
Multi-Engine Machine Translation
as a Lifelong Machine Learning Problem

Christian Federmann
Language Technology Lab

German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

cfedermann@dfki.de

Abstract

We describe an approach for multi-engine machine
translation that uses machine learning methods to train
one or several classifiers for a given set of candidate
translations. Contrary to existing approaches in quality
estimation which only consider a single translation at
a time, we explicitly model pairwise comparison with
our feature vectors. We discuss several challenges our
method is facing and discuss how lifelong machine
learning could be applied to resolve these. We also show
how the proposed architecture can be extended to allow
human feedback to be included into the training process,
improving the system’s selection process over time.

Introduction
This paper describes an approach for multi-engine machine
translation (MT) that aims at training one or several machine
learning (ML) classifiers which can be used to perform
pairwise comparison of given candidate translations. Using
these classifiers, we then compute a combined translation
by selecting the best individual translations on the sentence
level. After we have described the basic methodology of our
MT approach, we identify challenges that are suitable for
lifelong machine learning and discuss how these challenges
could be tackled.

Machine translation is a challenging and complex task
which has triggered research that resulted in several methods
and paradigms, each of which has its individual strengths
and weaknesses. While MT research had originally started
with rule-based systems which aim at creating linguistic
models of both source and target language, recently focus
has shifted to more data-driven methods which instead aim
at learning translation probabilities from massive amounts of
parallel data. Next to research on the individual translation
techniques there has also been work on hybrid MT, system
combination, or multi-engine machine translation systems,
based on the underlying assumptions that:

– Different paradigms have individual but complementary
strengths and shortcomings;

– Clever combination of translation output from several
engines should result in an improved translation.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The research described in this paper is conducted as part
of the T4ME project where we want to “provide a system-
atic investigation and exploration of the space of possible
choices in hybrid machine translation, in order to provide
optimal support for hybrid MT design, using sophisticated
machine learning technologies”.

The remainder of this paper is structured as follows: after
having introduced the matter of investigation in this section,
we provide a quick overview on related research work. We
then explain the system architecture and the key elements
of the proposed methodology. In the following section we
present several challenges our approach is faced with and
discuss how lifelong machine learning methods could be
used to overcome these issues. We also discuss how human
feedback can be integrated into classifier training to improve
translation quality over time. We conclude with a summary
of our findings and by giving an outlook to future work in
the final section.

Related Work
Multi-engine approaches and system combination methods
have have received a lot of research attention over the last
decade. Several papers, including seminal work from (Fred-
erking and Nirenburg 1994), support the general assumption
that it is possible to create combined translation output from
different systems while achieving an improvement, in terms
of translation quality, over the individual baseline systems.
See, e.g., (Macherey and Och 2007) or (Rosti et al. 2007).

System combination on the phrasal level can be realised
using so-called confusion networks. Systems following this
approach are described in more detail in (Chen et al. 2007),
(Eisele et al. 2008), and (Matusov, Ueffing, and Ney 2006).
Here, the algorithm chooses one of the given MT systems
as backbone or skeleton of the hybrid translation, while all
other translations are connected using word alignment tools
such as GIZA++ (Och and Ney 2003). The systems then
form a connected graph in which different paths through the
network encode different translations.

Next to phrasal combination approaches, there also are
methods that focus on preserving the syntactic structure of
the translation backbone, and hence perform sentence-based
combination. Here, several given black-box translations are
re-scored or re-ranked in order to determine which of these
is the best translation for a given sentence in the source

Lifelong Machine Learning: Papers from the 2013 AAAI Spring Symposium 

4



Figure 1: Schematic overview of our system architecture,
highlighting where human feedback and/or lifelong machine
learning methods can be added.

text. See related work from (Hildebrand and Vogel 2008),
(Gamon, Aue, and Smets 2005), or (Rosti et al. 2007) for
more information. The multi-engine combination methodol-
ogy we present in this paper is explained in more detail in
(Federmann 2012b; 2012c).

Of course, there also exist various combinations of the
aforementioned methods for hybrid machine translation. As
part of our research in the T4ME project, we have organised
a workshop series on “Applying Machine Learning Tech-
niques to Optimise the Division of Labour in Hybrid MT”
(ML4HMT1); its results are described in (Federmann 2011).

