
VipBoost: A More Accurate Boosting Algorithm

Xiaoyuan Su

Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431, USA

xsu@fau.edu

Taghi M. Khoshgoftaar

Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431, USA

taghi@cse.fau.edu

Russell Greiner

Department of Computing Science

University of Alberta

Edmonton, AB, T6G 2E8, Canada

greiner@cs.ualberta.ca

Abstract

Boosting is a well-known method for improving the
accuracy of many learning algorithms. In this paper, we
propose a novel boosting algorithm, VipBoost (voting on
boosting classifications from imputed learning sets), which
first generates multiple incomplete datasets from the
original dataset by randomly removing a small percentage
of observed attribute values, then uses an imputer to fill in
the missing values. It then applies AdaBoost (using some
base learner) to produce classifiers trained on each of the
imputed learning sets, to produce multiple classifiers. The
subsequent prediction on a new test case is the most
frequent classification from these classifiers. Our empirical
results show that VipBoost produces very effective
classifiers that significantly improve accuracy for unstable
base learners and some stable learners, especially when the
initial dataset is incomplete.

1. Introduction

Ensemble techniques are popular as they can generally

produce fairly accurate classifiers. Two well-known

ensemble techniques are boosting [1] and bagging [2],

which learn diverse classifiers, then (at performance time)

combine their responses for each test instance.

In this work, we propose to inject diversities into the

learning set by randomly removing observed values

multiple times, to produce n different incomplete learning

sets. We then use an imputation technique to fill in the

missing values to produce n different complete training

sets, then apply AdaBoost [1] (using some base learner) on

each of the imputed training sets, to produce n different

classifiers. For predicting new test cases, each of these

classifiers returns a classification label for an instance; our

system returns the most frequent label.

While removing some attribute values may cause the

resulting learned classifier to make more mistakes, existing

research into ensemble methods has shown that many

ensemble methods work best when the base classifiers are

diverse – i.e., when their errors are fairly independent [3].

Moreover, our preliminary experiments show that the

accuracy of the classifier trained from an incomplete

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dataset, produced by removing a small number of attribute

values, is often close to, or occasionally better than, the

classifiers trained from the original dataset.

For incomplete data, the classifiers learned with the

help of an imputation technique is often more accurate than

one obtained by just applying some standard learner

directly to the original data [4]. By boosting a base learner

on these imputed learning sets, we may get the further

accuracy improvement from the boosting method.

Therefore, by voting on boosting classifications from

different imputed learning sets originated from the same

underlying dataset, we expect that our VipBoost (voting on

boosting classifications from imputed learning sets)

predictors can outperform conventional machine learners,

bagging predictors, and boosting predictors (i.e., AdaBoost

[1]), especially for incomplete data.

Here, we randomly removed m% of the attribute values

over the entire training data (here, m=5). Note this is the

“Missing Completely at Random” (MCAR) mechanism, as

these removals are independent of the actual value of this

feature, and of any other feature.

We evaluate the predictive performance of VipBoost

using the following 10 base learners (from WEKA [5]),

including both unstable learners: decision tree (C4.5),

decision table (dTable), logistic regression (LR), neural

networks (NN), one rule (OneR), decision list (PART),

support vector machine (SVM); and stable learners: naïve

Bayes (NB), k-nearest-neighbor (kNN), and random forest

(RF). We considered three imputation techniques:

expectation maximization (EM) [6][7], Bayesian multiple

imputation (BMI) [8], and mean imputation (MEI, the

baseline imputation technique).

Section 2 is the framework of our VipBoost algorithm.

Experimental design and results are in Section 3, and

Section 4 presents our conclusions.

2. Framework

Our VipBoost algorithm first produces n incomplete

datasets by removing m% of the observed values from the

initial dataset, completely at random, n times. (If the initial

dataset was missing k% of its values, including k=0 for

complete data, then each new dataset is missing (k+m)% of

356

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

the values.) VipBoost then imputes the missing values

using some imputation techniques Imp, such as EM and

BMI, to fill in the missing values; it then applies AdaBoost

(with some base learner L) [1] to each of the imputed

learning sets to produce n different classifiers. It then

returns a single classifier that runs each of these classifiers,

and returns the most frequent classification. See Figure 1.

