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Abstract

In this paper, we describe an interactive environment for the
representation, interpretation, and revision of explanatory bi-
ological models. We illustrate our approach on the systems
biology of aging, a complex topic that involves many interact-
ing components, and discuss our experiences using this envi-
ronment to codify an informal model of aging. We close by
discussing related efforts and directions for future research.

Introduction and Overview
There is general agreement that the explosive growth in bi-
ological data offers great opportunities but also poses ma-
jor challenges for many fields. Although less widely rec-
ognized, the growing complexity of biological models that
aim to account for these observations raises a host of other
issues. Computational techniques hold promise for miti-
gating this complexity, but most efforts in this arena have
been driven by algorithmic concerns rather than the cogni-
tive needs of scientists who must develop complex models,
interpret them, and understand their behavior. Researchers
would benefit from computational tools designed with their
needs in mind.

Many efforts in modern science aim at understanding
complex phenomena that require a systems perspective. One
important example comes from research on aging in hu-
mans and other organisms, with recent studies suggesting
that senescence results from the interaction of many distinct
but interconnected processes (Vijg & Campisi, 2008). Indi-
vidual laboratories report experiments and propose hypothe-
ses to explain them, but there has been little work on how
they fit together. The systems biology movement has cham-
pioned integrative science, but it has emphasized topics like
gene regulation and left phenomena like aging understudied.
In this paper, we report an interactive, Web-based computa-
tional framework designed to support modeling of this vari-
ety. We illustrate the system’s abilities with examples from
the aging domain, then report initial experiences with the en-
vironment. We conclude with discussions of related work on
scientific modeling and directions for additional research.
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Challenges in Scientific Modeling
The construction of complex scientific models raises three
distinct but interrelated challenges. Here we expand upon
each of them in turn, placing constraints on the form our
responses should take in developing an environment for bi-
ological modeling.

Communicable Scientific Formalisms
The overall aim of science is to produce knowledge. Other
areas of human endeavor share this goal, but one way that
science differs is its emphasis on formalized statements of
this content. However, the social nature of science im-
poses an additional constraint: it must utilize communicable
formalisms that researchers can exchange and understand,
even over great distances (Džeroski, Langley, & Todorovski,
2007). Different fields have developed distinct notations to
convey their knowledge, each well suited to its community’s
needs.

Thus, the first computational challenge we must address is
to select a communicable formalism for biological models.
Over the past decade, many notations for formal biological
modeling have been proposed, but most involve notations
borrowed from other fields. These have included differen-
tial equations, Bayesian networks, and Boolean networks,
all of which have questionable relevance to traditional bi-
ological thinking. We hold that research in biology gener-
ally, and on aging in particular, imposes three constraints on
modeling formalism. One is that most accounts of phenom-
ena are qualitative in character, not because researchers pre-
fer them intrinsically, but because they enable useful claims
even when lacking more precise information. Another fac-
tor is that most biologists prefer graphical or diagrammatic
notations of model content. A third feature is that biolo-
gists often attempt to move beyond simple predictive models
to posit causal hypotheses or processes that underlie known
phenomena. A successful formalism should respond to all
of these factors.

Explainable Scientific Reasoning
Science also differs from some areas of inquiry by its con-
cern with observations. For a scientific model to be useful,
it must make some connection to data or phenomena. This
in turn requires some form of reasoning that leads from the
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model to predictions that, ideally, are consistent with ob-
servations. However, biologists typically desire more than
simple predictions; they prefer explanations that account for
observations in terms of concepts and mechanisms they find
familiar and plausible. Such explanatory reasoning is com-
mon in biology (Darden, 2006), but the growing complexity
of models suggests that, without assistance, researchers will
otherwise overlook important implications.

Thus, a second computational challenge involves support-
ing reasoning over the communicable scientific formalisms
just described. Different types of formalism and data depend
on different kinds of reasoning. Some of these, like meth-
ods for calculating results from numeric equations, are well
established. Automated reasoning over the qualitative mod-
els that dominate biology requires a different approach, with
techniques from logic being natural candidates. One com-
plication that arises in qualitative models is that two or more
causal pathways can predict different relationships between
variables. Another is that it is difficult to reason qualitatively
about how a system changes over time. Successful compu-
tational aids must address these issues.

