Lifelong Machine Learning: Papers from the 2013 AAAI Spring Symposium

Hashing for Lightweight Episodic Recall

Scott A. Wallace and Evan Dickinson
Washington State University Vancouver
14204 NE Salmon Creek Ave.
Vancouver, WA 98686

Abstract

We demonstrate a supplemental episodic memory system that
can help arbitrary Soar agents use reinforcement learning
in environments with hidden state. Our system watches for
learning bottlenecks and then specializes the agent’s existing
rules by conditioning on recent history. Because we avoid a
full episodic retrieval, performance scales well regardless of
the agent’s lifespan. Our approach is inspired by well estab-
lished methods for dealing with hidden state.

Introduction

Complex, durative tasks that are performed by intelligent
agents over a series of months, years, or even decades
present significant challenges for the field of artificial in-
telligence. For such tasks, we take as a given that learning
will be required as it is exceedingly unlikely that the agent’s
initial knowledge (as supplied by a programmer) will be suf-
ficient to perform all of its tasks correctly over the course of
time. These knowledge deficiencies may be a result of bugs
introduced during programming, an insufficient model of the
task, or they may be due to changes in the environment.

For the purposes of this paper, we focus on two key chal-
lenges that arise from this context. The first is the challenge
of dealing with, and overcoming, flawed knowledge. Specif-
ically, we will examine situations in which the the program-
mer’s understanding, or model, of the environment is im-
perfect and thus fails to make some critical features of the
environment available to the agent. The second challenge is
to deal with these changes in such a way that scales well
with the environment’s complexity and with the duration of
task.

In this paper, we present our recent work with the Soar
agent architecture targeting the challenges listed above. Soar
provides a compelling reference platform since much of its
development effort has been aimed at supporting large scale
and potentially durative tasks. In particular, we are interested
in providing Soar with a mechanism to identify when hidden
state variables make the agent’s own internal state represen-
tation inappropriate for successful reinforcement learning.
For this task, we leverage existing work on k-Markov mod-
els and Utile Distinction Memory, and present an initial plat-
form based on these techniques.

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

56

Andrew Nuxoll
University of Portland
5000 N. Willamette Blvd.
Portland, OR 97203

The contributions of this paper are threefold: first, we
demonstrate a supplemental episodic memory system that
can help arbitrary Soar agents use reinforcement learning in
environments with hidden state; second, we show that our
approach scales well (regardless of the agent’s lifespan) be-
cause we are able to avoid full episodic recall; and third, we
provide an argument as to why Soar, and other agent archi-
tectures, may benefit from architecturally supported mecha-
nisms to track state novelty and familiarity.

The remainder of the paper proceeds as follows. First, we
provide an overview of the Soar architecture including two
of its salient learning mechanisms. Next, we present two
simple environments that illustrate the problems associated
with hidden state. At the same time we review recent work to
explore how existing Soar agents deal with hidden state. In
the third section, we introduce our lightweight episodic store
and learning mechanism. Finally, we evaluate the perfor-
mance of our implementation and then conclude with ideas
for future work.

Soar

Soar (Laird, Newell, and Rosenbloom 1987) is a cogni-
tive architecture and agent development platform with a
long history in both artificial intelligence research and in
cognitive psychology research. For many years, Soar has
aimed to facilitate developing agents for complex, real-
world environments (Jones et al. 1999; Wray et al. 2004;
Laird et al. 2012).

In Soar, a knowledge engineer (KE) defines an agent’s
knowledge as a set of production rules. The rules match
against sensory information obtained from the external en-
vironment and against internal data structures that the agent
may generate and maintain on its own. Collectively these
external and internal data structures are known as working
memory. Rules match working memory and fire in parallel
so that at any point in time, all relevant knowledge is brought
to bear.

