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Abstract 

Boosting is a well-known method for improving the 
accuracy of many learning algorithms. In this paper, we 
propose a novel boosting algorithm, VipBoost (voting on 
boosting classifications from imputed learning sets), which 
first generates multiple incomplete datasets from the 
original dataset by randomly removing a small percentage 
of observed attribute values, then uses an imputer to fill in 
the missing values.  It then applies AdaBoost (using some 
base learner) to produce classifiers trained on each of the 
imputed learning sets, to produce multiple classifiers. The 
subsequent prediction on a new test case is the most 
frequent classification from these classifiers. Our empirical 
results show that VipBoost produces very effective 
classifiers that significantly improve accuracy for unstable 
base learners and some stable learners, especially when the 
initial dataset is incomplete. 

1. Introduction   

Ensemble techniques are popular as they can generally 

produce fairly accurate classifiers.  Two well-known 

ensemble techniques are boosting [1] and bagging [2], 

which learn diverse classifiers, then (at performance time) 

combine their responses for each test instance.  

In this work, we propose to inject diversities into the 

learning set by randomly removing observed values 

multiple times, to produce n different incomplete learning 

sets. We then use an imputation technique to fill in the 

missing values to produce n different complete training 

sets, then apply AdaBoost [1] (using some base learner) on 

each of the imputed training sets, to produce n different 

classifiers.  For predicting new test cases, each of these 

classifiers returns a classification label for an instance; our 

system returns the most frequent label. 

While removing some attribute values may cause the 

resulting learned classifier to make more mistakes, existing 

research into ensemble methods has shown that many 

ensemble methods work best when the base classifiers are 

diverse – i.e., when their errors are fairly independent [3]. 

Moreover, our preliminary experiments show that the 

accuracy of the classifier trained from an incomplete 
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dataset, produced by removing a small number of attribute 

values, is often close to, or occasionally better than, the 

classifiers trained from the original dataset.  

For incomplete data, the classifiers learned with the 

help of an imputation technique is often more accurate than 

one obtained by just applying some standard learner 

directly to the original data [4]. By boosting a base learner 

on these imputed learning sets, we may get the further 

accuracy improvement from the boosting method. 

Therefore, by voting on boosting classifications from 

different imputed learning sets originated from the same 

underlying dataset, we expect that our VipBoost (voting on 

boosting classifications from imputed learning sets) 

predictors can outperform conventional machine learners, 

bagging predictors, and boosting predictors (i.e., AdaBoost 

[1]), especially for incomplete data. 

Here, we randomly removed m% of the attribute values 

over the entire training data (here, m=5). Note this is the 

“Missing Completely at Random” (MCAR) mechanism, as 

these removals are independent of the actual value of this 

feature, and of any other feature. 

We evaluate the predictive performance of VipBoost 

using the following 10 base learners (from WEKA [5]), 

including both unstable learners:  decision tree (C4.5), 

decision table (dTable), logistic regression (LR), neural 

networks (NN), one rule (OneR), decision list (PART), 

support vector machine (SVM); and stable learners: naïve 

Bayes (NB), k-nearest-neighbor (kNN), and random forest 

(RF).  We considered three imputation techniques: 

expectation maximization (EM) [6][7], Bayesian multiple 

imputation (BMI) [8], and mean imputation (MEI, the 

baseline imputation technique).  

Section 2 is the framework of our VipBoost algorithm. 

Experimental design and results are in Section 3, and 

Section 4 presents our conclusions. 

2. Framework 

Our VipBoost algorithm first produces n incomplete 

datasets by removing m% of the observed values from the 

initial dataset, completely at random, n times. (If the initial 

dataset was missing k% of its values, including k=0 for 

complete data, then each new dataset is missing (k+m)% of 
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the values.) VipBoost then imputes the missing values 

using some imputation techniques Imp, such as EM and 

BMI, to fill in the missing values; it then applies AdaBoost 

(with some base learner L) [1] to each of the imputed 

learning sets to produce n different classifiers. It then 

returns a single classifier that runs each of these classifiers, 

and returns the most frequent classification. See Figure 1. 

