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Abstract

The importance of analogy-making and analogy-based
reasoning for human cognition and learning by now
has widely been recognized, and analogy-based meth-
ods are slowly also being explicitly integrated into the
canon of approved education and teaching techniques.
Still, the actual level of knowledge about analogy as
instructional means and device as of today is rather
low and subject to scientific study and investigation. In
this paper, we propose the fruitful use of computational
analogy-engines as methodological tool in this domain
of research, motivating our claim by a short case study
showing how Heuristic-Driven Theory Projection can
be used to model the mode of operation of an analogy
taken from a science class for 8 to 9 year old children.

Introduction
Analogical reasoning (i.e., the human ability of perceiving
– and operating on – dissimilar domains as similar with re-
spect to certain aspects based on shared commonalities in
relational structure or appearance) has been proposed as an
essential part of the human ability to learn abstract concepts
(Gentner, Holyoak, and Kokinov 2001) or procedures (Ross
1987). Also, analogy seems to be constitutive for the abil-
ity to transfer representations across contexts (Novick 1988)
or to adapt to novel contexts (Holyoak and Thagard 1995),
and allegedly also plays a crucial role in children’s cognitive
repertoire for learning about the world (Goswami 2001).

Taking all this into account, it should not come by sur-
prise that analogy also receives growing attention in the field
of science education: For example Duit (1991) argues that
analogies are powerful tools to facilitate learners’ construc-
tion process of new ideas and conceptions on the grounds
of already available concepts, and Arnold and Millar (1996)
assert that analogies can foster understanding by abstracting
the important ideas from the mass of new information, help-
ing to clarify the system boundaries and internal dynamics,
and providing an appropriate language for framing a scien-
tific explanation. On the other hand, as already advocated
in (Halasz and Moran 1982), analogy clearly is not the uni-
versal remedy for challenges and difficulties in teaching and
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explanation that it sometimes is proposed to be. Nonethe-
less, despite these insights and early proposals, the current
level of knowledge about analogy as an instructional device
in everyday practice has to be considered quite low, and the
pedagogical use of analogies as means for triggering, fram-
ing and guiding creative insight processes still needs to be
widely recognized as part of teaching expertise and incorpo-
rated to innovative teacher education schemes (Akgul 2006).

Working towards changing this rather unsatisfactory state
of affairs, on the scientific side, there is a growing body
of work specifically treating with analogies in an educa-
tional context, as for instance studies on the use of analogies
in mathematics classrooms (Richland, Holyoak, and Stigler
2004) or in elementary science education (Guerra-Ramos
2011). Both studies support the initially cited assumption
that analogy can be used for facilitating the understanding
of concepts and procedures in often rather abstract and for-
mal domains as mathematics, physics or science.

In this paper, we want to contribute to a deeper under-
standing of the role and the mode of operation of anal-
ogy in an educational context by showing how a computa-
tional analogy-making framework as Heuristic-Driven The-
ory Projection (HDTP) can be used to provide a formal
computational reconstruction of an example of analogy-use
taken from a real-life teaching situation: the string circuit
analogy for gaining a basic understanding of electric current
(Asoko 1996; Guerra-Ramos 2011). By doing so, we want
to show one way (amongst several) of how analogy-engines
and their corresponding background theories can fruitfully
be applied to modeling and analysis tasks from the field of
psychology of learning, education, and didactics.

The paper is structured as follows: After a compact intro-
duction to Heuristic-Driven Theory Projection as framework
for the formal modeling and computational reconstruction of
analogy-making processes, a detailed description and cor-
responding HDTP-based reconstruction of the string circuit
analogy for electric current is provided. Following this moti-
vating case study, thoughts and recommendations for further
applications of computational analogy-making frameworks
to analogy-related questions arising in the domain of science
education are given and shortly elaborated on. The conclu-
sion provides a compact overview of conceptually and topi-
cally related work and projects.
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Heuristic-Driven Theory Projection (HDTP)
Since the advent of computer systems, researchers in cog-
nitive science and artificial intelligence have been trying
to create computational models of analogy-making. One
of the outcomes of this line of work is Heuristic-Driven
Theory Projection (HDTP) (Schwering et al. 2009), a for-
mal framework (and corresponding software implementa-
tion) conceived as a mathematically sound framework for
analogy-making.