Algorithm: VipBoost(L, Imp D, n, m)

Input: L: base learner (e.g., kNN, SVM, …)

Imp: imputation method (e.g., EM, BMI, …)

D: a labeled training dataset with k% missing values

 (k�0)

n: number of generated learning sets with injected missing

values

m%: the injected missing ratio

Output: a classifier

Begin

For i=1, 2,…, n

{

a. Remove m% observed attribute values in D completely

at random to generate the i-th learning set Di

 b. Di’
 = Imp[Di] -- an imputed dataset;

 c. ci = AdaBoost[L](Di’)

}

Return the classifier c*(x) = plurality(ci(x))
% for any x, c*(x) return the most frequent class label.

End

Figure 1. The framework of VipBoost algorithm

We investigated VipBoost[L, Imp D, n, m] for 10

machine learning algorithms L, each of which has its own

method of dealing with missing values. Some just ignore

missing values during the learning and classifying

processes, e.g. Naïve Bayes (NB) [9], decision table

(dTable) [10], decision list (PART) [11], and decision tree

(C4.5) [12]. Some replace the missing values with the

mean or median value for numeric attributes or the most

frequent value for nominal attributes, e.g., Logistic

regression (LR) [13] and Random Forest (RF) [14]. Some

– including the one-rule classifier (OneR) [15], and the

sequential minimal optimization (SMO) [16] (WEKA’s

implementation of support vector machine, SVM) – treat

missing values as a legitimate value (“missing”). K-

nearest-neighbor (kNN) counts missing values into its

distance measure (Euclidean distance for continuous

attributes and Hamming distance for discrete ones). When

the two instances each omit the values of the same

attribute, kNN sets the distance wrt that attribute to 0, but

when only one has a missing value, kNN sets the value to a

maximal distance [5]. Neural network (NN) replaces the

missing values using an interval (eg., a unit interval [0,1]

that includes all the possible values of that attribute) [17].

As these simple approaches to dealing with missing

values may not significantly improve classification

performance, VipBoost uses a different imputation

technique Imp before handing the completed data to

AdaBoost [L]. We investigated using the state-of-the-art

imputation techniques EM and BMI, as well as the baseline

mean imputation, to impute the incomplete learning sets.

Mean Imputation

In general, let Yu,i be the observed value of the u-th

instance on the i-th attribute. Mean imputation (MEI) fills

in a missing value Yv,i with the mean of the observed values

on each attribute

 (1)

where U(i) is a set of indices of instances that have

observed values of attribute i. MEI rounds a mean estimate

to the nearest integer for discrete values. MEI is used by

many machine learning algorithms already (e.g., LR), as it

is the simplest imputation technique. However, it distorts

the shape of distributions by creating a spiked distribution

at the mean in frequency distributions, and it also reduces

(under-estimates) the variance of the predictions, which

typically leads to wrong inferences.

Expectation Maximization Imputation

In general, expectation-maximization (EM) seeks

maximum likelihood estimates of parameters in

probabilistic models in the presence of latent variables

[6][7]. EM iterates between performing an expectation E-

step, which calculates an expected value of the complete

data likelihood, given the observed data and the current

parameters; and a maximization M-step, which computes

values of the parameters that maximize the expected

likelihood over the data, including those estimated in the

E-step. The parameters found on the M-step are then used

to begin another E-step, and the process is repeated until it

converges to a stationary point. EM imputation requires

specifying a joint probability distribution for the attribute

value to be imputed and other attribute values.

Our implementation of the EM imputation algorithm for

multivariate Gaussian data (parameterized by the mean and

the covariance matrix) uses ridge regression [7]. It first

gives an initial guess of these parameters. In each

following iteration, EM then iterates: (1) fill each missing

value with its conditional expectation value given the

observed values in that instance using the estimated mean

and covariance matrix; (2) re-estimate the mean and the

covariance matrix, using the instance mean of the

completed dataset and the covariance matrix as the sum of

the instance covariance matrix of the completed dataset

and the contributions from the conditional covariance

matrix of the imputation errors. EM repeats these steps

until the imputed values and the estimates of the mean and

covariance do not change [18].

357

We round EM imputed values to the nearest integers for

integer attributes. We also find the observed value range

[min, max] for each attribute, and replace imputed values

<min with min, and those >max with max for missing

values. We also apply this post-processing procedure to the

BMI imputer described below.

Bayesian Multiple Imputation

Standard single imputation produces a single imputed

dataset, where each missing value is replaced with a single

value. While this approach can be applied to virtually

every dataset, single imputation does not account for the

uncertainty about the predictions of the imputed values;

this can lead to statistically invalid inferences [8]. By

contrast, multiple imputation (MI) produces many different

imputed datasets. In many situations, MI approaches have

proven to be highly effective even for small values of m –

say 3 to 10 [8].

