
Automatic Abstraction in Reinforcement Learning
Using Ant System Algorithm

Mohsen Ghafoorian, Nasrin Taghizadeh and Hamid Beigy
Computer Engineering Department

Sharif University of Technology
Tehran, Iran

{ghafoorian, taghizadeh}@ce.sharif.edu, beigy@sharif.edu

Abstract
Nowadays developing autonomous systems, which can
act in various environments and interactively perform
their assigned tasks, are intensively desirable. These
systems would be ready to be applied in different
fields such as medicine, controller robots and social
life. Reinforcement learning is an attractive area of ma-
chine learning which addresses these concerns. In large
scales, learning performance of an agent can be im-
proved by using hierarchical Reinforcement Learning
techniques and temporary extended actions. The higher
level of abstraction helps the learning agent approach
lifelong learning goals. In this paper a new method is
presented for discovering subgoal states and construct-
ing useful skills. The method utilizes Ant System opti-
mization algorithm to identify bottleneck edges, which
act like bridges between different connected areas of the
problem space. Using discovered subgoals, the agent
creates temporal abstractions, which enable it to explore
more effectively. Experimental Results show that the
proposed method can significantly improve the learning
performance of the agent.

Introduction
Reinforcement Learning (RL) is an active area of the ma-
chine learning which considers the problem of how an in-
telligent agent can learn an optimal behavior through trial-
and-error with a stochastic dynamic environment. A chal-
lenging problem in RL is how to scale up standard meth-
ods for large complex tasks. Researches on the problem of
reducing search space and transferring knowledge across
problems led to introduction of the hierarchical reinforce-
ment learning frameworks (HRL) (Parr and Russell 1998;
Sutton, Precup, and Singh 1999; Dietterich 2000).

In most applications, hierarchical structure of the prob-
lem is defined by the system designer prior to learning pro-
cess. However, it becomes more difficult complex task when
the size of state space increases; hence, it is desirable to
minimize designer’s role and to construct hierarchies by the
learning agent automatically, as in many cases it is not so
straightforward. Most of the researches on this topic have
focused on identifying possible subgoals of the problem and
learning policies to reach them.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Several definitions have been proposed to describe sub-
goals: states which are visited frequently or have a high re-
ward gradient (Digney 1998), states which are visited fre-
quently on successful trajectories but not on unsuccessful
ones (McGovern 2002), states which lie between densely-
connected regions of the state space (Menache, Mannor, and
Shimkin 2002; Mannor et al. 2004; Şimşek 2008), states
which lead to a new area of the state space (Şimşek 2008),
states which connect dense regions of the state space and
the transition probability from one region to the other is
low (Kazemitabar and Beigy 2008). Using identified sub-
goals, the agent can discover temporally abstracted ac-
tions to create hierarchy of the solutions: Q-cut method
uses max-flow/min-cut algorithm (Menache, Mannor, and
Shimkin 2002). Strongly connected component method
(SCC) (Kazemitabar and Beigy 2009) employs depth-first
search (DFS) algorithm. The concept of relative novelty is
used in the method presented at (Şimşek 2008). Reformed
label propagation utilizes modularity measure (Davoodabadi
and Beigy 2011); and value based clustering algorithm uses
reward information (Kheradmandian and Rahmati 2009), to
mention a few.

In this paper, we propose a new method for temporal
abstraction in RL based on identifying subgoal states. In
our definition, subgoals are states adjacent with those edges
which are visited regularly on the shortest paths between
start and goal states (Ghafoorian 2012). In order to mea-
sure how much a node is visited regularly, we propose to
use roughness criterion. One promising approach in subgoal
discovery is to use information acquired by the agent dur-
ing learning process. In the proposed method, the agent be-
gins to explore the environment and saves history of interac-
tions in a directed and weighted graph. Next, the agent uses
Ant System algorithm in order to find the shortest path be-
tween start and goal states. Analyzing pattern of changing in
pheromone of the edges placed on the shortest path can help
to specify those edges that act like a bridge between strongly
connected areas of the state space. We call these edges bot-
tleneck edges. Then desired options will be created to reach
these subgoals and will be added to the agent’s available ac-
tion set. We demonstrate the effectiveness of the proposed
method using computer simulations. The results of simula-
tions show that the proposed method attains substantial im-
provement in learning speed of the agent.