HDTP has been created for computing analogical rela-
tions and inferences for domains which are given in form
of a many-sorted first-order logic representation (Guhe et al.
2011). Source and target of the analogy-making process are
defined in terms of axiomatizations, i.e., given by a finite
set of formulae. HDTP tries to produce a generalization of
both domains by aligning pairs of formulae from the two
domains by means of anti-unification: Anti-unification tries
to solve the problem of generalizing terms in a meaning-
ful way, yielding for each term an anti-instance, in which
distinct subterms have been replaced by variables (which in
turn would allow for a retrieval of the original terms by a
substitution of the variables by appropriate subterms).

HDTP in its present version uses a restricted form of
higher-order anti-unification (Krumnack et al. 2007), signifi-
cantly expanding Plotkin’s original theory of first-order anti-
unification (Plotkin 1970). In higher-order anti-unification,
classical first-order terms are extended by the introduction of
variables which may take arguments (where classical first-
order variables correspond to variables with arity 0), mak-
ing a term either a first-order or a higher-order term. Then,
anti-unification can be applied analogously to the original
first-order case, yielding a generalization subsuming the spe-
cific terms. As already indicated by the naming, the class of
substitutions which are applicable in HDTP is restricted to
(compositions of) the following four cases: renamings (re-
placing a variable by another variable of the same argu-
ment structure), fixations (replacing a variable by a func-
tion symbol of the same argument structure), argument in-
sertions, and permutations (an operation rearranging the ar-
guments of a term). This formalism has proven to be capable
of detecting structural commonalities not accessible to first-
order anti-unification, but unfortunately does not guaran-
tee to produce a unique least general generalization. There-
fore, the current implementation of HDTP ranks generaliza-
tions according to a complexity measure on generalizations
and chooses the least complex generalizations as preferred
ones (Schwering et al. 2009; Schmidt et al. 2011). Once the
generalization has been computed, the alignments of formu-
lae together with the respective generalizations can be read
as proposals of analogical relations between source and tar-
get domain, and can be used for guiding an analogy-based
process of transferring knowledge between both domains
(cf. Fig. 1). Analogical transfer results in structure enrich-
ment on the target side, which usually corresponds to the
addition of new axioms to the target theory, but may also
involve the addition of new first-order symbols.

As of today, the HDTP framework has successfully been
tested in different application scenarios, and its use in sev-
eral others has been proposed and theoretically grounded.
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Figure 1: Analogy via generalization in HDTP

(Guhe et al. 2010) shows a way how HDTP can be ap-
plied to model analogical reasoning in mathematics by a
case study on the inductive analogy-making process in-
volved in establishing the fundamental concepts of arith-
metic, (Guhe et al. 2011) applies HDTP to conceptual blend-
ing in the mathematics domain by providing an account of
a process by which different conceptualizations of number
can be blended together to form new conceptualizations via
recognition of common features, and judicious combina-
tion of their distinctive features. In (Schwering, Gust, and
Kühnberger 2009), HDTP has been used in the context of
solving geometric analogies. On the more theoretical side,
(Besold et al. 2011) considers how the HDTP framework
could fruitfully be applied to modeling human decision-
making and rational behavior, (Martinez et al. 2011) elab-
orates on how HDTP could be expanded into a domain-
independent framework for conceptual blending, and (Mar-
tinez et al. 2012) provides considerations on the applicability
of HDTP to tasks and problems in computational creativity.

The String Circuit Analogy For Electric
Current

In the following, we reconstruct the string circuit analogy
for electric current as used for teaching students aged 8 to 9
a basic understanding of energy transfer and current flow in
simple electric circuits. We follow the account of the anal-
ogy given by Guerra-Ramos (2011), who analyzed the anal-
ogy and its mode of operation based on (Asoko 1996), trying
to closely cover and reconstruct the provided descriptions.