Methodology
Our system combination method is based on classifiers
trained using state-of-the-art machine learning tools. Given
a set of n candidate translations from a set of N systems that
are treated as “black boxes” and a development set including
reference text, we perform the following processing steps to
generate a combined translation for some given test set:

1. Compute a total order of translations on the development
set using some order relation based on quality assessment
with automatic metrics. This can also be defined such that
it includes results from, e.g., manual evaluation;

2. Decompose the aforementioned system ranking into a set
of pairwise comparisons for all possible pairs of systems
A, B. As we do not allow for ties in our comparisons, the
two possible values A > B, A < B also represent our
machine learning classes +1/−1, respectively;

3. Annotate the translations with linguistic feature values
derived from NLP tools such as language models, part-
of-speech taggers, or parsers;

4. Create a data set for training an SVM-based classifier that
can estimate which of two given systems A, B is better
according to the available features;

5. Train an SVM-based classifier model using, e.g.,
libSVM, see (Chang and Lin 2011);

1See http://www.dfki.described/ for more informa-
tion on the workshop and associated shared task.

Steps 1–5 represent the training phase in our approach. We
require the availability of a development set including the
corresponding reference text to generate training instances
for the classification model. After training, we can use the
resulting classifier as follows:

6. Produce estimates +1/−1 for each pair of systems A, B;
7. Perform a round-robin tournament to determine the single

best system from the set of available translations on the
sentence level.

8. Synthesise the final, combined translation output.
Steps 6−8 represent the decoding phase in which the trained
classifier is applied to a set of unseen translations without
any reference text available. By computing pairwise winners
for each possible pair of systems and each sentence of the
test set, we determine the single best system on the sentence
level, eventually leading to the final translation.

Ranking Candidate Translations
In order to rank the given candidate translations, we first
have to define an ordering relation over the space of given
translations. For this, we apply several evaluation metrics
which are the de-facto standards for automated assessment
of machine translation quality. We consider:

1. The Meteor score (Denkowski and Lavie 2011);
2. The NIST score (Doddington 2002); and
3. The BLEU score (Papineni et al. 2002).
While both BLEU and NIST scores are designed to have a
high correlation with results from manual evaluation on the
corpus level, the Meteor metric can also be used to compare
translations on the level of individual sentences. We use this
property when defining our order ord(A,B) on translations,
as shown in equations 1 and 2.

ord(A,B)
def
= ordX(A,B) (1)

where X ∈ {MeteorS ,MeteorC , NISTC , BLEUC ,⊥}
and suffix S denotes a sentence-level quality metric score
while suffix C represents a corpus-level score.⊥ denotes the
“empty” metric which is the “minimal” element in the set of
available metrics.

ordX(A,B)
def
=


+1 ifXA > XB

−1 ifXA < XB

ordX′(A,B) otherwise, X > X ′
(2)

If candidates A, B are indistinguishable by current metric
X , we recursively delegate the decision to metric X ′ where
X ′ < X denotes the “next-best” metric in our (ordered) set
of available metrics. By definition,

ord⊥(A,B) = 0 (3)

which means that candidate translations A, B are of equal
translation quality according to the quality metrics used.
Pairs of systems with ord(A,B) = 0 can either be removed
from the set of instances that would be used for training the
machine learning classifier or we can fall back to using a pre-
defined robustness fix deciding which of the two systems is
supposed to be better.

5



Learning Translation Comparison
As previously mentioned, many approaches for system
combination or quality estimation use classifiers to estimate
the quality of translation output on the level of individual
translations; only comparing the result to other candidate
translations afterwards. This means that the feature vector
for a given translation A is computed solely on information
available inside A, not considering any other translation B.
Formally, we define vecsingle(A) ∈ Rn as follows:

vecsingle(A)
def
=

f1(A)
...

fn(A)

 (4)

In previous experiments we followed a different strategy
and tried to explicitly model comparison with our feature
vectors. We introduced the notion of joint feature vectors
by combining feature values for translations A, B into a
single, joint feature vector of size 2n, formally defined as
vecjoint(A,B) ∈ R2n:

vecjoint(A,B)
def
=



f1(A)
...

fn(A)
f1(B)

...
fn(B)


(5)