Lifelong Machine Learning: Papers from the 2013 AAAI Spring Symposium 

9



This paper is organized as follow: In section 2, we ex-
plain the standard RL framework and option notion. In sec-
tion 3, Ant System method and motivation of choosing this
algorithm for discovering subgoals will be described. Next,
we introduce our skill acquisition algorithm based on Ant
System. Experimental results are reported in sections 4, sec-
tion 5 contains discussion and finally, conclusion and future
works are presented at section 6.

Background
The standard model of RL is discrete time MDP with a finite
set of states, S and a finite set of actions, A (Sutton, Precup,
and Singh 1999). At each time step t, t = 1, 2, . . ., the agent
knows the state st ∈ S and chooses an action at from avail-
able actions at state st, A(st). Then the agent observes next
state, st+1, and receives a scalar reward, rt. The agent’s task
is to find a mapping from states to actions, called policy,
π : S → A, which maximizes the expected discounted cu-
mulative reward: E{

∑∞
t=0 γ

trt}, where 0 ≤ γ ≤ 1 is the
discount factor.

In the well-known Q-learning algorithm, the agent main-
tains an estimation of the optimal Q function and updates it
after every time epoch. This function maps each state-action
pairs to the expected reward for taking this action at that
state and following an optimal strategy from that point on
(Mannor et al. 2004). An extension of Q-learning is Macro-
Q-learning (or Q-learning with options). Option is a triple
(I, π, β), where I is initial set, π is option policy and β is
termination condition. Option can start in every state of I;
then it is executed according π until the termination condi-
tion is satisfied which is denoted by β(s). When the agent is
not executing an option, it can choose a primitive action or
an option from A′(st), which is the set of all actions and op-
tions available at st. Macro-Q-learning updates Q-function
as equation (1):

Q(st, ot) = (1− α)Q(st, ot)+

α

(
γτ maxQ(st+τ , ot) +

τ−1∑
k=0

rt+kγ
k

)
, (1)

where τ is duration of option ot, α is learning rate. If τ = 1,
updating rule for primitive actions is obtained.

The Proposed Skill acquisition Method
Most of methods which are based on temporal abstrac-
tion use sub-goal discovery in order to create options. In
most cases, sub-goals are defined as the border states of the
strongly connected areas, emerged in the structure of transi-
tion graph. This way, several skills will be generated, while
some of them may be irrelevant for the task in hand, and
thus all of skills are not necessarily useful for the agent to
reach the goal. Furthermore, selecting these useless options
will mislead the agent in many cases. For example, standing
up may be considered as a skill for a human, but it may not
be useful when a person is writing an article, and also it is
a misleading option for the task of writing an article. Some

algorithms try to filter generated options in a post process-
ing phase (Taghizadeh 2011). However, it may be faulty and
time consuming. In this paper, we propose a method, which
avoid generating any of the possible useless options and will
identify and use only the effective options. In addition, many
algorithms do not make use of all the information taken from
the environment such as transitions direction between states
and frequency of those transitions. These data are also con-
sidered as important directions in the proposed method. The
agent creates a directed and weighted graph G = (V,E,W )
using history of its interactions with the environment, such
that every visited state is a vertex v ∈ V , and every transi-
tion is an edge e ∈ E in the graph. The weight of each edge,
wij ∈ W , is the inverse of number of transitions through
this edge. The method presented in this paper is inspired by
Ant Colony optimization method, which will be discussed
in next subsection.

Ant Colony Optimization
Ant colony optimization (Dorigo, Birattari, and Stutzle
2006) is a family of evolutionary methods, which can be
used in order to find the shortest path between a pair of nodes
in a graph G = (V,E). There are plenty of methods in this
family of algorithms. In this paper we will use Ant System.

Ant System consists of nt iterations. In each iteration,
there are nk ants and each of them generates a path from start
node s to the destination node t. Generation of each path is
a random process guided by the amount of pheromone de-
posited by previous ants on the edges of their path. Formally,
when ant k-th is on node i, the probability for selecting j as
the next node to traverse, may be calculated by:

pkij(t) =

{ ατij(t)+(1−α)ηij(t)∑
j∈Nk

j
(t)
ατij(t)+(1−α)ηij(t) if j ∈ Nk

i (t)

0 if j /∈ Nk
i (t)

(2)
where Nk

i is the set of all accessible nodes from node i for
k-th ant, τij is the amount of pheromone on edge (i, j), ηij
is a heuristic that indicates the prior knowledge about desir-
ability of transition from i to j and finally, α is a real num-
ber in range (0, 1) that represents the relative importance of
pheromone values. It worth being noticed that a tabu list is
kept, each time creating the path so as to prevent the creation
of loopy paths.