BMI follows a Bayesian framework: it specifies a

parametric model for the complete data, with a given a

prior distribution over the unknown model parameters �,

then simulates m independent draws from the conditional

distribution of the missing data given the observed data. In

non-trivial applications, special computational processes,

such as Markov chain Monte Carlo (MCMC), must be

applied to perform Bayesian multiple imputation [8].

While BMI assumes a multivariate normal distribution

when generating the imputations for missing values, it is

robust to non-normally distributed data [19].

Let P(Ycom|θ) model the complete data, based on the

parameter θ (the mean and covariance matrix that

parameterizes a normal distribution). If Y=(Yobs, Ymiss)

follows a parametric model P(Y|�) with θ having the prior

distribution P(θ), then the posterior predictive distribution

for Ymiss is

 (2)

Equation 2 suggests that BMI can be drawn by

repeating the following process for j=1, …, n:

(1) generate missing values Ymiss
(j+1) from

P(Ymiss|Yobs,θ(j));

(2) draw parameters θ(j+1) from P(θ|Yobs, Ymiss
(j+1)).

These two steps are repeated to generate the Markov

chain {Ymiss
(1), θ(1), Ymiss

(2), θ(2),…, Ymiss
(j), θ(j),…} (here

Ymiss
(j+1) depends on θ(j), and θ(j) depends on Ymiss

(j)). This

iterative process continues until the distribution P(Ymiss , θ

|Yobs) is stabilized. This produces the values Y1
C; the then

run the same procedure many times, to produce m

completed datasets {Yi
C}. We then take the average as the

final imputed dataset,

(3)

3. Experimental Design and Results

We worked on 10 datasets D with numeric or ordinal

attributes from the UCI machine learning repository [20],

half of which have binary classes, and five others have

multiple classes (see Table 1). We applied our VipBoost

framework to the 10 commonly used machine learners L

listed in Section 1. For each dataset, we generated n=9

incomplete training sets and used the default value (I=10)

as the maximum number of AdaBoost iterations in the

boosting stage of VipBoost for each dataset. We use m=5%

as injected missing ratio for each dataset. We use k=5 for

kNN, and default parameters of WEKA for all other

machine learned classifier.

Table 1. Description of the datasets used

Datasets Train # Test # attri # class #

australian 460 230 14 2

breast-wisc 466 233 10 2

diabetes 512 256 8 2

heart 180 90 13 2

letter 15000 5000 16 26

pima 512 256 8 2

satimage 4290 2145 36 6

segment 1540 770 19 7

vehicle 564 282 18 4

waveform 300 4700 21 3

We compare VipBoost predictors with original machine

learned classifiers, bagging predictors, AdaBoost on

each of the learners, and used the imputers Imp in {BMI,

EM, MEI}. We first investigate the performance of the

various learners L when the initial training data are

complete, in terms of classification accuracy over the 10

datasets (see Table 2, and Figure 2). We then considered

initially incomplete data, missing 30% of the values

(generated by randomly removing observed attribute

values from the complete datasets, see results in Table 3

and Figure 3). We also investigate the classification

performance on a single dataset “waveform” with missing

ratios from 0% (complete data) to 80%; see Table 4 and

Figure 4.

 We considered the average performance over all 10

learners L and 10 datasets D. On complete data, among

VipBoost with the three imputers Imp, we found that

VipBoost-BMI was the best , as it on average had 2.5%,

1.6%, and 1.4% higher average classification accuracy than

the original classifiers, AdaBoost, and bagging predictors

(overall average) respectively, with 1-sided t-test p<1.4E-

5, p<2.0E-9, and p<8.0E-5 respectively (see Table 2 and

Figure 2 for average classification accuracy over 10

datasets; stable learners are highlighted). At the same time,

VipBoost does not improve the accuracy on stable

algorithms kNN, naïve Bayes, and random forest, which is

similar to bagging and boosting here.

