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Abstract
We present a high-level overview of our research ef-
forts to build an intelligent robot capable of addressing
real-world problems. The UJI Humanoid Robot Torso
integrates research accomplishments under the com-
mon framework of multimodal active perception and
exploration for physical interaction and manipulation.
Its main components are three subsystems for visuomo-
tor learning, object grasping and sensor integration for
physical interaction. We present the integrated architec-
ture and a summary of employed techniques and results.
Our contribution to the integrated design of an intelli-
gent robot is in this combination of different sensing,
planning and motor systems in a novel framework.

1 Introduction
Our contribution to the design of intelligent robots is in a
high-level overview of the integration of different cognitive
abilities in the UJI Humanoid Torso (Fig.1), resulting from
an extended research program. This system integrates re-
search accomplishments of three distinct projects over five
years, which individually, by themselves, also comprise ad-
ditional lower-level subsystems.

The first project is EYESHOTS (EYESHOTS 2008-2011)
that started from the idea of investigating the cognitive value
of eye movements when an agent is engaged in active ex-
ploration of its peripersonal space. In particular, we argued
that, to interact effectively with the environment, the agent
needs to use complex motion strategies at ocular level and
also extended to other body parts, such as head and arms,
using multimodal feedback to extract information useful to
build representations of the 3D space, which are coherent
and stable with respect to time. The second one was GRASP
(GRASP 2009-2012), whose aim was the design of a cogni-
tive system capable of performing grasping tasks in open-
ended environments, by dealing with novelty, uncertainty
and unforeseen situations. Our third challenge was robot ma-
nipulation beyond grasping to attain versatility (adaptation
to different situations), autonomy (independent robot op-
eration), and dependability (for success under modeling or
sensing errors) (Mario Prats 2013). In our research we devel-
oped a unified framework for physical interaction (FPI) by
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Figure 1: The UJI Humanoid Torso Tombatossals.

introducing task-related aspects into the knowledge-based
grasp concept, leading to task-oriented grasps; and similarly,
grasp-related issues were also considered during the sensor-
based execution of a task, leading to grasp-oriented tasks.
This results in the versatile specification of physical interac-
tion tasks, as well as the autonomous planning of these tasks,
and the sensor-based dependable execution combining three
different types of sensors: force, vision and tactile.

1.1 Visuomotor Learning
The goal of the EYESHOTS project was to investigate the
interplay existing between vision and motion control, and
to study how to exploit this interaction to achieve knowl-
edge of the surrounding environment that allows a robot to
act properly. Our research relied upon the assumption that
a complete and operative cognition of visual space can be
achieved only through active exploration, and that the nat-
ural effectors of this cognition are the eyes and the arms.
The integration in the UJI Torso encompasses state-of-the-
art capabilities such as object recognition, dynamic shifts of
attention, 3D space perception, and action selection in un-
structured environments, including eye and arm movements.

In addition to a high standard in engineering solutions,
the development and integration of novel learning rules en-
ables the system to acquire the necessary information di-
rectly from the environment. All the integrated processing
modules are built on distributed representations in which
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sensorial and motor aspects coexist explicitly or implicitly.
The models resort to a hierarchy of learning stages at differ-
ent levels of abstraction, ranging from the coordination of
binocular eye movements (e.g., learning disparity-vergence
servos), to the definition of contingent saliency maps (e.g.,
learning of object detection properties), up to the develop-
ment of the sensorimotor representation for bidirectional
eye-arm coordination. Through the distributed coding, in-
deed, it is possible to avoid a sequentialization of sensorial
and motor processes, i.e., a hard-coded sequence of discrete
events which is certainly desirable for the development of
cognitive abilities at a pre-interpretative (i.e., sub- symbolic)
level, e.g., when a system must learn binocular eye coordi-
nation, handling the inaccuracies of the motor system, and
actively measure the space around it.