Cumulative Improvement of Models

A third important feature of science is its cumulative char-
acter. Historians often focus on conceptual breakthroughs
by individuals like Darwin, Pasteur, and Morgan, but the
great majority of research involves filling in technical de-
tails rather than changing paradigms. This is especially true
for biology and medicine, in which scientists devote con-
siderable effort to piecing together complicated models with
many interacting parts. The fact that this cumulative work
happens in a distributed community introduces additional
complexity to the enterprise. Some fields have managed
reasonably well with traditional tools of exchange like refer-
eed journals, but the systems biology of aging would benefit
from more advanced technologies.

Thus, our final computational challenge involves support-
ing cumulative improvement of system-level models by bi-
ological researchers. A common response is to develop cu-
rated knowledge bases (e.g., Karp et al., 2000; Vastrik et al.,
2007) that rely on centralized control by a few experts. For
this reason, curated methods do not scale well and can take
considerable time to incorporate recent findings. We favor
a more open approach in which many different researchers
extend and revise a widely known model and, if they decide
the results are worth sharing, make them available to others.

An Interactive Modeling Environment

We have incorporated our responses to the above issues into
a Web-based software environment for biological modeling.
We have used it formalize two compartments of Furber’s
(2009) network diagram of aging, which depicts in a graph-
ical but informal way some well-supported hypotheses and
phenomena from biogerontology. In this section, we report
the environment’s response to each of the challenges just de-
scribed, using examples from aging to clarify its operation.

Representing and Visualizing Models
Recall that our first computational challenge involves encod-
ing explanatory models and presenting them in ways that bi-
ologists will understand. Let us review some key features of
aging that hold implications for modeling these phenomena:
• Different effects of aging and age-related disease are lo-

calized in different portions of body. For instance, some
age-linked changes occur in specific parts of the cell, such
as the lysosome or the mitochondria.

• Some hypotheses about aging involve transient sub-
stances, such as reactive oxygen species (ROS), whereas
others involve more stable entities like lipofuscin and mi-
tochondrial mutations that accumulate over time.

• Empirical results generally take the form of qualitative
relations between continuous variables. For instance, one
robust finding involves a negative influence of caloric in-
take on lifespan.

• Aging takes place over time, but its effects are primar-
ily monotonic in character, with the values of variables
increasing or decreasing consistently. For example, lipo-
fuscin in the lysosome is generally observed to increase
with chronological age.

• Empirical findings about aging come in two distinct vari-
eties: uncontrolled observations about changes over time
and results of controlled experiments that measure the ef-
fect of one variable on another.

Taken together, these observations place strong constraints
on our approach to modeling aging processes.

Figure 1 presents our reformulation of the lysomone com-
partment of Furber’s network diagram. The initial 15 state-
ments in the textual display on the left reflect the first two
points above. They declare specific locations – the lyso-
some, the cytoplasm, and the cell that contains them – along
with quantities that are measurable (at least in principle) in
those locations. Some quantities refer to stable substances,
like junk protein, oxidized protein, and lipofuscin, whereas
others denote transient substances, like Fe, ROS, and lytic
enzyme. Locations and quantities are stored internally as
simple frames, with the values for some slots (e.g., location
of a H2O2 instance) pointing to others (e.g., the lysosome).

The textual display in the figure also includes a set of
hypotheses about how these quantities influence each other.
One claim is that transient ROS increases with transient Fe
within the lysosome, whereas another is that stable oxidized
protein increases with transient ROS in the same location.
Hypotheses may also relate quantities in distinct locations
(e.g., that lipofuscin in the cytoplasm increases with dam-
aged membrane in the lysosome). These hypotheses have a
clear causal interpretation, in that they state how one vari-
able changes when another is altered. However, although
they link continuous quantities, the relations themselves are
qualitative in character. Hypotheses are also encoded as
frames, with some slots (e.g., cause and effect) referring to
instances of defined quantities.

Remember that the purpose of hypotheses is to explain
known empirical results and predict new ones. This in turn
requires not only that we represent these empirical findings
formally, but also that we distinguish them clearly from the
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Figure 1: A screen shot of the Web-based modeling environment. The textual display (left) items into places, stable and transient
quantities that occur in these locations, hypothesized causal influences that relate quantities, and empirical facts. The graphical
display (right) depicts places as boxes, quantities as nodes within those boxes, and causal hypotheses as links connecting them.

hypotheses themselves. The final four items on the left of
the figure illustrate our earlier point about forms of empir-
ical findings. The first two items both reflect the observa-
tional, nonexperimental character of many facts about ag-
ing. These explicitly mention time as a variable, which the
model hypotheses do not. The other two facts reflect the re-
sults of experimental studies that measure the effect on one
quantity when another is varied. The first states that lytic
enzyme decreases with ROS in the lysosome. The second
states that H2O2 does not vary with of ROS. Such nega-
tive results place constraints on models, although hypothe-
ses may contain only positive causal relations.

