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Abstract

Causality discovery has been one of the core tasks in scien-
tific research since the beginning of human scientific history.
In the age of data tsunami, the task could involve millions
of variables, which cannot be achieved feasibly by human.
However, the causal discovery using artificial intelligence and
statistical techniques in non-experimental settings faces sev-
eral challenges. In this work, we address three practical chal-
lenges regarding Granger causality, one of the most popu-
lar causality inference techniques for time series data. First,
we analyze the consistency of two most popular Granger
causality techniques and show that the significance test is
not consistent in high dimensions. Second, we review the
nonparametric generalization of the Lasso-Granger technique
called Generalized Lasso Granger (GLG) to uncover Granger
causality relationships among irregularly sampled time series.
Finally, we describe two techniques to uncover the casual de-
pendence in non-linear datasets. Extensive experiments on
the climate datasets are provided to show the significant ad-
vantages of the proposed algorithms over their state-of-the-art
counterparts.

1 Introduction

Discovering the causal relationships among multiple natu-
ral processes constitutes the core of the scientific method
which is one of the top achievements of the human being
throughout the history. Once Democritus, an ancient Greek
philosopher (460-370 BC), stated “I would rather discover
one causal law than be the king of Persia”. This means since
the dawn of the civilization, human being was fully aware of
the significance of the identification of causal relationships
in the nature. With the development of new technologies in
many domains, we are now in an era of data tsunami, in
which massive amount of time series data become available
for analysis and mining. Uncovering the underlying causal
graphs from large amount of data could have great benefits
to many areas ranging from scientific discovery to practical
applications, but achieving this is an extremely challenging
task in artificial intelligence and machine learning.

Granger Causality (Granger 1969) is one of the earli-
est methods developed to quantify the causal effect among
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multiple time series. It is based on the common concep-
tion that the cause usually occurs prior to its effect. For-
mally, X Granger causes Y if its past value can help to
predict the future value of Y beyond what could have been
done with the past value of Y only. It has gained tremen-
dous success across many domains due to its simplicity, ro-
bustness, and extendability (Panchenko and Valentyn 2004;
Brovelli et al. 2004; Hiemstra and Jones 1994; Asimakopou-
los, Ayling, and Mansor Mahmood 2000; Marinazzo, Pel-
licoro, and Stramaglia 2008).

Granger causality, like many other data-driven causality
analysis approaches, is confronted with three major chal-
lenges: The computational challenges which stem from the
characteristics that many practical applications involve a
large number of variables but very few observations (com-
pared with the much larger number of variables involved),
which makes it difficult for statistical methods to effectively
infer the causality relationships. The second challenge orig-
inates from imperfectness of the data collection procedures.
In many real-world applications the data has not been col-
lected on uniformly spaced time intervals. Finally, the orig-
inal Granger causality is based on vector auto-regressive
(VAR) model assumption for the data. In many real-world
scientific applications the data significantly deviates from
the VAR model and non-linear extensions are on demand.
We test our algorithms in two climatology datasets to high-
light their superior performance in comparison with the state
of the art algorithms.

To address the first challenge we analyze the consistency
of two popular Granger causality inference techniques; the
significance tests and Lasso-Granger. We show that while
both methods are consistent in low dimensions, the signifi-
cance tests become inconsistent in high dimensions; thus the
Lasso-Granger is the preferred method in high dimensions.
Confident about the robust performance of Lasso-Granger,
we develop a non-parametric generalization of the Lasso-
Granger for irregular time series called Generalized Lasso-
Granger (GLG) (Bahadori and Liu 2012) and show its supe-
rior performance over existing algorithms in uncovering the
Granger causality patterns in irregular time series. For non-
linear extensions, we describe two extensions of the Granger
causality (Liu, Bahadori, and Li 2012), one based on the
copula approach and the other one based on Transfer En-
tropy technique.



In the rest of the paper, we first review the Granger causal-
ity and the existing approaches to uncover it in Section 2,
and then we discuss the theoretical consistency analysis in
Section 3. Sections 4 and 5 are dedicated to description of
GLG and non-linear extensions of Granger causality, respec-
tively. In Section 6, we show experiment results on applica-
tion datasets to show the significant advantage of the pro-
posed algorithms over the state of the art ones, and finally in
Section 7 we summarize the paper and hint on future work.