1.2 Prediction in Cognitive Grasping
To meet the aim of the GRASP project, we studied the prob-
lem of object grasping and devised a theoretical and mea-
surable basis for system design that is valid in both human
and artificial systems. This artificial cognitive system is de-
ployed in real environments and interacts with humans and
other agents. It needs the ability to exploit the innate knowl-
edge and self-understanding to gradually develop cognitive
capabilities. To demonstrate the feasibility of our approach,
we instantiated, implemented and evaluated our theories and
hypotheses on the UJI Humanoid Torso. GRASP goes be-
yond the classical perceive-act or act-perceive approach and
implements a predict-act-perceive paradigm that originates
from findings of human brain research and results of men-
tal training in humans where the self-knowledge is retrieved
through different emulation principles. The knowledge of
grasping in humans is used to provide the initial model of
the grasping process that then is grounded through intro-
spection to the specific embodiment. To achieve open-ended
cognitive behavior, we use surprise to steer the generation of
grasping knowledge and modeling.

1.3 Integrating Vision, Force and Tactile Sensing
The concept of physical interaction has been around since
the first works in Robotics and Artificial Intelligence
(Del Pobil, Cervera, and Chinellato 2004)

We claim that a unified treatment of grasp and task- re-
lated aspects would imply very important advances in intel-
ligent robot manipulation, and advocate a new view of the
concept of physical interaction that suppresses the classical
boundaries between the grasp and the task. This new view
has its foundations in the classical task frame formalism
and the concept of grasp preshaping. We proposed several
contributions concerning the application of the FPI concept.
First, the FPI framework supports a great variety of actions,
not only involving direct hand-object manipulation, but also
the use of tools or bimanual manipulation. Next, subsystems
for autonomous planning of physical interaction tasks are in
place. From a high-level task description, the planner selects
an appropriate task- oriented hand posture and builds the
specification of the interaction task by using the FPI frame-
work. Last, for the dependable execution of these tasks we
adopt a sensor-based approach composed of a grasp and task

controller running simultaneously, and taking into consid-
eration three different types of sensor feedback which pro-
vide rich information during manipulation with robot hands:
force, vision and tactile feedback.

2 Integrated system
The UJI Humanoid Torso is the result of the integration of
several independent robotic systems that are controlled by a
layered architecture. The system was designed in the course
of the above projects which shared the goal of integrating
the perception of the environment (visual, tactile, etc) with
the planning and execution of motor movements (eyes, arms
and hands). Also, our group was in charge of the integration
of several modules developed by other partners contributing
to the projects. Given that the projects focused on different
topics, with different people involved and different timing
we developed several architectures to integrate the system,
each one with a different level of abstraction. In this paper,
we describe the unified architecture that we have come up
with to merge together all these systems. The reminder of
this section describes the UJI Humanoid Torso as well as its
software architecture.

2.1 System setup
Tombatossals (Catalan for mountain-crasher) is a humanoid
torso composed by a pan-tilt stereo head (Robosoft To40
head) and two multi-joint arms (Mitsubishi PA10 Arm).

The head is endowed with two cameras Imaging Source
DFK 31AF03-Z2 (resolution: 1024 × 768, frame rate: 30
fps) mounted at a baseline of ≈ 270 mm. This geometrical
configuration allows for an independent control of gaze di-
rection and vergence angle in cameras (4 DOF). Moreover,
the head mounts a Kinect

TM
sensor ( Microsoft Corp.) on

the forehead that allows to obtain a three-dimensional re-
construction of the scene. The arms, Mitsubishi PA-10 7C,
have seven degrees of freedom each. Both the head and the
arms are equipped with encoders that allow gaining access
to the motor positions with high precision.The right arm
has a 4 DOF Barrett Hand and the left arm has a 7 DOF
Schunk SDH2 Hand. Both hands are endowed with tactile
sensors (Weiss Robotics) on the fingertips. Each arm has a
JR3 Force-Torque sensor attached on the wrist between the
arm and the hand.