This notation meets two of the criteria given earlier. It
supports qualitative models that nevertheless relate quanti-
tative variables of the type biologists typically measure, and
the hypotheses that make up models have a clear causal in-
terpretation. The formalism also lends itself to graphical dis-
play, as shown in the right side of Figure 1. Here places are
depicted as boxes, quantities appear in their locations, and
arrows denote direct causal influences between these vari-
ables, with green for positive influences and red for negative
ones.

Users can also display empirical facts in a graphical for-
mat. This material takes the place of the textual display,
showing the observed relations in the same layout as as hy-

potheses that make up the model. The difference is that
the latter presents direct connections between quantities in-
tended to explain the indirect connections observed empiri-
cally.

Reasoning over Biological Models
The second computational challenge involves interpreting a
given model to explain known phenomena. Scientists reg-
ularly engage in such reasoning, but with complex models
they can easily overlook some conclusions and incorrectly
infer others. Thus, automatically determining a model’s im-
plications should be a key part of our scientific modeling en-
vironment. Good models should explain known phenomena
and predict new ones, while phenomena place constraints on
model content.

We can clarify this ability by introducing the notion of a
query about how two quantities are related. This takes the
same form as an empirical finding except that it does not
state the direction of influence or indeed whether an influ-
ence occurs at all. Thus, given the hypotheses in Figure 1,
we might ask “Does lipofuscin in the cytoplasm vary with
Fe in the lysosome?” or “Does ROS in the lysosome vary
with time?” The first asks a question about how changes to
one quantity in a controlled experiment affect another; the
second asks how a quantity changes over time.
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Because hypotheses take a form similar to facts, we can
utilize a relatively straightforward chaining procedure to an-
swer such queries. To handle a question about how depen-
dent variable Y varies with independent variable X, other
things being equal, one simply finds a causal pathway, typ-
ically through other quantities, that starts with Y and ends
with X. If no such path exists, then one can conclude that
changes to X do not produce changes in Y. If there is such
path, then if the path contains an even number of ‘decreases’
links, one predicts that Y increases with X; otherwise one
predicts that it decreases. For example, the model in Fig-
ure 1 implies that lytic enzyme will decrease with ROS.

One complication arises when multiple paths from Y to
X make different predictions. Without knowing the func-
tional forms and parameters that produce each causal link,
one cannot determine the exact effects of alternative path-
ways. The current modeling can only state that the hypothe-
ses make contradictory predictions. However, we can extend
the formalism in a simple way that lets it express another
type of hypothesis that biologists make all the time: that the
effect of one causal path dominates that of another.1 This
requires a way to specify which path between two quanti-
ties has the greater effect. Such dominance relations let an
abstract, qualitative causal model make unambiguous pre-
dictions about how one quantity varies with another.

Reasoning about how quantities change over time, rather
than as the result of experimental control, requires a slightly
different approach. We assume that any exogenous variables
not influenced by other quantities is constant. We can infer
the effect of such an exogenous quantity on another vari-
able downstream by finding pathways that connect them and
combining the influences on their causal links. We can infer
that ‘stable’ quantities occurring downstream will increase
or decrease over time, depending on their relation to the ex-
ogenous term. For instance, the model in Figure 1 implies
lipofuscin will increase monotonically in this way.

Taken together, these computational mechanisms trans-
form our biological models from inert structures into be-
come interpretable ‘programs’ one can use to make predic-
tions about empirical relations and to explain the reasons
for these conclusions. They also support reasoning about
both controlled experiments and observed effects over time.
Computational aids of this sort should let biologists derive
the implications of system-level models of aging more com-
plex than ones they can handle without assistance.

Interactive Aids for Model Improvement
Our third computational challenge involves the incremental
revision of models to bring them into closer alignment with
known phenomena. This depends on the ability to repre-
sent such models and reason over them, but users must also
identify portions of models that are problematic and modify
them in response. Although there has been some research
on automated model revision (e.g., Mahidadia & Compton,
2001), we have chosen to rely on interactive revision under

1Another complication involves models in which causal loops
occur between two quantities, which we can handle as special cases
of models with multiple paths.

user control. To this end, the system includes a number of
actions through which users can update the knowledge base.
These are available only in the textual frame, but we also
plan to support analogous graphical commands.

Naturally, the most basic commands includes ones for
adding new model elements. Users can introduce new lo-
cations, quantities, causal hypotheses, and empirical facts
by entering this content in the same format as shown in Fig-
ure 1. The modularity of the modeling formalism and the
simple structure of each element make these steps easy to
carry out.