After all nk ants create their own path to destination node,
evaporation takes place in order to prevent trapping in local
optima, using the following equation:

τij(t+ 1) = (1− ρ)τij(t), (3)

where ρ ∈ (0, 1). This constant specifies the rate at which
the pheromone evaporates.

After evaporation, all nk ants deposit pheromone on edges
on the path they created. The amount of pheromone de-
posited by k-th ant, on link (i, j) is given by:

∆τkij(t) ∝
1

Lk(t)
, (4)

where Lk(t) is the length of path constructed by k-th ant, at
time step t. Amount of pheromone on link (i, j) is updated

10



Figure 1: A shortest path between s and g found by Ant Sys-
tem

using following equation:

τij(t+ 1) = τij(t) +

nk∑
k=1

∆τkij(t). (5)

Using this process iteratively, edges on the shorter paths
are rewarded getting more amount of pheromone and thus
they get higher probability of being chosen in the next paths.
Termination criterion can be selected among different op-
tions. One may use an upper bound for number of iteration,
or terminate when the quality of generated paths exceeds a
limit.

Sub-goal Discovery
According to the agent’s task in hand, some of options may
be useless. Considering the fact that we are going to avoid
these useless options, the task being fulfilled must be re-
garded. A task is defined by its initial and final states in the
environment. In many environments these particular states
are defined as an environment property rather than task. For
example in chess playing environment, initial state is task
independent. Finally, we assume that initial state s and final
state t are known.

Considering the simple grid world environment, which is
depicted in Figure 1, the task for the agent is to reach the
goal states g, starting form starting state s. Clearly in this
environment, the door is a subgoal and there exist two ratio-
nal skills, one helps the agent reach the door, and the other
helps it approach goal from door.

When Ant System method is applied to the transition
graph of this environment, after several iterations of creating
paths from start to goal node, a shortest path to the destina-
tion node will be found as shown in Figure 1. In transition
graphs, which have apparent community structure, there are
some edges on the shortest path, which act like a bridge be-
tween adjacent communities. We call these edges bottleneck
edges. The main step of the skill discovery algorithm is to
identify these bottleneck edges.

Considering the specified edges u and v in Figure 1. Edge
uwould not be regularly selected by ants during execution of
Ant System, because there are plenty of alternative choices.
In contrast, edge v will be regularly selected in different
paths. That is because v is a bottleneck edge.

iteration

Ph
er

om
on

e

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

(a) edge u

iteration

Ph
er

om
on

e

0 5 10 15 20 25 30 35 40 45 50
0

10
20
30
40
50
60
70
80

(b) edge v

Figure 2: changes of pheromone for two edges of Figure 1.

Changes in pheromone values during time are shown for
these two edges in Figure 2. To separate bottleneck edges
from other edges on the shortest path, a criterion is needed.
We call our proposed criterion Roughness. For a time series
F , roughness is defined as follows:

RF =
σ2
M

(maxi Fi −mini Fi)2
, (6)

where σ2
M is the variance of slope of pheromone diagram.

Using the definition of Roughness, each edge is given
a score for being bottleneck. If edges on the shortest path
are sorted due to roughness values in a list, then bottleneck
edges have lowest amount of roughness. Next step is to sepa-
rate bottleneck edges from others in the list. In the proposed
method, it is suggested to analyze the growth of roughness in
the sorted list of edges on the shortest path. The place where
the value of diagram exceeds a specified proportion of low-
est value, or the slope increments meaningfully, border of
bottleneck and non-bottleneck edges are found.