Results from experimentation with joint feature vectors were
not conclusive so we decided to switch to another approach
that computes feature vectors for all pairwise comparisons
of translations A, B, storing binary feature values to model
if a feature value fx(A) for system A is better or worse than
the corresponding feature value fx(B) for the competing
system B. This also makes more sense as the comparison
of feature values for the two systems A, B is modeled in
an explicit way. Equation 6 shows the definition of a joint,
binarised feature vector vecbinarised(A,B) ∈ Bn:

vecbinarised(A,B)
def
=

f1(A) > f1(B)
...

fn(A) > fn(B)

 (6)

The reason to store binary features values fx ∈ B lies in
the fact that these can be handled in a more efficient way
during SVM training. Note that the order in which features
for translations A, B are compared does not strictly matter.
For the sake of consistency, we decided to compare feature
values using simple A > B operations, leaving the actual
interpretation of these values or their polarity to the machine
learning toolkit.

Using feature vectors defined like this, we have built a
prototype of the proposed method and applied it to the
OpenMT12 shared task, achieving promising results when
considering the small set of features used. The authors have
also participated in another shared task2 where the proposed
approach achieved best performance in terms of Meteor
score, winning the competition.

2Name, reference and URL to be added in the accepted version
of this paper to avoid identification of paper authors.

Machine Learning Challenges
After having briefly described our approach, we now want
to focus on several problems with the basic implementation
and discuss how lifelong machine learning could be applied
to resolve these issues and, in turn, help to improve resulting
translation quality. For each of the following sections, we
first identify the challenge within our application and then
discuss how lifelong machine learning would be helpful in
solving them.

Improving Classification Quality
The prediction quality of our classification model is of key
importance for the success of our combination method. Any
improvement wrt. the classification process will result in
a more accurate prediction of pairwise system comparison
and, thus, increase the quality of the candidate translation
selection. Research on better (or more refined) ways of pair-
wise classification therefore is beneficial for our method.
Lifelong machine learning researchers could make use of the
original datasets3 for some of our combination experiments
and work on improved classification performance. Then, the
resulting classifiers could be integrated into our multi-engine
machine translation system and evaluated in terms of their
translation quality using either automated metrics or human
judgment. Efforts to improve classification quality should
focus on a fixed set of features and candidate translations,
to allow specific tuning of the classifier model.

Exploring Different Machine Learning Methods
So far, we have applied SVM-based classification only. Our
combination approach is however not bound to SVM-based
models; in fact, any learning framework could be used.4
Given the wide range of existing algorithms and tools for
machine learning, it would be a natural extension of our
work to investigate how those different algorithms could be
applied and what impact they would have on the classifier’s
prediction rate. As the overall performance of our method
is strongly dependent on the quality of the classification
model, it would be an interesting challenge to see how other
ML techniques performed compared to the SVM baseline.
If some other method would achieve an improved prediction
rate, it could be integrated into our system implementation
and then be evaluated, similarly to the previous section on
improved (SVM-based) classification quality. Datasets for
such experiments can be made available to ML researchers.
Again, the set of linguistic features and the given candidate
translations should be fixed to allow a fair comparison to the
baseline system’s performance.

From Global to Local Classification
Our basic implementation of the combination framework
uses a single classifier for all possible, pairwise comparisons
of systems A, B. For N given systems, we have to estimate

3See the description of “Datasets for Lifelong Machine Learn-
ing Research” on the following page.

4The decision to use SVM-based models rather having to do
with the fact that libSVM makes it easy to work with them.

6



“Is system A better than system B?” for a total of N(N−1)
2

comparison operations. It can be argued that using a single
classification model for all these comparisons is inferior to
the usage of more specialised models. As an intermediate
solution, we could train one classification model for each
system, ending up with N models in total. By focusing on a
single system’s qualitative differences compared to a set of
other systems, it might be possible to make better use of the
available feature values, hopefully achieving an improved
prediction rate. In the extreme case, we would then train
one classifier for each possible, pairwise comparison. Using
the aforementioned sets of linguistic features and candidate
translations, resulting classifiers could be integrated into our
system combination method5 and then be compared to the
baseline system which only uses a global classifier.