 

Algorithm: VipBoost( L, Imp D, n, m) 

 

Input: L: base learner (e.g., kNN, SVM, …) 

Imp: imputation method (e.g., EM, BMI, …) 

D: a labeled training dataset with k% missing values  

     (k�0) 

n: number of generated learning sets with injected missing 

values 

m%: the injected missing ratio 

Output: a classifier 

 

Begin 

For i=1, 2,…, n 

{ 

a. Remove m% observed attribute values in D completely 

at random to generate the i-th learning set Di   

  b.  Di’
 =  Imp[Di]  -- an imputed dataset; 

  c.  ci = AdaBoost[L](Di’)  

} 

Return the classifier c*(x) = plurality(ci(x)) 
% for any x, c*(x) return the most frequent class label. 

End 

 

Figure 1. The framework of VipBoost algorithm 

 

We investigated VipBoost[L, Imp D, n, m] for 10 

machine learning algorithms L, each of which has its own 

method of dealing with missing values. Some just ignore 

missing values during the learning and classifying 

processes, e.g. Naïve Bayes (NB) [9], decision table 

(dTable) [10], decision list (PART) [11], and decision tree 

(C4.5) [12]. Some replace the missing values with the 

mean or median value for numeric attributes or the most 

frequent value for nominal attributes, e.g., Logistic 

regression (LR) [13] and Random Forest (RF) [14]. Some 

– including the one-rule classifier (OneR) [15], and the 

sequential minimal optimization (SMO) [16] (WEKA’s 

implementation of support vector machine, SVM) – treat 

missing values as a legitimate value (“missing”). K-

nearest-neighbor (kNN) counts missing values into its 

distance measure (Euclidean distance for continuous 

attributes and Hamming distance for discrete ones). When 

the two instances each omit the values of the same 

attribute, kNN sets the distance wrt that attribute to 0, but 

when only one has a missing value, kNN sets the value to a 

maximal distance [5]. Neural network (NN) replaces the 

missing values using an interval (eg., a unit interval [0,1] 

that includes all the possible values of that attribute) [17]. 

As these simple approaches to dealing with missing 

values may not significantly improve classification 

performance, VipBoost uses a different imputation 

technique Imp before handing the completed data to 

AdaBoost [L]. We investigated using the state-of-the-art 

imputation techniques EM and BMI, as well as the baseline 

mean imputation, to impute the incomplete learning sets. 

 

Mean Imputation 

In general, let Yu,i be the observed value of the u-th 

instance on the i-th attribute.  Mean imputation (MEI) fills 

in a missing value Yv,i with the mean of the observed values 

on each attribute 

                                         (1) 

where U(i) is a set of indices of instances that have 

observed values of attribute i. MEI rounds a mean estimate 

to the nearest integer for discrete values. MEI is used by 

many machine learning algorithms already (e.g., LR), as it 

is the simplest imputation technique. However, it distorts 

the shape of distributions by creating a spiked distribution 

at the mean in frequency distributions, and it also reduces 

(under-estimates) the variance of the predictions, which 

typically leads to wrong inferences. 

Expectation Maximization Imputation 

In general, expectation-maximization (EM) seeks 

maximum likelihood estimates of parameters in 

probabilistic models in the presence of latent variables 

[6][7]. EM iterates between performing an expectation E-

step, which calculates an expected value of the complete 

data likelihood, given the observed data and the current 

parameters; and a maximization M-step, which computes 

values of the parameters that maximize the expected 

likelihood over the data, including those estimated in the 

E-step. The parameters found on the M-step are then used 

to begin another E-step, and the process is repeated until it 

converges to a stationary point. EM imputation requires 

specifying a joint probability distribution for the attribute 

value to be imputed and other attribute values. 