Formally b is the index in the sorted array that separates
bottleneck edges from other edges iff:

(Fail(b) = true) ∧ (∀i < b : Fail(i) = false), (7)

where Fail(i) is a boolean function that tests if edge in in-
dex j is not a bottleneck and is defined as:

Fail(i) = (di > τd.dinit) ∨ (vi > τv.v0), (8)

11



Candidate edge rank

R
ou

gh
ne

ss

2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

0.08

0.1

0.12

Figure 3: Roughness for sorted edges on the shortest path.

where vi is the roughness for edge indexed i, di equals
vi − vi−1 and dinit is the first non-zero di. Having bottle-
neck edges, it is easy to get the related vertices as sub-goals.
Finally acquiring subsequent bottleneck edges does not help;
thus for such cases all edges except for the edge with lowest
value of roughness are removed. Algorithm 1 is a summary
of the whole method.

Algorithm 1 The proposed method for sub-goal detection

1: Input: (nk, td, α, ρ, τd, τv)
2: Output: SubGoals: a list of sub-goals
3: Run Ant System (τd, α, ρ) and have SP with shortest path.
4: Sort SP increasingly according to field RP .
5: v0 ← SP [0].RP

6: for i← 1 to length(SP ) do
7: dinit ← SP [i].RP − SP [i− 1].RP

8: if dinit 6= 0 then
9: exit the loop.

10: end if
11: end for
12: for b← 1 to length(SP ) do
13: if (SP [b].RP − SP [b − 1].RP > τd.dinit) ∨

(SP [b].RP > v0.τv) then
14: exit the loop.
15: end if
16: end for
17: for Adjacent :adjacent set of edges in SP [0 . . . b− 1] do
18: best← argmini{Adjacent.Edges[i].RP }
19: SubGoals.add(Adjacent.Edges[best].head)
20: end for

Skill Acquisition

After discovering useful sub-goals, next step is to create
skills. First shortest path is broken into fragments which
lie between selected bottleneck edges. Then communities
which hold fragments of shortest path are found and skills
for reaching the sub-goal in each community are formed. To
generate partial policies for skills, experience replay method
is applied and the created options are finally used via option
framework.

Experimental Results
To evaluate performance of the proposed method, it has been
tested in two standard environments: Taxi Driver and Play-
room. Results of experiments are compared with those of
a Q-Learning, betweenness and reformed label propagation
(RLP) methods. According to betweenness method, those
states which have a pivotal role in efficiently navigating
the interaction graph, are useful subgoals (Şimşek 2008).
Clearly speaking, this method defines subgoals as states that
correspond to local maxima of betweenness on the interac-
tion graph. RLP method (Davoodabadi and Beigy 2011) em-
ploys label propagation, which is a linear time algorithm, to
find communities of the transition graph. Then uses modu-
larity, a quality measure of a particular division of a graph
(Newman and Girvan 2004), to merge smaller communities.
Border states of the final communities are desirable sub-
goals.

Our experiments have two phases. In the initial learn-
ing phase, the agent explores the environment in a few
episodes, and saves history of interactions in the transition
graph. Then, it learns skills based on information of the
transition graph. The length of the learning phase is cho-
sen 7 episodes for taxi environment and 15 episodes for
playroom. Next, in the learning with options phase, agent
utilizes options learned in the previous phase and contin-
ues to interact with the environment in many episodes. The
criterion for comparison is the number of steps taken dur-
ing subsequent episodes, averaged on 40 runs. Q-learning
agent uses ε-greedy method, with the following parameters:
α = 0.05, γ = 0.9, ε = 0.2.

Taxi Environment
Taxi environment, is a 5 × 5 grid world containing a taxi
and a passenger, as shown in Figure 4. Four special loca-
tions are specified as B, G, R and Y. Passenger’s initial place
and his destination are uniformly selected at random among
these 4 locations. Taxi’s task is to reach the passenger’s ini-
tial place, to pick him up and to take him to his destination
and to put him down. At each grid location, the taxi has six
primitive actions: north, east, south, west, pick-up, and put-
down. Each navigation action succeeds with probability 0.8,
otherwise fails moving to the right or left side of intended
direction. Action pick-up effects if taxi is in passenger’s ini-
tial location and similarly action put-down is effective when
passenger is in taxi and taxi is in destination location. Pick-
ing the passenger up in his initial location and putting him
down in his destination will cause rewards +10 and +20 re-
spectively. Other actions cost -1.