Improved Feature Selection
Similar to the usage of dedicated classification models for
pairwise system comparisons, it seems reasonable that the
usefulness of individual feature values is varying. This may
especially be true for cases in which the given translations
originate from fundamentally different MT paradigms.
Hence, it makes sense to also evaluate the effectiveness of
feature values during classifier training, by itself an area
of research in machine learning. Together with individual
classification models, we expect improvements to the overall
prediction rate of the (joint) classification model and thus
a better translation quality of our system. ML researchers
could also investigate the effects of new linguistic features.
In summary, it seems that any research effort invested into
the creation of specialised models for system comparison
will pay off with an increased level of performance of the
combination system. While the addition of new features
would prevent a fair comparison to the baseline in terms
of the classification model, the comparison on the level of
translation quality would still be reasonable.

Incremental Improvements over Time
Our classification-based system combination model can be
extended and, hopefully, be improved over time by replacing
the classifier(s) that are used during sentence selection. As
long as the defined set of linguistic features is stable, it is
possible to use additional training data to refine and improve
the models. Multi-model classification could be applied in
cases where different feature sets are used. This makes the
proposed multi-engine MT method an interesting problem
for lifelong machine learning research.

Datasets for Lifelong Machine Learning Research
We intend to release several datasets related to our research
which is conducted as part of the T4ME project.6 Using
these data researchers from the field of lifelong machine
learning could further investigate the machine learning prob-
lems our method is facing and, thus, help to improve it.

5Using more than one classifier is easily possible and requires
only minor changes to be made to the source code.

6These will become available from the author’s GitHub page at
https://www.github.com/cfedermann.

Integration of Human Feedback
Note that the our ordering relation ord(A,B) is extensible.
It can easily be extended to include, e.g., the results from
manual evaluation of translation output. In fact, this would
be a helpful addition as it would allow to bring in knowledge
from domain experts. We want to briefly discuss how such
an extension could be achieved. Figure 1 illustrates both the
training and decoding phases of our combination approach.

During training we generate a classification model that is
later used in the decoding phase to produce the combined
translation output. We aim at integrating human feedback
in an incremental manner which enables us to continually
refine and improve our classification model. There are two
straightforward ways of integrating human feedback into our
approach:
– Annotators could be asked to do pairwise comparison of

candidate translations on the training set and thus extend
the set of available metrics in Equation 1 with a new
Human metric which would be used with preference,
i.e., extending the set of available quality metrics to:

{Human,MeteorS ,MeteorC , NISTC , BLEUC ,⊥} (7)

The new metric would allow to create a refined set of
training instances and thus enable the computation of an
improved classification model.

– Another way of adding manual judgments into our
method would be the addition of a new feature that
would encode how often a human annotator had classified
the respective translation as “good”, or how often the
translation had been assigned some rank, e.g., from 1–5.
This feature value could encode judgments from several
annotators, either by explicitly storing individual ratings
or by averaging over the set of annotators.

Both extensions would enable the classifier to learn, over
several iterations, which of its training instances are most
useful, hopefully also improving final translation quality.
Annotation could be collected using evaluation tools such as
Appraise (Federmann 2012a) which is an open-source tool
for MT evaluation, freely available from GitHub.

Conclusion
We have presented a machine learning approach for multi-
engine machine translation. Our approach explicitly models
comparison of two candidate translations in the design of its
feature vectors and applies support vector machine training
to get a machine learning classifier able to perform candidate
translation on the sentence level.

We have presented several challenges which our system
combination method is facing and discussed how lifelong
machine learning methods could help to overcome these.
Due to the fact that our sentence selection approach is based
on pairwise classification—which itself is a very prominent
application of machine learning—there seem to be several
research strategies to further improve combination quality.

We intend to release several datasets so that researchers
can apply lifelong machine learning methods to our problem
scenario, hopefully improving the approach over time.

7



Acknowledgements
This work has been funded under the Seventh Framework
Programme for Research and Technological Development
of the European Commission through the T4ME contract
(grant agreement no.: 249119). It has also been supported by
the QTLaunchPad project (grant agreement no.: 296347).