Our implementation of the EM imputation algorithm for 

multivariate Gaussian data (parameterized by the mean and 

the covariance matrix) uses ridge regression [7]. It first 

gives an initial guess of these parameters. In each 

following iteration, EM then iterates: (1) fill each missing 

value with its conditional expectation value given the 

observed values in that instance using the estimated mean 

and covariance matrix; (2) re-estimate the mean and the 

covariance matrix, using the instance mean of the 

completed dataset and the covariance matrix as the sum of 

the instance covariance matrix of the completed dataset 

and the contributions from the conditional covariance 

matrix of the imputation errors. EM repeats these steps 

until the imputed values and the estimates of the mean and 

covariance do not change [18].  
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We round EM imputed values to the nearest integers for 

integer attributes. We also find the observed value range 

[min, max] for each attribute, and replace imputed values 

<min with min, and those >max with max for missing 

values. We also apply this post-processing procedure to the 

BMI imputer described below.  

 

Bayesian Multiple Imputation 

Standard single imputation produces a single imputed 

dataset, where each missing value is replaced with a single 

value. While this approach can be applied to virtually 

every dataset, single imputation does not account for the 

uncertainty about the predictions of the imputed values; 

this can lead to statistically invalid inferences [8]. By 

contrast, multiple imputation (MI) produces many different 

imputed datasets. In many situations, MI approaches have 

proven to be highly effective even for small values of m – 

say 3 to 10 [8].  

BMI follows a Bayesian framework: it specifies a 

parametric model for the complete data, with a given a 

prior distribution over the unknown model parameters �, 

then simulates m independent draws from the conditional 

distribution of the missing data given the observed data. In 

non-trivial applications, special computational processes, 

such as Markov chain Monte Carlo (MCMC), must be 

applied to perform Bayesian multiple imputation [8]. 

While BMI assumes a multivariate normal distribution 

when generating the imputations for missing values, it is 

robust to non-normally distributed data [19].  

Let P(Ycom|θ) model the complete data, based on the 

parameter θ  (the mean and covariance matrix that 

parameterizes a normal distribution). If Y=(Yobs, Ymiss) 

follows a parametric model P(Y|�) with θ having the prior 

distribution P(θ),  then the posterior predictive distribution 

for Ymiss is 

                         (2) 

Equation 2 suggests that BMI can be drawn by 

repeating the following process for j=1, …, n:  

(1) generate missing values Ymiss
(j+1) from 

P(Ymiss|Yobs,θ(j)); 

(2)  draw parameters θ(j+1) from P(θ|Yobs, Ymiss
(j+1)). 

These two steps are repeated to generate the Markov 

chain {Ymiss
(1), θ(1), Ymiss

(2), θ(2),…, Ymiss
(j), θ(j),…} (here 

Ymiss
(j+1) depends on θ(j), and θ(j) depends on Ymiss

(j)). This 

iterative process continues until the distribution P(Ymiss , θ 

|Yobs) is stabilized. This produces the values Y1
C; the then 

run the same procedure many times, to produce m 

completed datasets {Yi
C}. We then take the average as the 

final imputed dataset,  

                                                                   

(3) 

3. Experimental Design and Results 

We worked on 10 datasets D with numeric or ordinal 

attributes from the UCI machine learning repository [20], 

half of which have binary classes, and five others have 

multiple classes (see Table 1). We applied our VipBoost 

framework to the 10 commonly used machine learners L 

listed in Section 1. For each dataset, we generated n=9 

incomplete training sets and used the default value (I=10) 

as the maximum number of AdaBoost iterations in the 

boosting stage of VipBoost for each dataset. We use m=5% 

as injected missing ratio for each dataset. We use k=5 for 

kNN, and default parameters of WEKA for all other 

machine learned classifier. 