Entry involves selecting a type of element to add and then
completing a number of pull-down menus to describe the
new entry. For example, entering a new hypothesis involves
clicking the ‘add hypothesis’ button and then selecting the
influenced quantity, the influencing quantity, and the direc-
tion (increases or decreases) from the menus. Users can only
select quantities that were entered earlier, thus ensuring that
hypotheses only relate known variables. Similar interactive
commands enable the introduction of new places, quantities
(which specify a name, place, and whether stable or tran-
sient), and empirical facts. Users can also remove items
they feel are no longer necessary by clicking a ‘delete’ but-
ton to the right of the item in question. Removing quantities
also leads to removal of all hypotheses and facts that refer to
them, while removing places leads to deletion of all quanti-
ties that reside in those locations.

Together, these commands provide the basic functional-
ity needed to construct causal biological models, but model
development is an incremental process that aims to bring hy-
potheses into better alignment with empirical evidence. For
this reason, the environment also lets users examine the cur-
rent model’s predictions and their relation to known phe-
nomena. When users click on the ‘show predictions’ button,
the system derives the predictions associated with each em-
pirical fact and presents them in the textual or the graphical
display, whichever is currently on the screen. The textual
frame shows predictions directly below their correspond-
ing facts, with a marker indicating whether each pair agrees
or disagrees. The graphical frame displays predictions as
thicker lines overlaid on the arrows or trapezoidal boxes that
denote empirical facts. The same colors mean the prediction
agrees with the observation, while different colors indicate a
problem that needs attention.

Of course, before users attempt to revise their models,
they should understand the reasons for faulty predictions. To
this end, the environment lets them inspect the explanations
associated with each one.2 We have not yet implemented
this ability for the textual frame, but, when users click on
a prediction line in the graphical frame, explanations are
shown in the hypothesis frame. If only one explanation ex-
ists for the prediction, then the system highlights the causal
links involved and places the others in the background. If
multiple explanations exist, then the environment shows a
number for each alternative and, when the user clicks on a
given number, highlights only the causal links for that ac-

2Users can also examine explanations for correct predictions,
but these are less useful in improving the model.
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count. This mechanism also lets users understand cases in
which the model makes ambiguous predictions.

The ability to inspect not only predictions but the reason-
ing behind them provides important insights about a model’s
strengths and weaknesses. If the model fails to match one or
more empirical facts, explanations may reveal the source of
the problem and ways to fix it. The user can remedy such
situations in two basic ways – by adding new hypotheses,
as described above, and by removing existing hypotheses.
However, because the impact of deleting an element may be
unclear in advance, the environment also lets users disable
a model element without removing it entirely, as well as en-
able it later if that seems desirable. Taken together, these
facilities provide users with the information they need to in-
crementally refine their qualitative causal models to bring
them into alignment with empirical findings.

Experiences with the Environment
We selected the systems biology of aging as our initial ap-
plication domain because it was gaining increased attention
within biology and because John Furber (2009) had already
developed a network diagram that summarized many hy-
potheses and phenomena in this complex field. Repeated
discussions with Furber let us convert his informal state-
ments into our modeling notation.

We focused our efforts on two compartments of Furber’s
diagram, one involving the dysfunction of lysosomes due to
the accumulation of indigestible aggregates known as lipo-
fuscin, and another on the degeneration of mitochondrial en-
ergy production in the cell as the result of mutations. The
lysosomal submodel, already seen in Figure 1, incorporated
three places, 12 quantities, and 12 hypotheses. The mito-
chondrial submodel included three places, nine quantities,
and 11 hypotheses, with the two models having little over-
lap.

Naturally, translation of content from the informal dia-
gram into our logical notation required some care and ef-
fort, with some representational issues becoming apparent
only along the way. Interactions with Furber clarified his in-
tentions and usually determined how to proceed. Once we
had the initial translation complete, we used the environment
to detect and correct problems with these submodels, much
as we intend its use by scientists. Running the reasoning
mechanism over these submodels revealed a number of er-
rors, some in our encoding of Furber’s chart but also a few
ambiguities in the original aging diagram itself. Formaliza-
tion of the aging model, combined with the environment’s
reasoning methods, led to repair of these problems.