The analogy uses a representation which places partici-
pants in a circle, making them loosely support with their
hands a continuous string loop that one person subsequently
makes circulate (for an analysis of the analogical correspon-
dences between the electric circuit and the string circuit, cf.
Fig. 2). Before introducing the analogy (as part of a bigger
teaching sequence consisting of several successive sessions),
in previous teaching sessions the students had from obser-
vation of simple electric circuits (battery, wires, light bulb)
acquired basic ideas about some of the functions of simple
parts of an electric circuit, e.g. the insight that “energy”,
“electricity” or “power” seems to leave a battery. When
working with the analogy, the teacher set up the string cir-
cuit involving all the students and himself as the battery, and
also actively encouraged students to conjecture about how
their observations from the string circuit’s workings might
translate to the non-observable processes and mechanisms
within the electric circuit (also emphasizing some crucial
main ideas as, e.g., the provision of energy by the battery,
and that energy is carried by current). Subsequent teaching
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Figure 2: Representation of the “string circuit” analogy as
given in (Guerra-Ramos 2011).

sessions built upon the insights gained from the analogy, ex-
panding and deepening students’ understanding of the topic.

From a formal perspective, in the described case the (bet-
ter understood, and thus richer) string circuit domain serves
as source domain for the analogy, whilst the more abstract
setting in the electric circuit domain is the target domain of
the analogy. A possible formalization of the students’ initial
ideas about setup and workings of an electric circuit can be
conceptualized as in Table 1, whilst the string circuit domain
can be represented as shown in Table 2.

Sorts:
agent, medium, phenomenon.

Entities:
battery, resistance : agent.
wires : medium.
electric current : phenomenon.

Predicates:
part of circuit : agent.
drives : agent× phenomenon.
parts connected by : medium.

Facts:
(e1) part of circuit(battery).
(e2) part of circuit(resistance).
(e3) drives(battery, electric current).
(e4) parts connected by(wires).

Table 1: Formalization of the electric circuit domain (target
domain of the later analogy).

Given these formalizations, HDTP can be used for com-
puting a common generalization of both, yielding a gen-
eralized theory like given in Table 3. For doing so, cor-
responding domain elements have been identified, aligned
and generalized according to HDTP’s heuristics-driven anti-
unification mechanism. Consider the following examples:

• (e1) part of circuit(battery) and (s1)
part of circuit(person boosting) get generalized into
(g1) part of circuit(A1), with A1 being a variable of
sort agent. The alignment of (e1) with (s1), instead of
e.g. the pairing (e1) with (s2), is motivated by HDTP’s
heuristics, as an alignment of (e1) with (s1) allows
for a reuse of the corresponding generalization (of
battery and person boosting to A1) when later aligning

Sorts:
agent, medium, phenomenon, influence, real.

Entities:
person boosting, people gripping : agent.
hands : medium.
moving string : phenomenon.
reinforcing, hindering, accelerating, decelerating : influence.

Functions:
exerts influence: agent× influence× phenomenon→ real.

Predicates:
part of circuit : agent.
drives : agent× phenomenon.
circuit supported by : medium.
conducted via : phenomenon× medium.
change : phenomenon× influence.

Facts:
(s1) part of circuit(person boosting).
(s2) part of circuit(people hindering).
(s3) drives(person boosting, moving string).
(s4) circuit supported by(hands).
(s5) conducted via(moving string, hands).
(s6) exerts influence(person boosting, reinforcing, moving string) ≥ 0.
(s7) exerts influence(people gripping, hindering, moving string) ≥ 0.

Laws:
(s8) exerts influence(person boosting, reinforcing, moving string) >

exerts influence(people gripping, hindering, moving string) →
change(moving string, accelerating).
(s9) exerts influence(people gripping, hindering, moving string) >

exerts influence(person boosting, reinforcing, moving string) →
change(moving string, decelerating).