 

Table 1. Description of the datasets used  

Datasets Train # Test # attri # class # 

australian 460 230 14 2 

breast-wisc 466 233 10 2 

diabetes 512 256 8 2 

heart 180 90 13 2 

letter 15000 5000 16 26 

pima 512 256 8 2 

satimage 4290 2145 36 6 

segment 1540 770 19 7 

vehicle 564 282 18 4 

waveform 300 4700 21 3 

 

We compare VipBoost predictors with original machine   

learned   classifiers,   bagging   predictors, AdaBoost on 

each of the learners, and used the imputers Imp in {BMI, 

EM, MEI}. We first investigate the performance of the 

various learners L when the initial training data are 

complete, in terms of classification accuracy over the 10 

datasets (see Table 2, and Figure 2). We then considered 

initially incomplete data, missing 30% of the values 

(generated by randomly removing observed attribute 

values from the complete datasets, see results in Table 3 

and Figure 3). We also investigate the classification 

performance on a single dataset “waveform” with missing 

ratios from 0% (complete data) to 80%; see Table 4 and 

Figure 4. 

 We considered the average performance over all 10 

learners L and 10 datasets D. On complete data, among 

VipBoost with the three imputers Imp, we found  that  

VipBoost-BMI  was  the  best ,  as  it on average had 2.5%, 

1.6%, and 1.4% higher average classification accuracy than 

the original classifiers, AdaBoost, and bagging predictors 

(overall average) respectively, with 1-sided t-test p<1.4E-

5, p<2.0E-9, and  p<8.0E-5  respectively (see Table 2 and 

Figure 2 for average classification accuracy over 10 

datasets; stable learners are highlighted). At the same time, 

VipBoost does not improve the accuracy on stable 

algorithms kNN, naïve Bayes, and random forest, which is 

similar to bagging and boosting here. 
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Table 2. Average classification accuracy over 10 

complete UCI datasets 

  

classi 

-fiers 

Ada 

Boost 

Bagg 

-ing 

Vip 

Boost 

-MEI 

Vip 

Boost 

-EM 

Vip 

Boost 

-BMI 

OneR 62.95 65.56 64.28 66.64 67.53 67.98 

NB 75.98 75.5 75.7 75.91 75.61 75.03 

dTable 78.18 81.61 80.65 83.64 84.15 84.03 

C4.5 82.27 83.8 84.79 86.08 85.92 86.49 

kNN 83.4 82.11 82.27 82.39 82.52 82.64 

PART 82.51 84.22 84.59 85.96 86.46 86.61 

SVM 83.32 83.76 84.42 83.49 83.81 83.94 

LR 84.28 83.92 84.22 84.22 84.1 84.5 

NN 83.71 84.43 85.08 85.59 86.2 85.84 

RF 86.31 84.72 85.33 85.65 86.23 85.79 

Ave 80.29 80.96 81.13 81.95 82.25 82.28 

 

 
Figure 2. Average classification accuracy over 10 

complete UCI datasets 

 

On incomplete datasets, VipBoost predictors have much 

bigger advantages over original classifiers, bagging 

predictors, and AdaBoost than on the complete data. For 

the datasets missing 30% of the values (see Table 3 and 

Figure 3 with stable learners highlighted), VipBoost-BMI, 

VipBoost-EM, and VipBoost-MEI have 11.0%, 10.5%, 

and 5.8% higher average classification accuracy than the 

original learners respectively. AdaBoost and bagging 

predictors have limited improvement here (with 0.71% and 

0.75% respectively). VipBoost-BMI and VipBoost-EM on 

average outperform AdaBoost by 10.2% and 9.7% 

respectively. 

Note that on incomplete data, VipBoost predictors 

overcome the property that most ensemble classifiers (e.g., 

bagging and boosting) can not improve stable processes. 

VipBoost-BMI, VipBoost-EM, and VipBoost-MEI greatly 

improve the classification performance of the original 

kNN, a stable learner, on incomplete data, with 37.8%, 

35.7%, and 24.4% higher average classification accuracy 

respectively, partly due to the crude missing value 

handling by kNN (see Section 2). Bagging and AdaBoost 

Table 3. Average classification accuracy over 10 UCI 

datasets with 30% missing ratio 

  