Operators are actions that are proposed, selected and per-
formed by production rules. In contrast to rules, operators
can be selected only “one at a time” and typically represent
actions or more complex goals that can themselves be de-
composed into sub-goals and actions. Operators can gener-
ate persistent internal data structures to support the agent’s
reasoning, or can be used to execute primitives within an

external environment.
Soar agents perform tasks by executing a five phase deci-
sion cycle as follows:

Input Phase First, the agent’s sensors acquire information
from the external world and make this information avail-
able for reasoning.

Proposal Phase Second, the agent creates new truth-
maintained data structures based on its current internal
state and its perceptions about the world using elabora-
tion rules. At the same time, proposal rules determine a
set of operators that may be relevant for the current sit-
uation and preference rules provide knowledge about the
relative suitability of each proposed operator. The phase
continues with proposal and elaboration rules firing and
retracting until a quiescent state is reached in which no
more productions match.

Decision Phase Once quiescence has been reached, Soar
evaluates the preferences for each of the proposed oper-
ators and selects the best one to pursue. If the decision
phase cannot identify a suitable candidate, an impasse is
generated to trigger further deliberation.

Application Phase Once a single operator has been se-
lected, Soar uses knowledge in application rules to carry
out the operation.

Output Phase Soar informs the external environment of
any actions that the agent is attempting to initiate so that
the environment can respond for the next input phase.

For many years, Soar has employed a learning mechanism
called chunking that allows a Soar agent to operationalize its
knowledge and potentially consolidate the effects of many
operators into a single, newly learned, rule. Modern versions
of Soar (Laird 2008) also include reinforcement learning and
episodic memory. Both of these additions hold significant
potential for dealing with complex environments in which
the knowledge engineer may not have a full understanding
of the state space or state transitions.

Reinforcement Learning

In Soar, operator preferences are traditionally specified with
binary or unary symbolic relations such as “better than”,
“worse than”, “best” and “reject”. Modern versions of Soar
also allow a numeric preference to be used when symbolic
preferences are insufficient for Soar to select a single best
course of action.

In Soar, reinforcement learning acts to modify these nu-
meric operator preferences. Put another way, an operator
preference rule can be viewed as a mapping between a set
of states (as specified by the rule’s conditions) and an opera-
tor. Reinforcement learning modifies the numeric preference
a rule assigns to an operator so that it is a function of the
expected total discounted reward of pursuing the specified
action in the specified state. Since many rules may match a
given state, many numeric preferences may be assigned to
a given operator. Thus, the @-value for a specific state, op-
erator (action) pair, (s, a), is distributed across, and thus a
function of, all the rules that match the state s and provide a
numeric preference for the operator a.

57

Episodic Memory

Soar’s episodic memory keeps detailed information about
the history of states that an agent has visited during the
course of performing a task. Episodes can be viewed as a
stored record of the agent’s state along with any actions it is
attempting to perform. Episodes are then linked together in
memory so that a series of events can be replayed forward
or backward.

Retrieving an episodic memory begins when the agent
constructs a cue in working memory. The cue is then used to
perform a fast surface match against stored episodes. Here,
episodes are scored based on how many of the cue’s leaf
elements (fully specified by their path from the cue’s root)
are matched in the candidate episode. If a perfect surface
match is found, a structural graph match can be performed to
break ties. The structural match performs unification to en-
sure, for example, that identifiers shared by multiple leaves
in the cue are similarly shared by corresponding leaves in the
candidate episode. The retrieved episode is either the most
recent structural match or the highest scoring surface match.
Episode storage and retrieval is currently efficient enough to
support real-time behavior (with a typical matching time of
50ms) in an environment that produces 1M episodes over a
fourteen hour time period (Derbinsky and Laird 2009).

While episodic memory, is not, in itself a learning mech-
anism (it is a storage vehicle), it does lend itself to a vari-
ety of learning approaches. In the following section, we will
explore some recent work integrating Soar’s episodic mem-
ory and reinforcement learning. From this, we will highlight
limitations of the current episodic memory system and ex-
plore an initial method for rectifying them.