References
Chang, C.-C., and Lin, C.-J. 2011. LIBSVM: A Library for
Support Vector Machines. ACM Transactions on Intelligent
Systems and Technology 2:27:1–27:27.
Chen, Y.; Eisele, A.; Federmann, C.; Hasler, E.; Jellinghaus,
M.; and Theison, S. 2007. Multi-engine machine trans-
lation with an open-source SMT decoder. In Proceedings
of the Second Workshop on Statistical Machine Translation,
193–196. Prague, Czech Republic: Association for Compu-
tational Linguistics.
Denkowski, M., and Lavie, A. 2011. Meteor 1.3: Automatic
Metric for Reliable Optimization and Evaluation of Machine
Translation Systems. In Proceedings of the Sixth Workshop
on Statistical Machine Translation, 85–91. Edinburgh, Scot-
land: Association for Computational Linguistics.
Doddington, G. 2002. Automatic Evaluation of Machine
Translation Quality Using n-gram Co-occurrence Statistics.
In Proceedings of the Second International Conference on
Human Language Technology Research, HLT ’02, 138–145.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.
Eisele, A.; Federmann, C.; Saint-Amand, H.; Jellinghaus,
M.; Herrmann, T.; and Chen, Y. 2008. Using Moses to in-
tegrate multiple rule-based machine translation engines into
a hybrid system. In Proceedings of the Third Workshop on
Statistical Machine Translation, 179–182. Columbus, Ohio:
Association for Computational Linguistics.
Federmann, C. 2011. Results from the ML4HMT Shared
Task on Applying Machine Learning Techniques to Opti-
mise the Division of Labour in Hybrid Machine Transla-
tion. In Proceedings of the International Workshop on Us-
ing Linguistic Information for Hybrid Machine Translation
(LIHMT 2011) and of the Shared Task on Applying Machine
Learning Techniques to Optimise the Division of Labour in
Hybrid Machine Translation (ML4HMT). Barcelona, Spain:
META-NET.
Federmann, C. 2012a. Appraise: An open-source toolkit
for manual evaluation of machine translation output. The
Prague Bulletin of Mathematical Linguistics 98:25–35.
Federmann, C. 2012b. Hybrid Machine Translation Using
Joint, Binarised Feature Vectors. In Proceedings of the Tenth
Biennial Conference of the Association for Machine Trans-
lation in the Americas (AMTA 2012), 113–118. San Diego,
USA: AMTA.
Federmann, C. 2012c. A Machine-Learning Framework
for Hybrid Machine Translation. In Proceedings of the 35th
Annual German Conference on Artificial Intelligence (KI-
2012), 37–48. Saarbrücken, Germany: Springer, Heidelberg.

Frederking, R., and Nirenburg, S. 1994. Three Heads are
Better Than One. In Proceedings of the Fourth Conference
on Applied Natural Language Processing, ANLC ’94, 95–
100. Stroudsburg, PA, USA: Association for Computational
Linguistics.
Gamon, M.; Aue, A.; and Smets, M. 2005. Sentence-level
MT Evaluation Without Reference Translations: Beyond
Language Modeling. In Proceedings of the 10th EAMT Con-
ference ”Practical applications of machine translation”,
103–111. European Association for Machine Translation.
Hildebrand, A. S., and Vogel, S. 2008. Combination of ma-
chine translation systems via hypothesis selection from com-
bined n-best lists. In MT at work: Proceedings of the Eighth
Conference of the Association for Machine Translation in
the Americas, 254–261. Waikiki, Hawaii: Association for
Machine Translation in the Americas.
Macherey, W., and Och, F. J. 2007. An Empirical Study
on Computing Consensus Translations from Multiple Ma-
chine Translation Systems. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning
(EMNLP-CoNLL), 986–995. Prague, Czech Republic: As-
sociation for Computational Linguistics.
Matusov, E.; Ueffing, N.; and Ney, H. 2006. Computing
Consensus Translation from Multiple Machine Translation
Systems Using Enhanced Hypotheses Alignment. In Con-
ference of the European Chapter of the Association for Com-
putational Linguistics, 33–40. Stroudsburg, PA, USA: As-
sociation for Computational Linguistics.
Och, F. J., and Ney, H. 2003. A Systematic Comparison of
Various Statistical Alignment Models. Computational Lin-
guistics 29(1):19–51.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: A Method for Automatic Evaluation of Machine
Translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, ACL ’02,
311–318. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics.
Rosti, A.-V.; Ayan, N. F.; Xiang, B.; Matsoukas, S.;
Schwartz, R.; and Dorr, B. 2007. Combining Outputs
from Multiple Machine Translation Systems. In Human
Language Technologies 2007: The Conference of the North
American Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference, 228–235.
Rochester, New York: Association for Computational Lin-
guistics.

8