Related Work on Scientific Modeling
Our approach to interactive biological modeling borrows
ideas from three distinct traditions, but combines them in
new ways to produce novel capabilities. The computational
biology community has pursued a number of projects that
support Web-based access to biological knowledge. For in-
stance, KEGG (Kanehisa, 1997), Reactome (Vastrik et al.,
2007), and Metacyc (Karp et al., 2000) let users explore bi-
ological content that curators have extracted from the litera-

ture, but they do not reason over the knowledge or let users
modify it.

Some other biological modeling efforts come closer to our
framework. For example, Genepath (Zupan et al., 2003) of-
fers a Web-based environment that lets users enter qualita-
tive results from genetics experiments and knowledge about
gene regulation, but model construction process is entirely
automated. JustAid (Mahidadia & Compton, 2001) supports
iterative revision of qualitative causal models, with the sys-
tem proposing changes but users selecting which to imple-
ment. Racunas et al.’s (2004) HyBrow supports interactive
creation of qualitative models and checks their consistency
with logical reasoning, but our system provides a more gen-
eral treatment of explanatory biological models.

We have also been strongly influenced by research on
mental models in cognitive science, especially work on qual-
itative reasoning and simulation (e.g., Forbus, 1984). Our
approach shares some key ideas, especially that models in-
volve qualitative causal relations among continuous vari-
ables. One difference is our assumption that behavior is
monotonic over time, which simplifies reasoning consider-
ably. Another is our willingness to resolve ambiguity by
specifying that one path dominates another. Our incorpora-
tion of qualitative models into an interactive modeling en-
vironment is not new; Bredeweg et al.’s (2007) GARP lets
users construct qualitative models manually and simulate
their behavior, although it focuses on ecology rather than
biology and uses a more complex process ontology.

Directions for Future Research
Although our modeling environment shows considerable
promise, we need to extend the framework along a num-
ber of fronts. Our first step should be to introduce graphi-
cal versions of all commands for adding and revising con-
tent, which should make the environment more accessible
to many biologists. We should also support ‘thought ex-
periments’ by asking the system to make predictions in the
absence of empirical results. In addition, users would ben-
efit from the ability to copy and edit entire models, as well
as overlay alternative models to reveal their similarities and
differences.

Expanding the representational abilities of the modeling
framework should be another priority. One extension would
enable grouping a set of causal links into a process that
would let the interface hide model details until users ask
to see individual connections. Another augmentation would
allow contextual conditions on causal links that specify the
tissues and organisms in which they occur. Given similar
conditions on queries, the reasoner would collect relevant
connections to create query-specific models for use in draw-
ing conclusions.

We should also explore ways to move beyond two as-
sumptions – monotonic behavior and pathway dominance
– that we introduced for practical reasons. One response
to both would involve adding quantitative conditions with
arithmetic formulas to causal links and dominance relations
that specify when they hold. The reasoner would then col-
lect relevant model elements to make qualitative predictions
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based on quantitative measurements. Also, because path-
way dominance relations violate the compositionality of tra-
ditional qualitative models, we should develop means for de-
composing them into fragments by removing shared links
and identifying subpathways responsible for the dominance.

We are collaborating with experts in biogerontology who
intend to populate the modeling environment with content
from the literature about human senescence. The aim is to
support thought experiments about interventions that could
delay or reverse aspects of aging, which in turn could lead
to empirical studies that test these predictions. We antici-
pate that this approach will suggest novel treatments that are
nonobvious to biologists due to long causal chains, which
our system can find without difficulty. We believe that the
envronment will prove equally useful in modeling other ar-
eas of biology, such as cancer and Alzheimer’s disease, that
involve monotonic changes over time.

Concluding Remarks
In this paper, we reported an interactive approach to the rep-
resentation, interpretation, and revision of scientific mod-
els. Our environment encodes models as sets of qualitative
causal influences that relates quantities in particular loca-
tion, and its reasoning methods make predictions and ex-
plain its conclusions. Users can interactively invoke these
abilities, which should help them understand a model’s be-
havior and improve it over time. We have carried out initial
tests on cellular models of aging in the lysosome and mito-
chondria, using the interactive character of the environment
to identify problems in these models and repair them.

Although our approach draws on ideas developed in ear-
lier work, it combines them in novel ways to support three
key facets of the scientific enterprise: the formal representa-
tion of knowledge and hypotheses, relating that knowledge
to observations through explicit reasoning, and the incre-
mental development of knowledge over time. Many projects
that formalize biological knowledge have focused on inert
structures, rather than offering aids for reasoning over com-
plex models, and most techniques for codifying knowledge
rely on curators, rather than giving scientists tools to make
their own changes. We believe our interactive environment
offers a promising approach that addresses these issues in
ways that biologists will find accessible and useful.
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