Figure 5 shows a diagram, depicting number of steps
taken to reach goal state in consecutive episodes averaged
over 40 runs. Parameters for the proposed method were set
to: nt = 10, nk = 25, α = 0.9, ρ = 0.98, τv = 1.01, τd =
1.5. The proposed method generates two skills in the taxi
environment. One brings the taxi to the passenger’s initial
state and the other leads taxi to reach destination location.
These two rational skills help the agent converge to optimal
policy, much faster than the Q-Learning method. The rea-
son of this improvement is that, when the taxi picks up the

12



Figure 4: Taxi Driver environment

passenger, it can’t put him down, unless it reaches the desti-
nation. Therefore, as the taxi finds the passenger more eas-
ily, it can complete its task efficiently. So the agent, which
uses skills created by the proposed method, can find and
deliver the passenger in fewer steps. As shown in figure 5,
proposed method, acquires much better results as compared
to betweenness and RLP methods. That’s because of better
skill formation of the proposed method. As it is mentioned
in the experimental results of betweenness method (Şimşek
2008), in addition to real subgoals, some additional artifi-
cial subgoals are considered which cause a negative effect
on results of this method. Simsek calls these additional sub-
goals as navigational bottleneck. RLP method works better
than Q-learning and betweenness in earlier episodes after
learning options. Totally, the proposed method stands sig-
nificantly better than other methods.

Episode

St
ep

s
to

G
oa

l

0 25 50 75 100 125 150 175 200
0

100

200

300

400

500

The proposed method

Reformed Label Propagation
Betweenness

Q-Learning

Figure 5: Comparison of Ant based, Reformed Label Propa-
gation, betweenness and Q-learning in Taxi Driver environ-
ment.

Playroom Environment
In playroom environment, an agent interacts with a number
of objects. A Markov version of this environment was intro-
duced in (Şimşek 2008). Objects in the environment include
a light switch, a ball, a button for turning music on and off,
and a toy monkey. The agent has an eye, a hand and a marker
that can be placed on objects. The agent’s action set contains
1) look at a random object, 2) look at object at hand, 3) hold
object it is looking at, 4) look at object marker is placed

on, 5) place marker on object it is looking at, 6) move ob-
ject in hand to location it is looking at, 7) turn over light
switch, 8) press music button, 9) hit ball toward the marker.
Two actions look at random object and look at object at hand
succeed certainly but the other actions succeed with proba-
bility 0.75 and have no effect with probability 0.25. There
are several rules in the environment. In order to work with
an object, the agent must look at that object and hold it on
his hand. When the agent turns the music on, it would be-
come on if the light is on. If ball hits the bell, it rings for
one time step and stops when the music is turned off. The
toy monkey starts to make frightened sounds, if the bell is
rung while the music is playing. The agent receives -1 re-
ward for each action and +1000 for reaching the goal. In this
experiment, 40 tasks were defined. Each of which was run in
200 episodes. In every task, the initial state was defined such
that light, music and monkey scream are off and the agent’s
sensors (eye, hand and marker) detect nothing.

In order to have a fair comparison, we let each of algo-
rithms to have an initial learning phase of 15 episodes. Af-
ter that, agents create some options according to their his-
tory of interactions. In Figure 6 results of running the pro-
posed method and the betweenness versus Q-learning are
shown. Parameters for the proposed method were set to:
nt = 200, nk = 10, α = 0.9, ρ = 0.98, τv = 2.0, τd = 1.5.
As concluded from Figures 6, convergence to the optimal
policy occurs much faster in the proposed method in com-
parison with the conventional Q-Learning. All methods act
nearly identical in the initial learning phase; however, after
that, it can be seen that the ant based agent, can reach the
goal with fewer steps.

In episode 80 the ant based agent, converges to approxi-
mate optimum policy, but the Q-learning agent converges af-
ter 200 episodes. These comparisons show that learned skills
significantly improved Q-learning performance. Comparing
results for the proposed method and betweenness method,
implies no major dominance of each one over the other. The
criterion, which is often used to compare performance of
skill acquisition methods, is the convergence speed to the
optimal policy, which seems a little better in the proposed
method.

Episode

St
ep

s
to

G
oa

l

0 25 50 75 100 125 150 175 200
0

1000

2000

3000

4000

The proposed method

The betweenness method

Q-Learning

Figure 6: Comparison of Ant based skill learning, between-
ness method and Q-learning in Play Room environment.