2 Preliminaries

Granger Causality is one of the most popular approaches
to quantify causal relationships among time series obser-
vations. It is based on two major principles: (i) The cause
happens prior to the effect and (ii) The cause makes unique
changes in the effect (Granger 1969; 1980). There have been
extensive debates on the validity and generality of these
principles. In this paper, we omit the lengthy discussion and
simply assume their correctness for the rest of the discus-
sion.

Given two stationary time series X = {X(¢)}+cz and
Y = {Y(¢) }1ez, we can consider the following information
sets: (i) Z*(t), the set of all information in the universe up
to time ¢, and (ii) Z*  (¢), the set of all information in the
universe excluding X up to time ¢. Under the two principles
of Granger causality, the conditional distribution of future
values of Y given Z*  (¢) and Z*(¢) should differ. Therefore
X is defined to Granger cause Y (Granger 1969; 1980) if

PIY (t+1) € AIT* 1) £ B[Y (¢t + 1) € AT ()], (1)

for some measurable set A C R and all t € Z. As we can
see, the original definition of Granger causality is very gen-
eral and does not have any assumptions on the data genera-
tion process. However, modeling the distributions for multi-
variate time series could be extremely difficult while linear
models are a simple yet robust approach, with strong em-
pirical performance in practical applications. As a results,
Vector Auto-regression (VAR) models have evolved to be
one of the dominate approaches for Granger causality.

Up to now, two major approaches based on VAR model
have been developed to uncover Granger causality for mul-
tivariate time series. One approach is the significance test
(Marinazzo, Pellicoro, and Stramaglia 2008): given multi-
ple time series X, ..., Xy, we run a VAR model for each
time series X, i.e.,

v
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where X/%99¢4 — [X,(t — L), ..., X;(t — 1)] is the his-

tory of X; up to time ¢, L is the maximal time lag, and
Bji = [8:(1),...,8;:(L)] is the vector of coefficients
modeling the effect of time series X; on the target time se-
ries. We can determine that time series X; Granger causes
X if at least one value in the coefficient vector 3;; is
nonzero by statistical significant tests. The second approach
is the Lasso-Granger approach (Valdés-Sosa et al. 2005;
Arnold, Liu, and Abe ), which applies lasso-type VAR model

to obtain a sparse and robust estimate of the coefficient vec-
tors for Granger causality tests. Specifically, the regression
task in Eq. (2) can be achieved by solving the following op-
timization problem:
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where ) is the penalty parameter, which determines the spar-
sity of the coefficient vector 3.

3 Consistency Analysis

In this section, we first show that both the significance tests
and the Lasso-Granger approach (subject to some condi-
tions) are consistent in identifying the underlying Granger
causality relationships, in lower dimensions. We will also
show that the significance tests are inconsistent in high di-
mensions; thus the Lasso-Granger is the preferred method
in high dimensions. First, let us define the consistency by
introducing the probability of errors for VAR-type models
as follows:

P[Error] = P[3¢ : \Ei,j(é)l > ag|Bi,; = O|P[Bs,; = 0]
+PIVE : |B;j(0)] < aolBi; # OIPBi; # O]

We say that a method is consistent if its probability of errors
goes to zero when the number of observations increases.

Theorem 1. In a VAR system, suppose all the confounders
in a system have been observed (i.e., there exist no hid-
den variables). If T/L — 1 > V, the significance tests
are consistent with probability of error decaying with rate

P[Error] < 2¢L\/T — Lexp (—%(T - L)) for some con-
stant c, where T' is the length of time series, and L is the max-
imal lag; otherwise the significance tests are inconsistent.
The Lasso-Granger subject to conditions in (Meinshausen
and Yu 2009) is always consistent with model selection er-
ror rate o(L exp(—T")) for some 0 < v < 1.

The proof will be provided in the extended version.