Soar and Hidden State

Well World

Well 1
resource: water
status: empty
exit: right

Shelter
resource: safety
status: available
exit: right, left

Well 1
resource: water
status: empty
exit: right

Figure 1: The Well World Environment

In prior work, Gorski and Laird examined how Soar could
learn to use its episodic memory to overcome problems asso-
ciated with hidden state in its task environment (Gorski and
Laird 2011). The environment explored in this work was en-
titled “Well World” and consists of three locations: two wells
and a shelter (Figure 1).

In Well World, the agent obtains rewards such that the
optimal behavior is to stay at the shelter location until suffi-
cient time has elapsed that it becomes thirsty. At this point
the agent should move to the well to drink water and then im-
mediately return to the shelter until it becomes thirsty again.

The environment is interesting for two reasons: first, the
agent cannot see the contents of any location it does not oc-

cupy, and more importantly, the wells are not always full
of water. Instead, at any given time, water is only available
at one of the wells. Once the agent drinks the water from
the well, it becomes empty and the other well becomes full.
Thus, the agent’s problem is to learn that it must use it’s
episodic memory to recall which well it drank from previ-
ously so that it can go to the well that currently contains
water.

In the Well World, Gorski and Laird demonstrate that the
existing capabilities of Soar’s reinforcement learning system
and episodic memory are sufficient for the agent to learn
this dynamic without help of background knowledge. The
agent can determine which well to move toward by recall-
ing a single episode (the last well visited) and then moving
to the other well. Alternatively, the agent may try to recall
how it dealt with thirst previously and base its solution on
this memory. In Well World, these strategies work because
the best course of action can be determined by knowing a
single historic state (which well contained water previously)
even though that state may be arbitrarily deep in the agent’s
history (since it may have waited a long time at the shelter
before getting thirsty).

The Flip Environment

Up: see 0 Up: see 0

Left: see 1

Right: see 1

Left: see 0 Right: see 0

Figure 2: The Flip Environment

The flip environment (Singh et al. 2003) consists of two
states A and B which are illustrated as the left and right cir-
cles in Figure 2 respectively. From any state, movements of
Up, Left and Right are possible although two of the three
actions will not result in a transition between A and B or
vice-versa. The agent has a sensor see which can take on the
values O or 1. see becomes 1 only when the agent transitions
between A and B or vice-versa. The agent’s goal is to pre-
dict the value that see will take. However, the fact that the
environment contains two states is hidden from the agent.

Note that because the state labels are hidden from the
agent, this environment is non-Markovian. Moreover, al-
though we could improve the situation by re-encoding the
state to contain information from the previous action, prob-
lems remain. Since the Up action is, in essence, a null oper-
ation, no fixed (and finite) length history will ensure that all
the information required to make a correct prediction about
the value of see is available.

Soar and Flip

The Flip environment differs in a subtle but critical way from
the Well World environment. In the Well World, a suitable
strategy for episodic retrieval begins by recalling an episode
that meets a known criteria: either “recall the last time I was

58

drinking water”, or “recall the last time I was thirsty”. And
then, in the case of the later recall, following the episodic
trail until the most recently used well is discovered (i.e., until
state that meets the criteria “last time I was drinking water”
is reached). Thus, determining the correct well to visit can be
done simply by recalling the last well from which the agent
drank.

In the Flip environment, however, making a correct pre-
diction is not quite as simple. Instead of being able to find a
single state upon which to base its behavior, an agent in the
Flip environment must base its behavior off multiple historic
states.

To make the relative complexities of the Well World and
Flip environments concrete, below we will discuss the be-
havior of three possible agents that use episodic memory to
inform their behavior.

Ep0 An EpO agent makes the simplest possible use of its
episodic memory. This agent searches episodic memory
for a successful course of action that begins in a situation
similar to the current state. It then applies this prescribed
behavior with the hope that it will lead to success in the
current situation.

In an environment that is Markovian with respect to the
agent’s sensors, this strategy is sufficient for success.
However, the practical limits of this strategy are serious
The EpO agent will not succeed in the Well World, since
wells alternate between full and empty based on where
the agent drank last. Similarly, the Ep0O agent will not suc-
ceed in the Flip environment because the agent’s sensors
do not tell it whether it is in state A or B.