The control system of the robot is implemented on two
computers. These are connected by a cross ethernet cable.
Each one is devoted to cope with different tasks. The vision
computer process the visual pipeline from the system of the
cameras and KinectTMsensor. The user interface is running
in this computer too. The technical features of this computer
are: Intel R© CoreTMi5 CPU 650 @ 3.2 GHz, 8 Gb DDR3
DIMM 1333 MHz, NVidiaTM580GTX 1Gb. The remaining
parts of the system hardware are connected to the control
computer. This allows the management and communication
with all devices that are part of the robot. The features of this
computer are: Intel R© CoreTM2 Quad CPU Q9550 @ 2.83
GHz, 8 Gb DDR2 DIMM 800 MHz, NVidiaTM9800GT 512
Mb.
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Figure 2: Integration software diagram.

2.2 Software architecture
To control all the components as an integrated platform, we
have implemented a layered system that allows us to interact
with the robot at different levels of abstraction (see Fig. 2).

Each layer is composed by modules that run in parallel
and communicate with each other using three main types of
messages:
• Data: input/output of the modules. It contains any type of

information, raw or processed. For example, joint status,
camera image, object positions, etc.

• Control: changes the parameters (threshold, loop rate, . . . )
and the status (run, stop, . . . ) of the modules.

• Event: contains information about a detected situation (an
object is localized or grasped successfully, . . . ).
Each module is wrapped into a node of the robotic op-

erative system (ROS) (Quigley M., et al. 2009) which is in
charge of managing the communication and provides other
useful tools for development.

Interfaces. As detailed above, our robot is an ensemble
of many different hardware components, each one provid-
ing different drivers and programming interfaces. The robot
interface layer monitors and controls the state of the devices
through hardware drivers. Then converts it into ROS mes-
sages. In this way, we obtain an abstraction from the hard-
ware of the robot, because the other modules of the system
need to know just the type of the data and not how to access
it. Table 1 shows the ROS messages used for each device.
Simulation interfaces do the same to connect OpenRAVE
simulation to the system.

Services. They are is a continuous non blocking loop that
never stops by itself. Each loop generates at least one output
and requires one or more inputs. Services neither generate
events nor control messages. Modules in the service layer

Table 1: ROS messages associated to the robot device.
Device ROS message
Force WrenchStamped
Velocity TwistStamped
6D Pose PoseStamped
Images Image
Joint data (position, velocity and torque) JointState
Point clouds PointCloud2

accept commands such as run, stop, reset or remap. The role
of a service is to be a basic process that receives an input and
provides an output. In the system, services are mostly used to
provide high level information from raw sensor input. This
layer provides the building blocks with basic operations that
are in general useful for higher layers.

In this layer, inputs and outputs are not platform depen-
dent and the robot model is available to the other layers that
configure the services on the basis of the robot embodiment.
This layer is not aware of the robot hardware below it, thus
using the simulator or the real robot does not affect the mod-
ules in this or the upper layers.

An example of service is a blob detector, that receives an
image as input, processes it and outputs the position of the
detected blob, another example is the inverse kinematics ve-
locity solver that receives a Cartesian velocity and converts it
to joint velocity, this module uses the available robot model
to do the calculations.

Primitives. They define higher level actions or processes,
that may need motion (grasp, move, transport or look at) or
may not (detect motion, recognize or localize objects).

As services, primitives are continuous, never stop by
themselves and always generate at least one output. A prim-
itive may not have inputs and generates events that can be
caught by the task layer. The role of the primitives is to use
services to receive data and to send control actions to the
robot. Primitives can detect different situations by looking
at the data and generate events accordingly. A primitive is a
control loop that gets processed data from services, gener-
ates events and sends control actions to the service layer.

The primitive layer is more platform independent than the
service layer, thus most primitives are platform independent
and do not need knowledge about the platform to work.

Tasks. They represent the higher level processes that can
be described with this system. Tasks use primitives as build-
ing blocks to generate the defined behaviors. In fact a task
can be represented as a cyclic, directed, connected and la-
beled multigraph, where the nodes are primitives and the
arcs are events that need to be active. An example of a task
that grabs an object while looking at it is depicted in Fig. 3.