Remarks 1. The resultin Proposition 1 states that the error
decreases exponentially as the length of the time series in-
crease for both approaches. Also it states that when L < T'
large value of L linearly degrades the performance, whereas
in the case of L ~ T the exponential term will be dominant
and the error will increase exponentially with L.

2. The consistency results also imply that learning linear
Granger causal relationships is a simpler task than learning
undirected graphical models (Meinshausen and Biihlmann
2006). This is intuitive since learning the edges for one
node is a variable selection process isolated from that for
other nodes and therefore no constraint on the neighborhood
nodes is required.

4 GLG for Irregular Time Series

After showing the advantages of Lasso-Granger, we intend
to extend the power of Lasso-Granger to address the prac-
tical challenge of irregularity of time series in real-world



applications. Consider the following definition of irregular
time series:

Definition 1. An irregular time series x of length N is de-
noted by x = {(t,,r,)})_, where time-stamp sequence
{tn} are strictly increasing, i.e., t; < ty < ... < ty and
T, are the value of the time series at the corresponding time
stamps.

The major challenge to uncover temporal causal networks
for irregular time series is how to effectively capture the
temporal dependence without directly estimating the values
of missing data or making restricted assumptions about the
generation process of the time series.

Generalized Lasso Granger (GLG)
The key idea of our model is as follows: if we treat 3; ; in
Eq. (3) as a time series, ,BiT’jx(j) can be considered as its

inner product with another time series x/). If we general-
ize the inner product operator to irregular time series, the
temporal causal models for regular time series can be easily
extended to handle irregular cases.

Let us denote the generalization of dot product between
two irregular time series x and y by x ® y, which can
be interpreted as a (possibly non-linear) function that mea-
sures the unnormalized similarity between them. Depending
on the target application, one can define different similarity
measures, and thus inner product definitions. For example,
we can define the inner product as a linear function with re-
spect to the first time series components as follows:

xoy=Y 21 TnYmw (b7, 14,
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where w is the kernel function. For example w can be the
Gaussian kernel defined as following:
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Given the generalization of the inner product operator, we
can now extend the regression in Eq. (3) to obtain the desired
optimization problem for irregular time series. Formally,
suppose P number of irregular time series x(1), ... x("),
are given. Let At denote the average length of the sampling
intervals for the target time series (e.g. x(*)) and 3 ;(t) bea
pseudo time series, i.e.: ’

,@;)j@) = {(tlaﬁi,j,l)ll =1,...,. L.t =t — lAt},

which means that for different value of ¢, 3; ;(t) share the

same observation vectors (i.e, {3; ;}), but the time stamp
vectors vary according to the value of ¢t. We can perform
the causality analysis by generalized Lasso Granger (GLG)
method that solves the following optimization problem:
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where / is the smallest value of n that satisfies t%i ) > LAt.
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The above optimization problem is not convex in general
and the convex optimization algorithms can only find a lo-
cal minimum. However if the generalized inner product is
defined to make Problem 6 convex, there are efficient algo-
rithms such as FISTA (Beck and Teboulle 2009) to solve
optimization problems of the form f (@) + ||0||; where f(0)
is convex. In this paper, we use the linear generalization of
the inner product given by Eq. (4) with which Problem (6)
can be reformulated as linear prediction of azgf )
eters 3; ;( G )) subject to norm-1 constraint on the value of
the parameters. Thus, the problem is a Lasso problem and
can be solved more efficiently by optimized Lasso solvers
such as Coordinate Descent (Friedman, Hastie, and Tibshi-
rani 2010).

using param-

S Non-Linear Granger Causality Discovery

The Lasso-Granger and Significance test methods are based
on the vector autoregressive model for the data. In real-
world there are many cases in which the distribution of the
data significantly deviates from the VAR model. In this sec-
tion we describe two methods to uncover Granger causal-
ity with non-linear temporal-causal dependency: The copula
approach which is based on a non-linear mapping using the
marginal distribution of the data and the Transfer Entropy
which relies on the concept of entropy as a measure of infor-
mation.