Epl An Epl agent performs the same episodic recall as its
predecessor EpO. However, instead of simply performing
previously successful behavior in a new situation, the Ep1
agent conditions its current behavior on a single recall
from episodic memory. In effect, the agent conditions its
behavior on two states (the current state and a previous
state), but unlike a second order Markov model, the states
need not be adjacent in time.

In the Well World, this approach is sufficient for success.
The agent can condition its behavior on where it drank
last as we described previously. In this fashion, the agent
can learn to visit alternating wells. The Epl approach,
however, is not sufficient for the Flip environment since
predicting the value of see following a Left movement re-
quires information that can only be obtained by examin-
ing multiple historic states.!

Ep2 An Ep2 agent is capable of incorporating information
about interactions between previous episodes. A domain-
dependent implementation of an Ep2 agent may recall a
particular episode from memory and then walk to other
episodes that must be used to inform current behavior.
This is the approach that is taken in the Well Worlds for
the agent that informs its behavior by recalling the last

'i.e., the agent could retrieve the prior state s;|see = 1, but this
information would not be useful unless the agent also viewed s;_1
to determine which action had caused the observation.

time it was thirsty. In the Flip environment, a similar strat-
egy could be employed. In both cases, however, a strat-
egy would require a detailed understanding of the envi-
ronment’s dynamics in order to minimize the number of
necessary recalled states.

A domain-independent Ep2 agent can be obtained by
conditioning on a sequence of previous episodes. As-
sume that the agent’s history is a sequence of episodes:
€0, €1, €2, . . ., e; such that e; is the episode immediately
preceding the current state. Call the k-suffix of the history
the subsequence e;_j41,€;_k42,...,¢e;. If, for increas-
ing values of k, the agent iteratively searches its episodic
memory for a previous occurrence of the k-suffix, then
the longest match will be the agent’s best correspondance
between a historical situation and the agent’s current sit-
uation. In essence, the domain-independent Ep2 agent is
using the episodic store to create a k-Markov model repre-
sentation. Although no finite £ will allow perfect predic-
tions in the flip environment, Ep2’s k-length match will
grow over time as the agent gains more experiences. As
a result, the number of situations in which correct predic-
tions are possible increases at the obvious cost of increas-
ing match complexity.

Implementing a domain-independent Ep2 strategy in Soar
is impractical with the current episodic memory system.
Episodic recall can be performed once per decision cycle.
So, Soar would need to iteratively deepen recall of its im-
mediate past history to use as cues to find matches further
back in time. Thus, Soar would require at least 2k episodic
retrievals to match a k-suffix (k to retrieve the suffix itself,
and at least £ more to find the same sequence in the past).

Unfortunately, the true cost would be much worse for two
reasons: first, we would expect many more matches of a 1-
suffix than a 2-suffix; and second, we should expect match
cost to increase as more episodes are stored. Thus, the short-
comings of the Ep2 strategy are significant. In addition to a
high implementation complexity, the approach suffers from
growing cost of episodic retrieval as the agent’s episodic
memory grows.

A Modified Episodic Store

As illustrated above, Soar’s episodic memory system as cur-
rently implemented makes learning in the Flip environment
extremely difficult without domain dependent knowledge.
Our aim is to substantially improve Soar’s learning perfor-
mance within this environment (and similar environments)
while making a minimal set of changes to Soar’s architec-
tural commitments.

If we examine the behavior of the Ep2 agent from an
implementation-independent standpoint, the key require-
ment is efficient retrieval of a sequence of episodes matching
the agent’s recent history. In Soar’s current implementation,
this is difficult because the episodes must be recalled inde-
pendently — there is no way to match or recall based on a
sequential cue. An obvious approach to deal with this might
be to modify Soar’s episodic memory so that retrieval cues
can span multiple episodes. However, this approach will still

59

suffer from a growing retrieval cost as the size of episodic
memory increases.