Tasks do not need to be continuous and can end. There is
no need for a task to generate any output but it can gener-
ate events. The role of a task is to coordinate the execution
of primitives in the system, tasks generate control messages
and change the data flow among primitives and services.
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(a) Active tracking task. The task is composed of two primitives,
Localize Object and Move Head. The former is composed of two
services that create a distributed representation of the image and
localize the object of interest. The latter is composed of a service
that converts the retinotopic location of the target into an eye po-
sition. Both primitives launch an event when their state changes.
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(b) Cooperation among tasks. The robot executes a task
which consists of grasping and moving the target object
(pick and place), and that requires seven primitives. In
the meanwhile, the robot actively tracks the moved ob-
ject.

Figure 3: System description at different levels of abstraction.

Robot model. It is available to all the layers and provides
information about the embodiment that is being controlled.

GUI. It is connected to all layers and monitors the whole
system. The user is able to interact (send control messages
and events) with the system through this interface.

2.3 Tools and documentation
During the development of this integration software, we
have prepared several tools to help the programmers and to
make uniform the coding style. We consider that the style
and documentation of the developed modules is a key point
for the integration. Inspired by the ROS tool ros-create-pkg
1 we have developed our own scripts to create services and
primitives. These scripts allow us to define the inputs, out-
puts and parameters of the module, then create all the file
structure, includes, callbacks and documentation entries that
must be filled in. This tools make the module coding more
uniform and point out which are the key parts that need to
be documented.

3 Achieved results
During the projects carried out by our group, a number
of experiments were performed in our robotic platform, in
fact, Tombatossals was the only demonstrator for the EYE-
SHOTS project, an one of the demonstrators of the GRASP
project. Using our system we have performed experiments
focused on different topics such as visual awareness, senso-
rimotor learning, grasping, physical interaction and simula-
tion.

1http://www.ros.org

3.1 Visual awareness and sensorimotor learning
The main goal of the EYESHOTS project was to achieve
spatial awareness of the surrounding space by exploiting the
interplay that exists between vision and motion control.

Our effort in the project was to develop a model that sim-
ulates the neurons of the brain’s area V6A involved in the
execution of reaching and gazing actions. The main result
is a sensorimotor transformation framework that allows the
robot to create an implicit representation of the space. This
representation is based on the integration of visual and pro-
prioceptive cues by means of radial basis function networks
(Chinellato et al. 2011).

Experiments on the real robot shown that this representa-
tion allows the robot to perform correct gazing and reaching
movements toward the target object (Antonelli, Chinellato,
and del Pobil 2011). Moreover, this representation is not
hard-coded but it is updated on-line, while the robot inter-
acts with the environment (Antonelli, Chinellato, and Pobil
2013). The adaptive capability of the system and its design
that simulates a population of neurons of the primates’ brain
made possible to employ the robot in a cognitive science
experiment, such as saccadic adaptation (Chinellato, Anton-
telli, and del Pobil 2012).

Another important result of the EYESHOTS project, was
the integration on Tombatossals of a number of models de-
veloped by the other research groups involved in the project.
The result of the integration process made available on our
robotic system a set of behaviors, such as recognizing, gaz-
ing and reaching target objects, that can work separately or
cooperate for more structured and effective behaviors.

The system is composed by a hierarchy of modules that
begins with a common visual front-end module that models
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the primary visual cortex (Sabatini, Gastaldi, and F Solari
et al. 2010). On the one hand, the output of this module is
used by the model of high level visual areas (V2, V4, IT,
FEF) to compute a saliency map and to recognize and local-
ize the target object (Beuth, Wiltschut, and Hamker 2010).
On the other hand, the same output is used by a controller
that changes the vergence of the eyes to reduce the global
disparity of the observed scene (Gibaldi et al. 2010). Finally,
our sensorimotor framework is used to gaze to the target or
to reach it (Antonelli, Chinellato, and Pobil 2013).

The modules implemented during the project, provided
the main building blocks (services) to create primitives and
execute tasks. The simplicity by which it is possible to create
new behaviors allowed us to employ the robot in a human-
robot interaction experiment (Stenzel et al. 2012).

