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Abstract

Cognitive structures are the foundation of Jean Piaget’s
Genetic Epistemology. Yet the elusive question remains:
“What are Piaget’s cognitive structures?” and more
importantly, = “How can they be  represented
computationally?”  Piaget described the monad as an
immaterial, weightless, dimensionless entity, while he
referred to a scheme as both process and structure. This
paper explores an approach to combining the notions of
monad and scheme to create a simple knowledge
representation. Building upon the work of several authors,
notably Jean Piaget, Ryszard Michalski, and Roland
Hausser, the neural proposition is the central cognitive
structure of the PAM-P2 cognitive system.

"The central idea is that knowledge proceeds neither solely
from the experience of objects nor from an innate
programming performed in the subject, but from
successive  constructions, the resultof constant
development of new structures.” ~ Jean Piaget

Introduction

Jean Piaget viewed the formation of knowledge as a
continual process of construction. In his view, cognitive
structures are synthesized, integrated and differentiated
ad infinitum. To realize this process, this paper proposes a
simple knowledge representation (see Fig. 1). Using this
representation a cognitive system such as PAM-P2 can
model its environment, and construct knowledge.

PAM-P2 is a cognitive architecture (see Fig. 12). Starting
from a minimal set of reflexes and prioritized needs, a robot
or device connected to PAM-P2 should be able to think
about and react to its environment, make attempts to satisfy
needs, consider the possible effects of actions before
executing them (i.e., perform mental simulation), create
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analogical, deductive, and inductive inferences, and
improve its solutions over time.

PAM-P2 is influenced by: database semantics (Hausser
2010); dynamic interlaced hierarchies (Heib and Michalski
1993; Tecuci and Michalski 1993; Alkharouf and
Michalski 1996) behavioral schemas (Drescher 1991);
ontology formation (Indurkhya 1992); temporal activation
(Miller 2011); micro theories (Lenat and Guha 1990); and
cognitive system patterns (Miller 2012a).

PAM-P2 was designed expressly to perform
observation, coordination, regulation, and compensation
according to definitions set forth in Piaget (1978; 1985).
As a result, while building its world model PAM-P2 should
achieve and maintain equilibrium by continually regulating
(i.e. correcting or reinforcing) solutions for needs and
compensating (reversing or neutralizing the effects of)
solution failures. The model that PAM-P2 constructs is a
database of neural propositions.

The PAM-P2 system is psychologically inspired by the
work of Jean Piaget. There is also biological evidence for
some features of the system. Recently, Yamakawa (2012)
has proposed that the hippocampus performs scheme
generation and scheme storage in the brain by projecting
schemes onto the neocortex. This finding aligns the
hippocampus with the PAM-P2 scheme generators (the
coordination components) and the scheme storer.
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Figure 1. The neural proposition.



A neural proposition is a logical proposition that
exchanges activation with its terms. A comparison can be
made between the dendrites of a biological neuron and the
terms of a logical proposition. Also, a neural proposition
has a reifier which functions as a biological axon. Finally,
the proposition’s activation is time-based to facilitate

decay.
In practice, a neural proposition consists of two
fundamental structures: monads (constants), mental

representations of entities in the world, and schemes
(predicates), relations among monads.

Monads

Gottfried Leibniz thought of monads as metaphysical
atoms while Jean Piaget conceived them to be immaterial,
dimensionless entities. For our purposes, a monad is a
representation of a concept, residing within or outside a
cognitive system. In the cases where a monad represents a
purely internal concept with no external correlate, it is said
to be a “newly synthesized” concept (Drescher 1991).

From a logical perspective, a monad is a constant.
Visually a monad is represented by a dot. A monad has an
activation (which can be On, Off , or Void), a numerical
rank (to place it within a heterarchical plane), and a
numerical tier (to place it on a particular plane among
many).
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Figure 2a. A monad has an activation and can be active (enabled
or “On”), neutral (i.e., “Void”), or inactive (impeded or “Off”).
This figure shows three monads, m1, m2 and m3.

Observables, Coordinations, and Facts

As a representation of an external entity, a monad is said to
represent what Piaget calls an “observable”. “An
observable is anything that can be established by
immediate experience of the facts themselves” (Piaget
1985). “An observable is that which experience makes it
possible to identify by an immediate reading of the given
events themselves.”(Piaget 1978).

We will call that which we perceive directly,
observables.  This will include all sensory stimuli.
Inferences arising from observables are called
“coordinations”.

In the PAM-P2 system, both observables and
coordinations are referred to as “facts”. And all facts are
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represented by monads. A fact represents a condition that
may be enabled or impeded. An active monad is enabled,
an inactive monad is impeded. A neutral monad is void (or
dormant), it is not a fact.

Goals

Often a monad’s activation is required to achieve or
maintain a necessary condition. When such is the case, a
monad becomes a goal of the PAM-P2 system. Goals may
be Open, Satisfied, or Expired. A monad which becomes a
goal immediately has a disposition of Open. If a monad
becomes a fact while it is an open goal, the goal disposition
changes to Satisfied.

