ai and aj connected by an edge vij .
Therefore, I compute the match over all the network as in
the previous section,

MG(t) =
∑
v∈V

Pr(Wi = Wj |vij , t)/|V |, (4)

where I assume that couples of agents are sampled with uni-
form probability 1/|V |. Similarly, in order to evaluate the
match between agents that are distant, I use the match be-
tween the most distant agents on the network. In graph the-
ory, the distance is the number of nodes in the shortest path
between two nodes. On a cycle graph, the most distant agent
aj with regards to ai can be derived with the use of the equa-
tion j = (i + n/2) mod n. This equation defines an “op-

ponent” relation iOj over any two nodes i and j. I use the
opponent relationO to define a opponent graphO = 〈A,O〉.
The average match over the most distant agents can be ex-
pressed as

MO(t) =
∑
v∈O

Pr(Wi = Wj |v, t)/|O|. (5)

Figure 5 represents the evolution of the average match be-
tween neighboring agents MG(t), and agents that are at op-
posite sides of the cycle graph MO(t). This figure shows a
similar pattern to the previous figure. In the first 2 × 109

rounds, close agents rapidly increase their match, while dis-
tant agents do not increase their agreement as much. In
the next 8 × 109 rounds, the match between close agents
asymptotically converges to 1, and the match between dis-
tant agents oscillates violently. Right before 8×109 rounds,
the distant match jumps up, and both measures of agreement
saturate at 1, as the system converges to a global convention.
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Figure 5: Evolution of the two measurements of match,
MG(t), and MO(t) on a cycle graph.

Figure 6 shows the agents’ preferences for word 4 and 6
between 4.8 × 109 to 6 × 109 rounds. The preferences for
word 4 and 6 were sampled every 2×107. The X-axis repre-
sents the agents, and the Y-axis represents the time. For each
time and agent I draw a point. A white point corresponds to
an agent who produces word 4 with probability larger then
0.5. A black point corresponds to an agent who produces
word 6 with probability larger then 0.5. This plot shows us
how if we look at just this limited, but not trivial, time range
we observe two separate groups of agents that persistently
adhere at different naming conventions. Moreover, we no-
tice that there are agents at the borders of these conventions
that are influenced by both groups and are forced to flip be-
tween the two conventions similarly to node 4 in the previ-
ous instance. In other words, we observe the emergence of a
persistent heterogeneous conventions, and we may be led to
conclude that there are two different cliques of cultural role
models that induce this heterogeneity.
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t

Figure 6: This figure shows the spacial distribution of agents
that prefer word 3 or word 8. Given that the positions on the
cycle are labeled in clockwise order from 1 to 1000, agents
are arranged along the X-axis according to their label. Fur-
thermore, the Y-axis represents the time t. The range of the
Y-axis on this plot goes from 4.5× 109 to 6× 109. A white
point corresponds to an agent who produces word 4 with
probability larger then 0.5. A black point corresponds to an
agent who produces word 6 with probability larger then 0.5.

Conclusions
It is reasonable to observe that the cycle graph may not be
representative of real social networks, and that before we
draw general conclusions it is necessary to also investigate
broader classes of graphs, such as scale-free networks that
exhibit high degree heterogeneity, or small world graphs that
present small average distance between nodes. Neverthe-
less, it is important to point out that this does not undermine
the main objective of this instances which show how simple
topologies such as a cycle graph may exhibit heterogeneous
conventions for extended periods of time.

Furthermore, It may be observed that this model makes
stringent assumptions restricting itself to interaction in dis-
crete time, and considering a minimal model of learn-
ing. Nevertheless, these considerations need to be weighted
against the ability of this model to present complex and re-
alistic behavior. Moreover, it is exactly the minimality of
this model that allows us to scale the simulations to large
populations, and gives us the opportunity to speak about the
global behavior of large populations. Ultimately, one of the
purposes of this model is to be able to speak about very large
populations such as the population of a country, or groups of
interconnected countries.

In conclusion, the cycle graph instance proves, by counter
example, that the heterogeneity that is observed in the real
world is not necessarily explained by competing cultural role
models. As a matter of fact, this instance exhibits unstable
heterogeneous conventions for a substantial time without the
presence of cultural role models. Additionally, the heteroge-
neous conventions phase lasts 8× 109 intervals compared a
initial disordered phase that lasts 2× 109.

Thus, when we are confronted with a current state of the
world, it may be hard to came to a conclusion on the exis-
tence or not of cultural role models in the system. A poten-
tial solution is to consider historical time series data and find
a way to exclude that the system is not at an apparently per-
sistent heterogeneous convention, or otherwise find a way
to take in consideration the heterogeneity that is caused by
instability and not by the influence network. These results
are important also when considering other fields, such as
customer retention, where analysts try to discover influen-
tial customers that effect the opinion and preference of other
customers, because they show us some of the variables that
confound the direct effect of influence networks.

In future work, I plan to develop more concrete assump-
tions on the evolution of opinions and naming conventions.
Moreover, I am interested in finding statistical approaches
to test the causes of cultural heterogeneity, to eventually for-
mulate statistical test to reject the hypothesis of unstable cul-
tural heterogeneity.
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