3.2 Grasping and manipulation
Early experiments on sensor based controllers were per-
formed to adapt the robot behavior to the real, uncertain
and changing environment (Felip and Morales 2009). In this
work we demonstrated, using a simple approach, that using
sensors to adapt the robot actions increases the performance
and robustness.

Our platform was also used for perception for manipula-
tion experiments, Bogh et.al. (Bohg J. et al. 2011) presented
a system that reconstructed the stereo visual input to fill the
occluded part of the objects. With the reconstructed objects,
the simulator was used to plan feasible grasps and to be ex-
ecuted on the real robot.

The integration of controllers for different platforms was
also taken into account and presented in (Felip et al. 2012)
where two different robots were performing the same task
using abstract definitions. Such implementation of tasks uses
the same concepts for high level task definition that were
presented in previous section.

A test case of the full manipulation pipeline (i.e.
perception-planning-action) is the experiment carried out
by Felip et.al. (Felip, Bernabe, and Morales 2012), that
achieved the task of emptying a box full of unknown ob-
jects in any position, see Fig. 4. Another example of the
performance of the full manipulation pipeline was presented
by (Bohg J.,et al. 2012) where the robot planned different
grasps on household objects depending on the task to be ex-
ecuted.

Using the described system we also performed dual arm
coordination and manipulation experiments. Fig. 5 shows
the UJI Humanoid torso performing dual arm manipulation
of a box.

3.3 Simulation
One of the outcomes of the GRASP project was the im-
plementation of OpenGRASP, a set of plugins for Open-
RAVE, that enabled tactile sensing in simulation. Moreover,
we have accurately compared to which extent the simulator
can be used as a surrogate of the real environment in a work
that included a full dynamic simulation for all the robot sen-
sors and actuators (Leon, Felip, and Morales 2012).

The simulator has proven to be a useful tool. Using it as
an early test bench has saved a lot of debugging time to the

Figure 4: Tombatossals performing the empty-the-box ex-
periment.

Figure 5: Tombatossals performing a dual arm manipulation
experiment.

research team. Moreover its tight integration in the system
allows us to use the same controllers both for the real and
simulated robot ( Fig. 6).

3.4 Sensor-Based Physical Interaction
We introduced a number of new methods and concepts,
such as ideal task-oriented hand preshapes or hand adap-
tors, as part of our unified FPI approach to manipulation
(Mario Prats 2013). The FPI approach provides important
advances with respect to the versatility, autonomy and de-
pendability of state-of-the-art robotic manipulation. For in-
stance, the consideration of task-related aspects into the
grasp selection allows to address a wide range of tasks far

Figure 6: Real and simulated Tombatossals performing a
grasping task using the same sensor-based controllers.
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beyond those of pick and place that can be autonomously
planned by the physical interaction planner, instead of
adopting preprogrammed ad-hoc solutions. Most impor-
tantly, advances in dependability are provided by novel
grasp-task sensor-based control methods using vision, tac-
tile and force feedback. The results of our integrated ap-
proach show that the multimodal controller outperforms the
bimodal or single-sensor approaches (Mario Prats 2013). All
these contributions were validated in the real world with sev-
eral experiments on household environments. The robot is
capable of performing tasks such as door opening, drawer
opening, or grasping a book from a full shelf. As just one
example of this validation, the robot can successfully oper-
ate unmodeled mechanisms with widely varying structure in
a general way with natural motions (Mario Prats 2013).

4 Conclusions
We have presented a summary of our research efforts to
build an intelligent robot capable of addressing real-world
problems with the common framework of multimodal ac-
tive perception and exploration for physical interaction and
manipulation. This system integrates research accomplish-
ments of three distinct projects over five years. We have
briefly presented the goals of the projects, the integrated ar-
chitecture as implemented on Tombatossals, the UJI Robot
Torso, and a summary of employed techniques and results,
with references to previously published material for further
details. We believe this combination of different sensing,
planning and motor systems in a novel framework is a state-
of-the-art contribution to the integrated design of an intelli-
gent robot.
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