If we leverage the fact that the Ep2 agent is conditioning
its current behavior on its k-state history, then a different
approach is possible. Specifically, we can avoid full, explicit,
retrieval of the historic state. In other words, it is enough
to know that the historical sequence we are interested in is
€j—k+1,€j—k+2, - - -, €. We do not need to look inside the
episodes themselves. Instead, we can simply generate a set
of symbols that serves as a unique identifier for the relevant
sequence. This distinction is subtle but critical as it will free
us from growing overhead as our episodic memory increases
in size.

The approach we have pursued is to implement exactly
this symbolic identifier using a hashcode generated from
the agent’s recent history. The hashcode allows the agent to
identify equivalent states (and histories) since these share
the same hashcode and thus allows us to avoid a full explicit
episodic recall. The benefit of this approach is that it’s ex-
tremely lightweight. The hash code can be generated as the
episode is being stored and the agent can thus keep a history
of all hashcodes encountered with relatively small overhead.

For the purposes we are interested in, however, we can
suffice with a set of hash codes for recent states (as opposed
to for the entire history). By itself, this is not a learning
mechanism. For that, we need to explore the implications
of different hash functions and approaches for identifying
when to employ our state-based hashing.

Hashing

The hash function defines an equivalence relationship over
states. Our current choice of hash function is motivated by
Soar’s cue matching. Specifically, we base our hash code
on the union of all grounded literals in the episode Thus,
episodes that have a perfect surface match, will also share
the same hashcode.

The upside to this approach is that it allows the system
to distinguish states at a very fine level of granulation. The
obvious downside, however, is that very little generalization
takes place; the agent can only detect an exact match be-
tween states.

An interesting side effect of the lightweight state hashing
scheme we have implemented, is that it gives agents a built
in mechanism for identifying familiar and novel situations.
The familiarity of a particular state can simply be measured
as the number of times a particular state has been encoun-
tered. While this may not seem to be of particular impor-
tance to readers most familiar with HMM or POMDP mod-
els where the state representation is monolithic, it is much
more interesting from the standpoint of Soar where there is
no single data structure representing the agent’s state, and
thus there is no obvious way to store information that indi-
cates whether a particular situation is either new or familiar.

Employing Hashing

Hashing provides a lightweight mechanism to distinguish
states and state sequences from one another. As such, it gives
us a critical stepping stone to help improve Soar’s learning
capabilities. On its own, however, hashing is insufficient. For

autonomous learning, we need a mechanism that will detect
when the programmer-supplied domain knowledge is insuf-
ficient to allow reinforcement learning to succeed. For this
task as well, we look for inspiration in the well-established
methods of prior work.

Utile Distinction Memory Utile Distinction Memory
(UDM) was introduced by McCallum (Mccallum 1993) to
identify situations in which an agent could improve its abil-
ity to predict future discounted reward by refining its notion
of state representation. UDM works by tracking the future
discounted rewards through a given state. Confidence inter-
vals for these rewards are associated with the actions that
lead to a particular state (i.e., incoming edges in a transi-
tion diagram) and one confidence interval is maintained for
each action that may be performed in the state (i.e., for each
outgoing edge in the transition diagram).

UDM performs a utile distinction test by examining the
confidence intervals for an outgoing action a¢“! in state s
maintained for each incoming action aj-”. If s satisfies the
Markov property, then the confidence intervals for the outgo-
ing action should be consistent across each incoming action.
In other words, knowing the incoming action (i.e., incom-
ing edge) should not impact the discounted future rewards
of the agent. If, on the other hand, the confidence intervals
are significantly different based on the incoming action, this
suggests that the agent would benefit from refining its notion
of s by incorporating knowledge about its incoming actions.
Thus, the original state s is cloned to create multiple states
that, in essence, differ based on their one step history.

Implementing UDM within Soar, however, is non-trivial.
While a Soar agent can clearly be viewed as moving through
a series of states by performing actions with operators, as
noted before there is no single data structure to represent
state in Soar. Instead, the notion of state arises from the set of
currently matching rules and thus is distributed as opposed
to being monolithic. This seemingly minor difference intro-
duces a significant hurdle for implementing UDM in Soar.