13



Discussion
Running time of the algorithm can be discussed as follows.
Proposed algorithm for subgoal detection constructed from
2 main phases; running of ant system algorithm and find-
ing the best candidates for bottleneck edges. In the first
phase, each of nk ants generate a path nt times. Genera-
tion of each path is done by a pheromone directed DFS be-
tween start and goal nodes, which takes θ(ntnk(n + m))
totally, where n and m denote number of nodes and edges
in the transition graph respectively. This running time can
be considered as O(n + m) since nt and nk are small con-
stants. To find the best candidates, we sort the edges of the
shortest path that consists of O(n) nodes. This procedure
takes θ(n log n) time. Then a linear search is taken place
for finding the separation point of bottleneck edges and non-
bottleneck edges. Considering the above discussion, the to-
tal running time would be θ(n log n + m + n) which is
equal to θ(n log n + m). Comparing the time complexity
of the proposed method with that of betweenness, which is
O(n2 log n + mn) (Şimşek 2008), concludes that the pro-
posed method is a scalable way of skill acquisition and fits
for lifelong learning, where scalability matters.

Conclusion
In this paper, a new graph theoretic based method for solv-
ing skill acquisition problem in reinforcement learning was
proposed. The main idea of algorithm is to utilize Ant Sys-
tem algorithm to find shortest path between start and goal
states in the transition graph. Using variance of slope of
pheromone diagram of edges, a criterion was proposed.
Edges that have lowest amount of roughness are bottleneck
edges of the state space. The main advantage of the proposed
method is that identified subgoals are placed on the optimal
path between start and goal states, and thus all the discov-
ered skills are necessary for the agent. Thus the proposed
method avoids from useless skills, which cause the addition
cost for the agent. Experimental results showed that our al-
gorithm significantly improves the learning performance of
the agent.

References
Davoodabadi, M., and Beigy, H. 2011. A new method for
discovering subgoals and constructing options in reinforce-
ment learning. In proceeding of the 5th Indian International
Conference on Artificial Intelligence (IICAI-11), 441–450.

Dietterich, T. 2000. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.

Digney, B. 1998. Learning hierarchical control structures for
multiple tasks and changing environments. In proceedings
of the 5th international conference on simulation of adaptive
behavior on From animals to animats, 321–330.

Dorigo, M.; Birattari, M.; and Stutzle, T. 2006. Ant colony
optimization. Computational Intelligence Magazine, IEEE
1(4):28–39.

Ghafoorian, M. 2012. Automatic skill learning using com-
munity detection approach. Master’s thesis, Sharif Univer-
sity of Technology.
Kazemitabar, S. J., and Beigy, H. 2008. Automatic dis-
covery of subgoals in reinforcement learning using strongly
connected components. In proceeding of ICONIP (1), 829–
834.
Kazemitabar, S. J., and Beigy, H. 2009. Using strongly con-
nected components as a basis for autonomous skill acquisi-
tion in reinforcement learning. In proceeding of Advances
in Neural Networks–ISNN 2009, 794–803.
Kheradmandian, G., and Rahmati, M. 2009. Automatic ab-
straction in reinforcement learning using data mining tech-
niques. Robotics and Autonomous Systems 57(11):1119–
1128.
Mannor, S.; Menache, I.; Hoze, A.; and Klein, U. 2004. Dy-
namic abstraction in reinforcement learning via clustering.
In proceedings of the 21st international conference on Ma-
chine learning, 71–78.
McGovern, E. 2002. Autonomous discovery of temporal
abstractions from interaction with an environment. Ph.D.
Dissertation, University of Massachusetts Amherst.
Menache, I.; Mannor, S.; and Shimkin, N. 2002. Q-cut
dynamic discovery of sub-goals in reinforcement learning.
In proceeding of 13th European Conference on Machine
Learning: ECML 2002, 187–195.
Newman, M., and Girvan, M. 2004. Finding and evalu-
ating community structure in networks. Physical review E
69(2):026113.
Parr, R., and Russell, S. 1998. Reinforcement learning with
hierarchies of machines. In Advances in Neural Information
Processing Systems, 1043–1049.
Şimşek, Ö. 2008. Behavioral building blocks for au-
tonomous agents: description, identification, and learning.
Ph.D. Dissertation, University of Massachusetts Amherst.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence 112(1):181–
211.
Taghizadeh, N. 2011. Autonomous skill acquisition in re-
inforcement learning based on graph clustering. Master’s
thesis, Sharif University of Technology.

14