Table 2: Formalization of the string circuit domain (source
domain of the later analogy).

and generalizing (e3) drives(battery, electric current)
with (s3) drives(person boosting, moving string), in
total minimizing the heuristic costs attached to the
generalization.

• (e4) parts connected by(wires) and (s4)
circuit supported by(hands) get generalized into (g4)
C(M), with C being a unary function variable and M
being a variable of sort medium. During the alignment
process, the heuristics-based selection of a counterpart
for generalization with (s4) circuit supported by(hands)
is based on the similarity in structure (unary predicate,
sort of argument) with (e4) parts connected by(wires).

In cases where no corresponding counterpart for elements
from one domain can be found in the other domain (as for
instance for facts (s5), (s6), and (s7), as well as laws (s8)
and (s9) from the string circuit domain), formulae have been
anti-unified as far as possible (reusing substitutions applied
earlier in the generalization process) and then have been
added to the shared core of the generalized theory (as ex-
emplified by (g5∗),. . ., (g9∗)).

Concludingly, the generalized theory can be used to trans-
fer knowledge in an analogy-based way from the (origi-
nally richer) string circuit domain to the electric circuit do-
main, resulting in a expanded theory for the electric cir-
cuit as given in Table 4. The newly introduced domain el-
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Sorts:
agent, medium, phenomenon, influence, real.

Entities:
A1, A2 : agent.
M : medium.
P : phenomenon.
(∗) reinforcing, hindering, accelerating,decelerating : influence.

Functions:
(∗) exerts influence: agent× influence× phenomenon→ real.

Predicates:
part of circuit : agent.
drives : agent× phenomenon.
C : medium.
(∗) conducted via : phenomenon× medium.
(∗) change : phenomenon× influence.

Facts:
(g1) part of circuit(A1).
(g2) part of circuit(A2).
(g3) drives(A1, P).
(g4) C(M).
(g5∗) conducted via(P, M).
(g6∗) exerts influence(A1, reinforcing, P) ≥ 0.
(g7∗) exerts influence(A2, hindering, P) ≥ 0.

Laws:
(g8∗) exerts influence(A1, reinforcing, P) >

exerts influence(A2, hindering, P)→ change(P, accelerating).
(g9∗) exerts influence(A2, hindering, P) >

exerts influence(A1, reinforcing, P)→ change(P, decelerating).

Table 3: Generalized theory of the electric circuit and the
string circuit, already expanded by the generalized forms of
the candidate elements for analogical transfer (marked with
∗) from the source domain to the target domain.

ements are (e5∗),. . .,(e9∗), directly corresponding to ele-
ments (g5∗),. . ., (g9∗) from the generalized theory (i.e., go-
ing back to elements from the string circuit domain that –
due to lacking counterparts in the electric circuit domain
– could not be aligned during the anti-unification process).
In transferring (g5∗),. . ., (g9∗), the respective variables are
reinstantiated with subterms in accordance with the anti-
unifications used in generating the generalization, for in-
stance inverting and reusing the anti-unification from battery
to A1, applied in generalizing (e1) part of circuit(battery)
into (g1) part of circuit(A1), when instantiating (g6∗)
exerts influence(A1, reinforcing,P) ≥ 0 into (e6∗)
exerts influence(battery, reinforcing, electric current) ≥ 0.

On the interpretation side, we claim that the model gener-
ated by HDTP, consisting of the alignments between the do-
mains, the generalized theory and finally the enriched elec-
tric circuit domain, computed on basis of the provided for-
malizations of the electric circuit and the string circuit do-
main (which in turn simply described the students’ initially
present knowledge about electric circuits, and the informa-
tion about the string circuit analogy accessible to them via
observation and experience), gives a remarkably realistic ac-
count of what plausibly is happening in the students’ minds:
After identifying corresponding elements between the two
original domains (i.e., alignment), underlying basic princi-

Sorts:
agent, medium, phenomenon, influence, real.

