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Introduction
Mobile defense, rescue, and space robots are expected to
operate in rough and unknown terrain, typically with the
aid of human teleoperation. However, teleoperation alone
cannot eliminate robots experiencing “locomotion errors,”
such as when a robot’s leg, wheel, or body becoming
trapped in a crevice. For example, NASA’s Mars rover
Spirit became trapped in soft ground and could not be re-
leased even after eight months of teleoperated error recov-
ery attempts (Wolchover 2011). Such locomotion errors oc-
cur when the robot’s circumstances differ from the origi-
nal design conditions. Indeed, this problem can be further
generalized—as robots become more common and operate
over long periods (Marder-Eppstein et al. 2010), even per-
sonal robots such as the Roomba and the PR2 can be ren-
dered immobile in unpredictable home environments.

When a locomotion error occurs, human operators are re-
quired to assist robots by, (1) diagnosing the specific prob-
lem and, (2) finding a escape strategy (i.e., a sequence
of actions) to release the robot. Current automatic motion
planning and control algorithms cannot handle the com-
plex robot-environment physical interactions and dynamic
movements required to find an escape route for stuck robots,
such as running into obstacles to change the environment,
and instead focus on quasi-static and contact-free planning.
Our long-term goal is to significantly improve the robust-
ness of mobile-robots by allowing them to autonomously
recover from locomotion errors. A learning approach is ide-
ally suited to this problem since the robots are required to
extricate themselves from new scenarios about which little
information is available a priori.

This paper introduces the novel problem of autonomous
mobile-robot error recovery. First, it will define the mobile-
robot error recovery problem and its scope. Second, it enu-
merates the major challenges faced when tackling this prob-
lem. Third, it lays out a generic framework for studying the
autonomous mobile-robot error recovery problem.

Autonomous Mobile-Robot Error Recovery
There has been little systematic work in the domain of au-
tonomous mobile-robot error recovery. While a classifica-
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tion of locomotion errors has been presented depending
on if the error is situational or due to a software or hard-
ware error (Balasubramanian 2006), most prior work fo-
cuses on error diagnosis using high-level reasoning tech-
niques on sensor data (Verma, Gordon, and Simmons 2003)
or identifies robot components that fail frequently in the
field (Carlson and Murphy 2005). There has also been work
on human-tuned error recovery gaits, such as uprighting ma-
neuvers (Tunstel 1999) and dynamically coupled locomo-
tion modes (Balasubramanian and Rizzi 2004).

To successfully tackle an instance of the autonomous
mobile-robot error recovery problem, a robot must extricate
itself from a previously unseen trapped configuration by ex-
ploring the environment’s affordances and creating an es-
cape by physically interacting with the environment, with-
out human involvement. The robot initially does not know
the geometry or affordances of the environment. However,
as robot explores the environment, it learns about the affor-
dances of the obstacles it has physically interacted with. Ex-
ample actions include moving around the environment (if
there is sufficient room) or physically interacting with the
environment by pushing on obstacles. We assume that the
robot can localize itself in the explored environment and
keep track of how it has changed the environment. The
robot’s goal is to incrementally change the environment so
that it can escape and resume normal operation.

Challenges
Solving the autonomous mobile-robot error recovery prob-
lem is difficult, in part because of the following four rea-
sons. First, the morphology of robot will influence what
types of locomotion errors it faces (for example, wheeled
and legged robots will encounter different types of problem
instances). This is particularly true as the number and vari-
ety of deployed robots increases. Second, there are a number
of different metrics that could be optimized depending on
the particular setting, including minimizing energy use, es-
cape time, or physical (possibly irreversible) damage to the
robot or the environment. Third, some situations are difficult
even for trained human teleoperators to escape (Sellner et al.
2006), depending on the sensors and affordances available.
Fourth, robots are expected to succeed in novel situations,
necessitating robust and fast learning.
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Figure 1: a) An omnidirectional robot may be constrained by obstacles in the horizontal plane, b) preliminary omnidirectional
robot testbed and c) a schematic where a robot’s leg and body are obstructed in the vertical plane

Proposed Framework and Approach
The framework we use to study the mobile-robot error re-
covery problem includes the following aspects: (1) a repre-
sentation of the robot and the environment in the locomo-
tion error; (2) an ability to apply learning algorithms to en-
able the robot to learn to explore its stuck configuration for
escape; and (3) an ability to transfer knowledge from past
experience to allow past error recovery strategies to improve
learning in future scenarios.

Problem Representation: Modeling a robot in a loco-
motion error requires representing the robot’s state r and
the environment’s state e. Since error recovery may require
dynamic maneuvers, the robot and the environment states
should include both configuration and velocity. However, in
most cases, the robot may be able to choose a suitable action
from a state with zero velocity. To reduce the state space di-
mensionality, the representation will initially only use robot
and environment configuration — robot velocity will be in-
cluded only when needed.

Consider Figures 1a and 1b, where a round omnidirec-
tional robot that is trapped among obstacles that have passive
dynamics, such as inertia, elasticity, or viscosity. The robot
can move between the obstacles and push them. The robot’s
state includes the robot’s coordinates in the plane, that is,
r = (xr, yr). Similarly, the environment state e is simi-
larly defined as the set e = {(xe1, ye1), . . . , (xen, yen)},
where (xei, yei) represents the two-dimensional coordinates
of the ith obstacle. Initially, we will assume that obstacles
move linearly and the state space can be discretized. The
representations of r and e would need to be augmented for
more complex scenarios, such as for a legged robot in Fig-
ure 1c. Dynamics techniques such as Lagrangian and resis-
tance theory (Childress 1981) will allow the robot to evalu-
ate encountered resistance from obstacles as well as the in-
cremental changes it can create in the environment.

Applying Learning Techniques: To achieve autonomous
recovery in previously unseen error conditions, we elect
to leverage machine learning approaches. By allowing the
robot to explore its environment online, full a priori knowl-
edge of the environment is not required (e.g., as required by
a pure planning approach). Reinforcement learning methods
will allow a robot to learn a policy to extricate itself, suc-
cessfully exploiting the environment’s affordances.

Unfortunately, reinforcement learning may be too slow to
be practical if each problem instance is considered in iso-
lation. Instead, a robot should leverage its past knowledge

to learn better and faster in subsequent error conditions.
Our framework aims to accelerate a robot’s learning by
leveraging techniques such as transfer learning (Taylor and
Stone 2009) and options (Sutton, Precup, and Singh 1999;
Konidaris et al. 2010) to allow escape behaviors acquired in
one task to improve learning in subsequent tasks.

Concluding Remarks
This paper introduced the autonomous mobile error recovery
problem and motivated its importance, as well as discussing
initial approaches towards a solution. Our hope is that this
paper will engender discussion and enthusiasm for this prob-
lem at the intersection of robotics and artificial intelligence.
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