Copula Solution The Copula approach has been pro-
posed for dependency analysis of time series with non-
Gaussian marginal distributions, (Embrechts, Mcneil, and
Straumann 2002). It has been used for prediction of time
series (Leong and Valdez 2005) and learning the depen-
dency graph among time series (Liu, Lafferty, and Wasser-
man 2009). In the copula framework, first the marginal dis-
tribution of the time series x* are estimated as F}. Next
the observations are transformed to the copula domain as
ul = ®~1(F;(x?)), where ® is the cdf of the unit Gaussian
distribution. Finally the temporal causal graph can be uncov-
ered by analysis of dependency among u! using algorithms
such as glasso algorithm (Friedman, Hastie, and Tibshi-
rani 2008). We report an edge from node ¢ to node j if in the
precision matrix has is at least one non-zero element from
lagged u]_, to ui, for ¢ > 1. The method in (Leong and
Valdez 2005) is used for prediction of the future values of
the time series.

In order to uncover causality relationship among time
series we can either estimate the marginals with a non-
parametric density estimator or we can fit a particular distri-
bution as marginal distribution. In the time-varying networks
the latter is preferred; since the non-parametric approxima-
tion of the marginal distributions leads to over-fitting when
the number of observations is scarce.

Transfer Entropy Solution Transfer entropy is usually
employed when the data do not follow the auto-regressive
model and a nonlinear generalization of the Granger causal-
ity framework is desirable. In the Transfer entropy frame-
work (Schreiber 2000), time series X is thought to be a
cause of another time series Y if the values of X in the past
significantly decrease the uncertainty in the future values of



Y given its past. The amount of decrease in the uncertainty
can be quantified as

TX—)Y — H(yt|yt7L:t71) —H(Yt|Yt7L:t717Xt7L:t71)7

where H(X) is the Shannon entropy of the random variable
X. Since the transfer entropy is a pairwise quantity, we can
use it in a temporal dependency graph learning framework
such as IJAMB (Tsamardinos, Aliferis, and Statnikov 2003)
to uncover the temporal dependency among multiple time
series.

6 Expriments

In this section we present two sets of experiments: the first
set on the Paleo dataset with irregular sampling times to
discover the monsoon climate patterns in Asia. The second
set of experiments are done on two sets of climate and so-
cial media datasets. In all the experiments, we use imple-
mentation of Lasso in GLMnet package (Friedman, Hastie,
and Tibshirani 2010) and tune the penalization parameter of
Lasso via AIC (Akaike 1974).

Performance of GLG

Now we apply our method to a Climate dataset to discover
the weather movement patterns. Climate scientist usually
rely on models with enormous number of parameters that
are needed to be measured. The alternative approach is the
data-centric approach which attempts to find the patterns in
the observations.

The Paleo dataset which is studied in this paper is the col-
lection of density of §'80, a radio-active isotope of Oxygen,
in four caves across China and India, see Figure 1. The inter-
sampling time varies from high resolution 0.5 = 0.35 to low
resolution 7.79 + 9.79; however there is no large gap be-
tween the measurement times. The density of §'%0 in all
the datasets is linked to the amount of precipitation which is
affected by the Asian monsoon system during the measure-
ment period. Asian monsoon system, depicted in Figure 1,
affects a large share of world’s population by transporting
moisture across the continent. The movement of monsoonal
air masses can be discovered by analysis of their 5180 trace.

Figure 1: Map of the locations and the monsoon systems in
Asia.

In order to analyze the spatial transportation of the mois-
ture we normalize all the datasets by subtracting the mean
and divide them by their standard deviation. We use GLG
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with the Gaussian kernel with bandwidth equal to 0.5(y) and
maximum lag of 25(y); i.e. L = 50. In order to compare
our results with the results produced by the slotting method
in (Rehfeld et al. 2011) we analyze the spatial relationship
among the locations in three age intervals. Figure 2 com-
pares the graphs produced by GLG with the ones reported
by (Rehfeld et al. 2011).
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Figure 2: Comparison of the results on the Paleo Dataset:
(a) GLG in period 850AD-1563AD. (b) GLG in the period
1250AD-1564AD. (c) GLG in the period 850AD-1250AD.
(d) Slotting technique in period 850AD-1563AD. (e) Slot-
ting technique in the period 1250AD-1564AD. (f) Slotting
technique in the period 850AD-1250AD.