Entities:
battery, resistance : agent.
wires : medium.
electric current : phenomenon.
(∗) reinforcing, hindering, accelerating,decelerating : influence.

Functions:
(∗) exerts influence: agent× influence× phenomenon→ real.

Predicates:
part of circuit : agent.
drives : agent× phenomenon.
parts connected by : medium.
(∗) conducted via : phenomenon× medium.
(∗) change : phenomenon× influence.

Facts:
(e1) part of circuit(battery).
(e2) part of circuit(resistance).
(e3) drives(battery, electric current).
(e4) parts connected by(wires).
(e5∗) conducted via(electric current, wires).
(e6∗) exerts influence(battery, reinforcing, electric current) ≥ 0.
(e7∗) exerts influence(resistance, hindering, electric current) ≥ 0.

Laws:
(e8∗) exerts influence(battery, reinforcing, electric current) >

exerts influence(resistance, hindering, electric current) →
change(electric current, accelerating).
(e9∗) exerts influence(resistance, hindering, electric current) >

exerts influence(battery, reinforcing, electric current) →
change(electric current, decelerating).

Table 4: Analogically enriched formalization of the electric
circuit domain.

ples and general relations are discovered (i.e., generaliza-
tion) and used for forming conjectures about the inner work-
ings of one domain based on knowledge about the other one
(i.e. analogical transfer of knowledge), which later can then
be tested and confirmed or retracted again, possibly resulting
in an overall reconceptualization of the entire analogy (the
latter steps corresponding to teaching sessions following the
session introducing the analogy, involving hands-on experi-
ments with simple electric circuits built by the students, cf.
(Asoko 1996)).

Analogy-Engines Meet Education And
Teaching

Of course we are not the first ones to consider the use of
computational analogy-making systems in a context of ed-
ucation and teaching-related topics. In (Thagard, Cohen,
and Holyoak 1989), the authors present a theory and im-
plementation of analogical mapping that applies to expla-
nations of unfamiliar phenomena as for instance used by
chemistry teachers (both, explanations providing systematic
clarification as well as explanations giving a causal account
of why something happened). (Forbus et al. 1997) amongst
others shows how an information-level model of analogi-
cal inferences (supporting reasoning about correspondences
and mappings), together with techniques for the strucutral
evaluation of analogical inferences, can be incorporated in a
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case-based coach that is being added to an intelligent learn-
ing environment, whilst (Lulis, Evens, and Michael 2004)
analyzes the use of analogies in human tutoring sessions for
medical students in order to build an interactive electronic
tutoring system capable of also applying analogy. Siegler
(1989) shortly conjectures how the Structure-Mapping En-
gine (SME) (Falkenhainer, Forbus, and Gentner 1989) as
prototypical analogy-engine could be used to gain insights
about developmental aspects of analogy use.

Still, our claim and vision is a stronger one, not only see-
ing analogy-making engines as a tool for integration in tech-
nical systems trying to imitate human tutors or providing
intelligent learning environments, but taking up intuitions
traces of which are already recognizable in (Thagard, Co-
hen, and Holyoak 1989) and (Siegler 1989) and expanding
them into a proper program opening up a new application
domain to computational analogy-making systems:

Modeling and analysis: Symbol-based analogy-engines,
as for example the SME or HDTP, can be put to use for
modeling and understanding the conceptual mode of oper-
ation of analogies in a teaching context, addressing a level
of detail situated between the level of computational the-
ory and the level of representation and algorithm in Marr’s
Tri-Level hierarchy (Marr 1982): Although there will most
likely not be a perfect match on algorithmic level between
the mental processes triggered in the student’s mind and the
inner workings of the analogy model, the correspondence
can be deeper rooted than residing exclusively on the com-
putational level, not only covering input/output behavior in a
purely functionalist way but also addressing basic properties
and principles of the mechanisms at work. Symbol-based ap-
proaches, as opposed to connectionist or hybrid ones, seem
especially suitable for such an endeavor due to their explicit
representation of domain elements and the resulting expli-
cated conceptual structure of the analogies under considera-
tion, allowing for a direct evaluation against the background
of theories and results from the learning sciences and exper-
imental classroom data.