358

Table 2. Average classification accuracy over 10

complete UCI datasets

classi

-fiers

Ada

Boost

Bagg

-ing

Vip

Boost

-MEI

Vip

Boost

-EM

Vip

Boost

-BMI

OneR 62.95 65.56 64.28 66.64 67.53 67.98

NB 75.98 75.5 75.7 75.91 75.61 75.03

dTable 78.18 81.61 80.65 83.64 84.15 84.03

C4.5 82.27 83.8 84.79 86.08 85.92 86.49

kNN 83.4 82.11 82.27 82.39 82.52 82.64

PART 82.51 84.22 84.59 85.96 86.46 86.61

SVM 83.32 83.76 84.42 83.49 83.81 83.94

LR 84.28 83.92 84.22 84.22 84.1 84.5

NN 83.71 84.43 85.08 85.59 86.2 85.84

RF 86.31 84.72 85.33 85.65 86.23 85.79

Ave 80.29 80.96 81.13 81.95 82.25 82.28

Figure 2. Average classification accuracy over 10

complete UCI datasets

On incomplete datasets, VipBoost predictors have much

bigger advantages over original classifiers, bagging

predictors, and AdaBoost than on the complete data. For

the datasets missing 30% of the values (see Table 3 and

Figure 3 with stable learners highlighted), VipBoost-BMI,

VipBoost-EM, and VipBoost-MEI have 11.0%, 10.5%,

and 5.8% higher average classification accuracy than the

original learners respectively. AdaBoost and bagging

predictors have limited improvement here (with 0.71% and

0.75% respectively). VipBoost-BMI and VipBoost-EM on

average outperform AdaBoost by 10.2% and 9.7%

respectively.

Note that on incomplete data, VipBoost predictors

overcome the property that most ensemble classifiers (e.g.,

bagging and boosting) can not improve stable processes.

VipBoost-BMI, VipBoost-EM, and VipBoost-MEI greatly

improve the classification performance of the original

kNN, a stable learner, on incomplete data, with 37.8%,

35.7%, and 24.4% higher average classification accuracy

respectively, partly due to the crude missing value

handling by kNN (see Section 2). Bagging and AdaBoost

Table 3. Average classification accuracy over 10 UCI

datasets with 30% missing ratio

classi

-fiers

Ada

Boost

Bagg

-ing

Vip

Boost

-MEI

Vip

Boost

-EM

Vip

Boost

-BMI

OneR 56.33 58.27 59.09 59.95 68.03 68.06

NB 73.35 73.02 73.58 71 72.41 72.95

dTable 66.35 71.02 65.36 75.7 78.32 78.67

C4.5 73.93 77.07 77.63 79.25 80.67 81.64

kNN 57.61 48.96 48.38 71.76 78.15 79.36

PART 75.12 78.13 79.88 79.92 81.12 81.7

SVM 74.68 75.04 74.82 75.49 78.78 78.83

LR 75.03 75.15 74.36 74.49 78.19 78.17

NN 70.72 72.01 74.77 76.4 80.01 79.92

RF 80.18 79.99 80.45 79.81 81.32 81.43

Ave 70.33 70.86 70.83 74.38 77.7 78.07

Figure 3. Average classification accuracy over 10 UCI

datasets with 30% missing ratio

have decreased classification performance for kNN here.

VipBoost predictors also improve another stable learner,

random forest. VipBoost-BMI and VipBoost-EM improve

the original random forest on average by 1.6% and 1.4%.

However, they do not improve naïve Bayes, which just

ignores missing values in both learning and classification

stages.

Table 4 and Figure 4 show the average classification

accuracy of our VipBoost predictors, AdaBoost, bagging

predictors, and original machine learned classifiers on the

dataset “waveform”, which has different MCAR missing

ratios from 0% (complete data) to 80%. VipBoost-BMI

and VipBoost-EM perform the best for datasets with all

applicable missing ratios. Note even VipBoost-MEI, the

VipBoost predictor using the simplest imputation

technique MEI, outperforms the well-known ensemble

classifiers bagging predictors and AdaBoost. Because of

eigenvector calculation exception, VipBoost-EM does not

work for datasets with higher missing ratio (i.e., missing

ratios > 50%).

359

Table 4. Average classification accuracy over 10

classifiers on the dataset “waveform” with missing

ratios 0%~80%

 Miss

Ratio

%

classi

-fiers

Ada

Boost

Bagg

-ing

Vip

Boost

-MEI

Vip

Boost

-EM

Vip

Boost

-BMI

0 75.64 78.91 77.9 81.21 81.49 81.35

10 72.86 76.16 74.98 79.27 80.56 80.9

20 71.21 73.76 73.44 78.08 80.14 80.72

30 68.3 70.18 69.67 74.77 79.68 79.58

40 66.67 68.16 68.47 71.85 77.71 78.22

50 63.91 65.9 64.63 68.46 76.26 76.32

60 58.53 59.81 59.87 63.72 NA 67.03

70 56.82 57.11 56.82 60.42 NA 63.03

80 50.67 50.61 51.16 55.34 NA 57.82

Figure 4. Average classification accuracy over 10

classifiers on the dataset “waveform” with missing

ratios 0%~80%

The effectiveness of VipBoost depends on the

imputation technique Imp, the base learner L, the missing

data rate, and also the injected missing ratio m. Our

empirical study shows that an m between 3%~8% is

effective. We use m=5% as the default injected missing

ratio in this work.