Results on the Paleo Dataset Figure 2 parts (a) and (d)
show the results of influence analysis with GLG and slotting
technique, respectively. Our results identify two main trans-
portation patterns. First, the edges from Dongge to other
locations which can be interpreted as the effect of move-
ment of air masses from southern China to other regions
via the East Asian Monsoon System (EAMS). Second, an
edge from Dandak to Dongge which shows the Indian Mon-
soon System (IMS) significantly affects Dongge in southern
China. The graph in the period 1250AD-1563AD is sparser
than the graph in 850AD-1250AD which can be due to the
fact that the former age period is a cold period, in which
air masses do not have enough energy to move from India
to China, while in contrast the latter age period is a warm
phase and the air masses initiated in India impact south-
ern China regions. During the warm period we can see that
other branches of EAMS are also more active which result
in denser graph in the warm period. The differences between
our results and the results from Slotting technique can be
because of the fact that in the Slotting technique an edge
is positively identified even if two time series have signif-
icant correlation at zero lag. However, by the definition of
Granger causality, only past values of one time series should
help prediction of the other one in order to be considered as
a cause of it.

Non-linear Causation

The study of extreme value of wind speed and gust speed
is of great interest to the climate scientists and wind power
engineers. A collection of wind observations is provided by



AWS Convergence Technologies, Inc. of Germantown, MD.
It consists of the observations of surface wind speed (mph)
and gust speed (mph) every five minutes. We choose 153
weather stations located on a grid laying in the 35N — 50N
and 70W — 90W block. Following the traditions in this do-
main, we generated extreme value time series observations,
i.e, daily maximum values, at different weather stations. The
objective is examine how the wind speed (or gust speed) at
different locations affects each other and how well we can
make predictions on future wind speed. It has been shown
that the daily maximum values follow the extreme value dis-
tribution which is very different from the Gaussian distribu-
tion. Thus, this dataset can be used for testing the perfor-
mance of the algorithms in non-linear datasets.

Prediction Performance In the prediction task, we con-
duct experiments via the sliding window approach: given
time series observations of length 7" and a window size S,
we train a model on observations of x,,...,x7r_g4s—1 and
test it on the (7' — S + s)"* sample, for s = 1,...,5. We
set S to be 10 for all datasets. For evaluation, we use the
root mean squared error (RMSE) measure averaged over S
experiments and all nodes.

Table 1: Comparison of RMSE by different algorithms in the
prediction tasks.

Wind | Gust
Granger .0695 | .0943
Transfer entropy | .0692 | .0983
Copula 0678 | .0934

Table 1 shows the prediction accuracy of different algo-
rithms on all datasets. The superior performance of the Cop-
ula based approach can be attributed to its ability to capture
the non-linear dependencies in the data. Transfer entropy re-
quires many observations to perform well, which could be a
potential issue in the real applications.

Graph Learning Performance Figure 3 shows the in-
ferred temporal dependencies from the time series of wind
speedby Granger-Copula. Given the limited space, we limit
our discussion on the new york region. The main observa-
tion is that the weather in the inland regions are heavily in-
fluenced by the coastline region. The graph indicates two
clusters. One is coastal cluster centered around New York
city and another inland cluster centered at Troy, which have
strong temporal relationship with neighboring cities con-
firmed by the climatologists.

7 Conclusion and Future Work

In this paper after establishing the consistency results for
the significance tests and Lasso-Granger we described sev-
eral generalizations to be used in different real applications.
The GLG method is designed to uncover the temporal causal
dependencies among irregular time series and copula based
approach and Transfer Entropy are designed to uncover tem-
poral causal relationships in non-linear datasets.
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Figure 3: The temporal dependence graph learned by
Granger-Copula on the time series of Wind in NY. Thicker
edges imply stronger dependency.

This work is going to be extended in several directions:
(i) Identification and compensation of the spurious causal
effects due to unobserved variables in Granger networks, (ii)
Identification of the effects of hidden variables in Granger
networks and (iii) Design of efficient non-parametric tests
for discovering causality in non-linear systems are some of
the exciting future directions to pursue.
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