Also, as proposed in (Siegler 1989), developmental as-
pects of analogy use may be addressed by taking into ac-
count results form cognitive and developmental psychology
about children’s cognitive development and cognitive capac-
ities, accordingly constraining the mechanisms used by the
analogy engine (as for example the types of substitutions ap-
plied by HDTP during anti-unification) and observing how
the behavior and outcomes of the computational analogy-
making system changes, possibly allowing for predictions
about and projections back into the developmental context.

Exploration and testing: Heuristics-based analogy-
making frameworks, or frameworks allowing for an incorpo-
ration of heuristics-like aspects to the guiding and steering
mechanisms of the engine, may be used for exploring, devel-
oping and testing analogies for a teaching context. Provided
that, based on reliable results from corresponding psycho-
logical research, the heuristics applied by the computational
system are adapted as to mirror children’s cognitive capac-
ities and limitations in adequate ways, the analogy-engine
can be used for testing the suitability of analogies consid-
ered for the use in a specific teaching situation. Also, in an

exploration-type mode, the system could be put to use in dis-
covering possible analogies between two domains that are
given by the teacher for application in a specific educational
context, thus simulating children’s analogy generation and
understanding in the respective situation.

Discovery and guidance: Given two domains by the
teacher, the analogy-engine can be used for discovering what
analogies possibly arise between these domains and how
the analogy-making process might have to be guided (e.g.,
what framing facts have to be included in the initial domain
theories) to obtain one specific, previously planned anal-
ogy as result of the process. Assuming similarity between
the mechanisms implemented in the analogy-making sys-
tem and the principles and constraints applying to analogy-
making in students, the guiding constraints obtained during
the run of the system may then be used for re-designing
the initial domain theories, reflecting back to the knowledge
and previous experience students would have to be equipped
with in order to assure the rising of the intended target anal-
ogy in the concrete teaching situation.

Naturally, the just given list of three basic possibilities for
using computational analogy-making systems in the domain
of teaching and education is not exhaustive, but many more
application scenarios are imaginable. Still, we are convinced
that already the sketched use cases should be sufficient to
motivate future work and effort.

Conclusion
Given the growing interest in analogy and analogy-based
methods in the educational and teaching sector, together
with the still early stage of understanding and study of the
mode of operation of these means, applying already existing
formal frameworks and computational systems for analogy-
making to some of the arising tasks and challenges only
seems logical and desirable. Here, the range of applications
ranges from the reconstruction and analysis of single exam-
ples from the classroom (as exemplified by the string circuit
analogy for electric current) to more ambitious endeavors as
for instance the ones sketched in the previous section.

Concerning starting points for future work, each one of
the three scenarios sketched in the previous section offers
various possibilities, where from our perspective one of the
most interesting – and at the same time probably most chal-
lenging – open questions is the adaption of the mechanisms
of an existing analogy-engine to results and data from psy-
chological studies. In the concrete case of HDTP this would
mean to adapt the heuristic costs attached to the different
types of substitution applied during anti-unification, and the
different discounts e.g. for reuse of already applied substitu-
tions, as to fit human experimental data, possibly resulting
in a (to a certain extent) more “cognitively adequate” model
of analogy-making than currently exposed by HDTP.

And also the reconstruction of concrete examples of
analogy-use seem to offer significant potential for further
study and research: Provided that the domain formalizations
are suitably modeled and the theory underlying the frame-
work adequately depicts some mechanisms of children’s
analogy-making on a computational level, different scenar-
ios of applying analogy-engines for simulating how students
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will cope with and utilize an analogy, possibly detecting
points where problems might arise or where additional in-
put could significantly improve the learning outcome, would
merit attention and investigation.
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