All goals have a predetermined expiration. The
expiration may be established and extended by various
processes, but eventually if a goal remains open beyond its
allotted timeframe, the disposition of the goal will change
to Expired.

Dyads

A dyad is a pair of monads that have contrary activation
with respect to one another (Fig 3b). When one monad is
enabled, the other monad in the dyad is impeded, and vice
versa. One monad in a dyad, is the thesis monad and
represents the proposition, while the other monad, the
antithesis, represents the negated proposition. For
convenience a dyad is visualized as a circle filled half with
black and half with white (Fig. 3¢) to indicate the contrary
activation. Jean Piaget indicated that it is necessary for a
cognitive system to have as many positive characteristics
as negative characteristics: “...this means that there will be
as many negations as affirmations.  Sometimes the
correspondence between them remains implicit, but often it
must be made more or less explicit” (Piaget 1985, p.9).
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Figure 3. Monads forming a dyad.

Schemes

Relations

A logical relation consists of a predicate and arguments.
For example, the relation R(x, y) has the predicate R and
arguments x and y. In PAM-P2 there is also a meta-
relation RELATION which defines relations. For
example, RELATION(R, x, y, ) means that R(x,y,z) forms
a relation.



There are two kinds of relations, internal and external.
Internal relations are synthesized by PAM-P2’s inferential
processes acting upon the model. The following are
examples of “internal relations” in the PAM-P2 system:

UNISON(x) OPTION(x)
SERIES(x) DIFFERENT(X, y)
SAME(%, y) SIMILAR(x, y)
CASE(x, y) TYPE(x, y)

EXPECT(x, y, z) PREDICT(w, x, y, z)

External relations fall into three basic categories
(percepts, urges, and effects), and are asserted and
activated (or impeded) by sensor, receptor, and actuator
processes outside the PAM-P2 cognitive system.

Schemes

Jean Piaget used the word scheme to refer either to a
strategy, an abstract cognitive structure, or a specific
action. It is the second sense, scheme as cognitive
structure, which is relevant here. He described the scheme
as a flexible entity which can undergo: assimilation and
accommodation. Assimilation is the incorporation of
elements foreign to a scheme into the scheme. This author
proposes that the “foreign elements” that schemes
assimilate are monads, so, assimilation means adding a
monad to a scheme. Accommodation is the process of
modifying schemes. More accurately, to accommodate a
scheme means to copy it and then modify the copy by
inserting or deleting monads.
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Figure 4. Unary, binary, and ternary schemes.

A computational scheme is a structure that characterizes
an instance of a relationship among monads. The
relationship may be unary, binary, ternary, (see Fig. 4) or
n-ary. A computational scheme consists of a name (which
is optional), a relation, and terms (which are required).
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Terms

Each scheme has fillers called “terms” which function in
much the same manner as do terms in logical propositions.
Each term may be either an individual monad or a

collection of monads (representing disjunctions,
conjunctions, sequences, or cycles).
RI RI R2 R3
1= L ane
mi m2 m3 m4 m5 mé m7 m8&  m9 ml0 mIlml2 mi3
R1(mi)
R1({m2, m3, m4})
R2(m7, m8)

R3(m8, m11, m13)

Figure 5. Four schemes.

Reifiers, Monemes, and Dynemes

In addition to schemes having monads as terms, monads
may also represent entire schemes. A scheme is reified
when a monad is used to represent the scheme. Reifiers
reside on a higher tier than the scheme terms. In PAM-P2
system the lowest tier is perception, and therefore monads
on the lowest tier represent sensory stimuli. As the tier
increases, monads are reified and become more abstract.

When a single monad reifies a scheme, this combination
is called a “Moneme”. When a dyad reifies a scheme, the
combination is called a “Dyneme”.
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Figure 6. The graphical and logical representation of a moneme
and a dyneme. Monemes and Dynemes are neural propositions.

Monemes vs. Frames

A frame is a data structure that is often used to represent an
object or concept. The attributes of a frame are called
“slots” and the values of those attributes are called fillers.
Collections of frames are organized in a hierarchical
taxonomy or ontology. Frame systems typically support



the inheritance inference technique while other inference
techniques may be provided by daemons, i.e., functions
attached to slots. On the other hand, monemes participate
in a variety of inference techniques beyond inheritance and
they do not use daemons.

A generalization taxonomy usually takes the form of a
hierarchical diagram using frames. With monemes, a
generalization taxonomy would occur within a specific tier
(see Fig.7).
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dl: “Albert Einstein”. d2: “Jean Piaget”.
d3: “Physicist”. d4: “Biologist”.
d5: “Psychologist”. d6: “Scientist”.
d7: “Academic”. d8: CASE(dI, d3).

d9: CASE(d2, {d4, d5}).
d11: TYPE(d6, d7).

d10: TYPE({d3,d4,d5}, d6).

Figure 7. A generalization taxonomy.

Integration and Differentiation

Monemes facilitate integration (see Fig. 8) and
differentiation (see Fig. 9). With any neural proposition
the underlying scheme will change over time. The moneme
(or dyneme) can be differentiated or integrated while
maintaining its identity through its monad interface.
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(a) m4: A(ml, m2, m3) as “Al”.

m9: A(mS5, m6, {m7, m8}) as “A2”.