Reward Variance Tracking UDM is designed to work
with environments that have non-deterministic action transi-
tions and non-deterministic rewards. If we make the simpli-
fying assumption that the environment is deterministic both
with respect to rewards and action transitions, then we can
attribute any variance in rewards to an imperfect state repre-
sentation. We’ll call this approach Reward Variance Track-
ing (RVT).

From an implementation stand point, the critical differ-
ence between UDM and reward variance tracking is that the
additional data structures to track the future discounted re-
ward distribution are associated with a state and its incom-
ing actions in UDM, and a state and its outgoing actions for
RVT.

In Soar, a state and it’s outgoing action are directly en-
capsulated by the matching operator preference rules. This
means that reward distribution data structures can be main-
tained by each operator preference rule along with the ex-
pected current reward and expected discounted future re-
ward information that Soar’s RL system already maintains.
Using an incremental variance calculation (Knuth 1998) we

60

can add RVT to Soar’s RL system using changes to the rule
data structure that are constant in both time and space.

Implementation

As our baseline implementation, we began by adding Re-
ward Variance Tracking to Soar 9.3.2. Reward mean and
variance values are associated with every rule in Soar that
can be updated by reinforcement learning. Our episodic
hashing system, dubbed ZigguSoar, is implemented in Java
and listens to the interaction between a Soar agent and its
environment. Each time Soar issues a command to the ex-
ternal environment, ZigguSoar captures the agent’s current
state (by examining its input and output link) and generates
a hash-code.

Periodically, as the agent is pursuing its task, ZigguSoar
requests reward variance data from the agent. A rule that re-
ports significant variance can be considered a candidate for
specialization by augmenting its conditions with informa-
tion from the episodic hash.

Consider, for example, the following Soar rule which pro-
vides a numeric preference to the operator that would predict
the see variable will be 1 after a Left action.
sp { preferspredict-yesxleft

(state <s> "io.input-link.dir left
“operator <o> +)
(<o> "name predict-yes)
——>

(<s> 0.0)}

Because this rule is overly general, the rewards obtained
will be inconsistent. ZigguSoar will observe this variance
and add a corresponding femplate rule that is conditioned
on a one-step history. The template rule will create child
rules based on all observed groundings of the one-step his-
tory. The process of rule specialization will continue in a re-
cursive fashion with these child rules if needed. Currently,
we do not remove overly general rules from the agent’s
rule-base. The numeric preferences obtained via reinforce-
ment learning will correctly organize themselves once the
appropriate level of specialization is obtained regardless of
whether or not there are also overly general rules in the mix.

“operator <o> =

Experiments

Figure 3 illustrates the performance of the ZigguSoar agent
in the Flip environment during the first 10,000 steps aver-
aged over 20 runs and smoothed with a 100-step moving
average. The Baseline Soar agent shows the performance
of Soar using the same rules that are initially supplied to
ZigguSoar, but without the rule specialization provided by
our lightweight state hashing and episodic learning module.
Note that both agents are performing reinforcement learning
with the same learning parameters. However, for the base-
line agent, learning is ineffective because of the environ-
ment’s hidden state.

Figure 4 illustrates the performance of the same agents
(using the same data as before) but focuses on yes predic-
tions for Up and Left. Here we see that, indeed, Baseline
Soar is capable of learning, but learning is limited to the op-
eration with a deterministic result (Up) while ZigguSoar is
capable of learning predictions for both operations.