classi 

-fiers 

Ada 

Boost 

Bagg 

-ing 

Vip 

Boost 

-MEI 

Vip 

Boost 

-EM 

Vip 

Boost 

-BMI 

OneR 56.33 58.27 59.09 59.95 68.03 68.06 

NB 73.35 73.02 73.58 71 72.41 72.95 

dTable 66.35 71.02 65.36 75.7 78.32 78.67 

C4.5 73.93 77.07 77.63 79.25 80.67 81.64 

kNN 57.61 48.96 48.38 71.76 78.15 79.36 

PART 75.12 78.13 79.88 79.92 81.12 81.7 

SVM 74.68 75.04 74.82 75.49 78.78 78.83 

LR 75.03 75.15 74.36 74.49 78.19 78.17 

NN 70.72 72.01 74.77 76.4 80.01 79.92 

RF 80.18 79.99 80.45 79.81 81.32 81.43 

Ave 70.33 70.86 70.83 74.38 77.7 78.07 

 

 
Figure 3. Average classification accuracy over 10 UCI 

datasets with 30% missing ratio 

 

have decreased classification performance for kNN here. 

VipBoost predictors also improve another stable learner, 

random forest. VipBoost-BMI and VipBoost-EM improve 

the original random forest on average by 1.6% and 1.4%. 

However, they do not improve naïve Bayes, which just 

ignores missing values in both learning and classification 

stages. 

Table 4 and Figure 4 show the average classification 

accuracy of our VipBoost predictors, AdaBoost, bagging 

predictors, and original machine learned classifiers on the 

dataset “waveform”, which has different MCAR  missing  

ratios  from  0% (complete data) to 80%. VipBoost-BMI 

and VipBoost-EM perform the best for datasets with all 

applicable missing ratios. Note even VipBoost-MEI, the 

VipBoost predictor using the simplest imputation 

technique MEI, outperforms the well-known ensemble 

classifiers bagging predictors and AdaBoost. Because of 

eigenvector calculation exception, VipBoost-EM does not 

work for datasets with higher missing ratio (i.e., missing 

ratios > 50%). 
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Table 4. Average classification accuracy over 10 

classifiers on the dataset “waveform” with missing 

ratios 0%~80% 

 Miss 

Ratio 

% 

classi 

-fiers 

Ada 

Boost 

Bagg 

-ing 

Vip 

Boost 

-MEI 

Vip 

Boost 

-EM 

Vip 

Boost 

-BMI 

0 75.64 78.91 77.9 81.21 81.49 81.35 

10 72.86 76.16 74.98 79.27 80.56 80.9 

20 71.21 73.76 73.44 78.08 80.14 80.72 

30 68.3 70.18 69.67 74.77 79.68 79.58 

40 66.67 68.16 68.47 71.85 77.71 78.22 

50 63.91 65.9 64.63 68.46 76.26 76.32 

60 58.53 59.81 59.87 63.72 NA 67.03 

70 56.82 57.11 56.82 60.42 NA 63.03 

80 50.67 50.61 51.16 55.34 NA 57.82 

 

 
Figure 4. Average classification accuracy over 10 

classifiers on the dataset “waveform” with missing 

ratios 0%~80% 

 

The effectiveness of VipBoost depends on the 

imputation technique Imp, the base learner L, the missing 

data rate, and also the injected missing ratio m. Our 

empirical study shows that an m between 3%~8% is 

effective. We use m=5% as the default injected missing 

ratio in this work. 

 

4. Conclusions 

We propose a novel ensemble algorithm: VipBoost (voting 

on boosting classifications from imputed learning sets). 

VipBoost injects diversity to the baseline learning set by 

randomly removing observed attribute values multiple 

times and then imputing each of the resulting datasets. It 

makes the final classification by voting on boosting 

classifications, learned from the various imputed training 

sets. Our experimental results show that VipBoost 

predictors significantly improve the classification 

performance of conventional unstable learners, and the 

well-known AdaBoost and bagging predictors, especially 

for incomplete data. VipBoost can also significantly 

improve the classification performance for some stable 

learners, especially kNN, which traditional ensemble 

classifiers such as AdaBoost and bagging predictors fail to 

improve. 
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