(b) ml10: A(ml, m2, m7) as “A3”.

mll: A(ml, m3, {m7, m8}) as “A4”.

Figure 8. Monemes m4 and m9 are integrated by cloning them to
form m10 and m11, and then modifying the clones.
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A(ml, m2, m3).

m4: OPTION(mS).

m5: A(ml, m2, m3).

mé:

(c) OPTION({m5, m6}).
A(ml, m2, m3) as “Al”.

A(ml, m2, {m3, m7}) as “A2”.

m5:

mb6:

Figure 9. (a) A moneme, m4, holding relationship A is
differentiated into sub-schemes Al and A2, by (b) inserting an
OPTION relationship indicating a choice between (c) the original
form of the scheme, now denoted Al, and the new form A2
(Piaget 1985).

Activation

By using activation and salience, candidate monads are
selected to participate in various inferential processes.

Activation Flow

An argument within a relation can be afferent, where
activation flows from the argument into the relation, or
efferent, where activation flows from the relation to the
argument. The flow of an argument is defined by the
relation. For example, the UNISON relation has one
argument which is afferent. The TYPE relation has two
arguments (subclass, superclass), the first of which is
afferent while the second is efferent. This means that for
the TYPE relation, activation flows into the first argument
and out of the second argument.

Term Activation and Merge Types

A term has an activation of “On”, “Off”, or “Void” much
in the same way that monads have. The activation of a term
is determined by the merge type of the scheme’s relation.
There are six basic merge types: PASS[through], NOT,
AND, OR, NAND, NOR (see Fig. 11). Each merge type
defines how activation for afferent monads in a term is
propagated to the scheme’s reifier. When all afferent terms
of a scheme are activated according to the merge type, then



the scheme is activated. Once a scheme is activated,

efferent terms and the reified monad(s) are then activated. PASS NOT AND
Moments ? ? ?
For cognitive systems using neural propositions time is R R R
measured in moments—a unit of time equal to 3.1556 x x x
milliseconds. In PAM-P2 the function Now( ) returns the
current moment. For example, the moment

2015500505050000 is circa the date 1 July 2015 at
12:30:30 pm. A moment can represent either a specific
time point or a duration. For example 3 seconds in duration

_ : NAND OR NOR
is approximately 1000 moments.

Activation Window I Z Z

The PAM-P2 system maintains a specific configuration . _‘ .

parameter called the “Activation Window” which identifies

the duration that a monad is considered to be activated or

inhibited. Subtracting the Activation window from Now( )

yields the Activation Threshold.

ActivationThreshold = Now( ) — ActivationWindow (1) Figure 11. The activations of the afferent term monads are passed

) up to the reified monad according to the scheme’s merge type.
Any monads activated or inhibited before the Activation

Threshold are considered to be in a void state.
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Figure 12. PAM-P2
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The Temporal On, Off, and Void

A monad is considered On if it was activated after the
Activation Threshold. Each monad has an EnabledAt
property which identifies when the monad was last
activated.

On := EnabledAt > ActivationThreshold 2)
A monad is considered Off if it was inhibited after the
activation threshold. Each monad has an ImpededAt
property which identifies when the monad was last
inhibited. We can define the Off state as follows:

Off := ImpededAt > ActivationThreshold 3)

A monad is considered Void if it was not activated or
inhibited after the Activation Threshold, or if it was
simultaneously activated and inhibited, thereby rendering it
neutral. We can define the Void state as follows:

Void :=((ImpededAt < ActivationThreshold) and (4)
(EnabledAt < ActivationThreshold)) or
(EnabledAt = ImpededAt)

The activation of a monad is therefore determined by
considering when the monad was last enabled or impeded
with respect to the activation threshold.

Activation :=
If (EnabledAt = ImpededAt)
then Void’
Elseif (EnabledAt > ActivationThreshold )
then ‘On’
Elseif (ImpededAt > ActivationThreshold)
then ‘Off’
Else Void’

)

Discussion

The idea of a neural proposition is not new, McCulloch
and Pitts (1943) originally characterized neural activity as
a mathematical proposition. Whereas McCulloch and Pitts
emphasized neural activity as the basis of the proposition,
the monemes and dynemes introduced here derive their
structure from declarative propositions (e.g., UNISON,
OPTION, etc.), and activation arises from an explicit
merge type definition associated with each relation.

There are many knowledge representations in Artificial
Intelligence—objects, propositions, frames, constraints,
rules, and graphs abound. Why add another? None of the
aforementioned knowledge representations effectively
addressed Piaget’s notions of monad and scheme or his
expressed requirements for integration and differentiation.
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Conclusions and Future Work

Using the preceding framework, neural propositions are
used to construct a model of the PAM-P2 system’s external
world. Percepts, urges, and effects are asserted to the
current internal model of the world (scheme memory).
Inferential processes elaborate the model with newly
synthesized monemes and dynemes.

The PAM-P2 prototype system is currently under
development, and will have several experimental domains
in which to test the models it autonomously generates.
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