4. Conclusions

We propose a novel ensemble algorithm: VipBoost (voting

on boosting classifications from imputed learning sets).

VipBoost injects diversity to the baseline learning set by

randomly removing observed attribute values multiple

times and then imputing each of the resulting datasets. It

makes the final classification by voting on boosting

classifications, learned from the various imputed training

sets. Our experimental results show that VipBoost

predictors significantly improve the classification

performance of conventional unstable learners, and the

well-known AdaBoost and bagging predictors, especially

for incomplete data. VipBoost can also significantly

improve the classification performance for some stable

learners, especially kNN, which traditional ensemble

classifiers such as AdaBoost and bagging predictors fail to

improve.

References

[1] Freund, Y., and Schapire, R.E., A decision-theoretic generalization of
on-line learning and an application to boosting, Journal of Computer and
System Sciences, 55(1), pp. 119-139, 1997.

[2] Breiman, L., Bagging Predictors, Machine Learning, 24(2), 1996.

[3] Kuncheva, L., and Whitaker, C. Measures of Diversity in Classifier
Ensembles and their Relationship with the Ensemble Accuracy, Machine
Learning, 51(2), 2003.

[4] Su, X., Khoshgoftaar, T.M., and Greiner, R., Using Imputa-tion
Techniques to Help Learn Accurate Classifiers, the 20th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), 1,
pp. 437-444. 2008.

[5] Witten, I.H., and Frank, E. Data Mining: Practical Machine Learning
Tools and Techniques, 2nd Edition, Morgan Kaufmann, 2005.

[6] Dempster, A.P., Laird, N.M., and Rubin, D.B., Maximum likelihood
from incomplete data via the EM algorithm, Journal of the Royal
Statistical Society, B 39, pp. 1-38, 1977.

[7] Schneider, T., Analysis of incomplete climate data: Estimation of
mean values and covariance matrices and imputation of missing values,
Journal of Climate, 14, pp. 853–871, 2001.

[8] Rubin, D.B., Multiple Imputation for Nonresponse in Surveys. J.
Wiley & Sons, New York, 1987.

[9] John, G.H. and Langley, P. Estimating Continuous Distributions in
Bayesian Classifiers, UAI, pp.338-345, 1995.

[10] Kohavi, R. The Power of Decision Tables, ECML, 1995.

[11] Frank, E. and Witten, I.H. Generating Accurate Rule Sets Without
Global Optimization. In Shavlik, J., ed., Machine Learning: Proceedings
of the Fifteenth International Conference, Morgan Kaufmann Publishers,
San Francisco, CA, 1998.

[12] Quinlan, J.R. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993

[13] Cessie, S. le. and Houwelingen, J.C. van, Ridge Estimators in
Logistic Regression, Applied Statistics, 41(1), pp. 191-201, 1992.

[14] Breiman, L. Random Forests. Machine Learning, 45(1), pp. 5-32,
2001.

[15] Holte, R.C. Very simple classification rules perform well on most
commonly used datasets, Machine Learning, 11, pp. 63-91, 1993.

[16] Platt, J. Fast Training of Support Vector Machines using Sequential
Minimal Optimization, Advances in Kernel Methods Support Vector
Learning, 1998.

[17] Ishibuchi, H., Miyazaki, A., Kwon, K., and Tanaka H. Learning from
Incomplete Training Data with Missing Values and Medical Application,
IJCNN, pp. 1871-1874, 1993.

[18] Little, R.J.A. and Rubin, D.B. Statistical Analysis with Missing Data.
Series in Probability and Mathematical Statistics, Wiley, pp. 278, 1987.

[19] Schafer, J.L., Analysis of Incomplete Multivariate Data, New York:
Chapman and Hall, 1997.

[20] Blake, C., and Merz, C. UCI Repository of Machine Learning
Databases, 2000.

 http://www.ics.uci.edu/~mlearn/MLRepository.htm

360