0.5 1 1 1 1
— BaseLine Soar
04 — ZigguSoar -
g
g
=03 . .
5 WA ,\N\\V/AJ/"\";,.II/IA'\"\
3]
5 0.2 B
=
-9
0.1 |
00 l l l
0 2000 4000 6000 8000 10000
Decisions
Figure 3: Overall Performance in Flip
1.0 T T T I
— - BaseLine Soar (Left)
0.8 I —— ZigguSoar (Left) 1
g BaseLine Soar (Up)
M 0.6 - - ZigguSoar (Up) |
=
g "\v"\An\h/‘rﬁ’l‘"v\"\\‘\lv"r’IIH\v,\
Q
5 0.4 1
=
=9
0.2 | -
LN N,
0.0 t . S ¥ e TN
0 2000 4000 6000 8000 10000
Decisions

Figure 4: Performance of Up and Left predictions

Finally, Figure 5 illustrates how the ZigguSoar agent’s
rule set grows over time. The upper line (Total Rules) shows
the total number of rules averaged over the course of 20 runs.
Templates indicates the number of variablized Soar template
rules that are added by ZigguSoar to assist with learning.
Since no finite history can capture all the information re-
quired to make all correct predictions in this environment,
the size of the rule set will continue to grow unbounded. In
Flip, new templates will be acquired progressively slowly as
the length of necessary history increases.

Conclusions and Future Work

We have demonstrated lightweight episodic recall using
hashing implemented as a standalone Java framework that
can be integrated with existing Soar environments and
agents. Our framework leverages previous methods for han-
dling hidden state and provides Soar agents with the capabil-
ity of responding to demands posed by such environments.
While we believe that this implementation does represent
a valuable improvement to Soar’s episodic memory system

61

300
250
200
150
100

—— Total Rules

Templates

Number of Rules

D
[l)

1
4000 6000
Decisions

0 2000 8000 10000

Figure 5: Rule Count Over Time

for some agents, we also recognize that the methods we have
employed are very early predecessors of the current state of
the art. Our next steps will be to explore how to incorporate
current methods for dealing with hidden state such as Proba-
bilistic State Representations (Singh et al. 2003) or Looping
Suffix Trees (Holmes and Isbell 2006) into the ZigguSoar
framework.

References

Derbinsky, N., and Laird, J. E. 2009. Efficiently implementing
episodic memory. In Proc. of the 8" Int. Conf. on Case-Based
Reasoning, 403-317.

Gorski, N. A., and Laird, J. E. 2011. Learning to use episodic
memory. Cognitive Science Research 12:144—153.

Holmes, M. P., and Isbell, Jr, C. L. 2006. Looping suffix tree-based
inference of partially observable hidden state. In Proc. of the 23"
Int. Conf. on Machine Learning, 409-416. ACM.

Jones, R. M.; Laird, J. E.; Nielsen, P. E.; Coulter, K. J.; Kenny, P.;
and Koss, F. V. 1999. Automated intelligent pilots for combat flight
simulation. Al Magazine 20(1):27-42.

Knuth, D. E. 1998. The Art of Computer Programming, Volume
2: Seminumerical Programming. Boston: Addison-Wesley, third
edition.

Laird, J. E.; Kinkade, K. R.; Mohan, S.; and Xu, J. Z. 2012. Cog-
nitive robotics using the soar cognitive architecture. In Proc. of
the 8" Int. Conf. on Cognitive Robotics. Toronto, Canada: AAAI
Press.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: An
architecture for general intelligence. A7 33(1):1-64.

Laird, J. E. 2008. Extending the soar cognitive architecture. In
Proc. of the 1°* Conf. on Artificial General Intelligence, 224-235.
Amsterdam, The Netherlands, The Netherlands: I0OS Press.

Mccallum, R. A. 1993. Overcoming incomplete perception with
utile distinction memory. In Proc. of the 10" Int. Conf. on Machine
Learning, 190-196. Morgan Kaufmann.

Singh, S.; Littman, M. L.; Jong, N. K.; Pardoe, D.; and Stone, P.
2003. Learning predictive state representations. In Proc. of the
20" Int. Conf. on Machine Learning.

Wray, R. E.; Laird, J. E.; Nuxoll, A.; Stokes, D.; and Kerfoot, A.
2004. Synthetic adversaries for urban combat training. In Proc. of

the 16" Conf. on Innovative applications of artifical intelligence,
TAAT 04, 923-930. AAAI Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

