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Introduction

Lifelong Machine Learning, or LML, is concerned with the
persistent and cumulative nature of learning (Thrun 1996).
LML considers situations in which a learner faces a series
of tasks and develops methods of retaining and using prior
knowledge to improve the effectiveness (more accurate hy-
potheses) and efficiency (shorter training times) of learning.

An LML system requires a method of using prior knowl-
edge to learn models for new tasks as efficiently and effec-
tively as possible, and a method of retaining task knowledge
after it has been learned. Knowledge retention is necessary
for a lifelong learning system, however, it is not sufficient. In
(Silver and Poirier 2004) we propose that domain knowledge
must be integrated for the purposes of efficient and effective
retention and for more efficient and effective transfer during
future learning. The process of integration we define as con-
solidation. The challenge for a lifelong learning system is
consolidating the knowledge of a new task while retaining
and possibly improving knowledge of prior tasks. An in-
teresting aspect of this research is overcoming the stability-
plasticity problem. The stability-plasticity problem refers to
the challenge of adding new information to a system without
the loss of prior information (Grossberg 1987).

This paper provides a summary of prior work by the au-
thor on the consolidation problem within various lifelong
machine learning systems.

Consolidation with MTL and Task Rehearsal

In (Silver and McCracken 2003) a theory of task knowl-
edge consolidation was proposed that uses a large multi-
ple task learning or MTL network as the domain knowl-
edge structure and fask rehearsal as a method of overcoming
the stability-plasticity problem. Our early work was heav-
ily influenced by the ideas from (McClelland, McNaughton,
and O’Reilly 1994). They suggest a method by which the
neocortex of the mammalian brain consolidates new knowl-
edge without loss of previous knowledge. Consolidation oc-
curs through a slow process of interleaved learning of a new
and old knowledge within a long-term memory structure of
sparse representation. MTL networks are a good choice
for consolidated domain knowledge. They have the abil-

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

46

ity to integrate knowledge from several tasks of a domain
and to share this knowledge within their internal represen-
tations, provided sufficient representation (hidden nodes) is
available. Task rehearsal overcomes the problem of catas-
trophic forgetting of previously learned tasks stored in a
MTL network by relearning synthesized examples of those
tasks while simultaneously learning a new task.

The results of experiments on a synthetic domain of seven
tasks indicated that the method is capable of sequentially
consolidating task knowledge within a domain knowledge
MTL network in an efficient and effective manner.

Four Requirements for Consolidation

In (Silver and Poirier 2004) we extended our theory of task
knowledge consolidation using MTL networks and task re-
hearsal. The research confirmed that, under the proper con-
ditions, task rehearsal is capable of sequentially consolidat-
ing task knowledge within an MTL network without loss of
prior task knowledge. In fact, the experiments indicated an
increase in the accuracy of hypotheses for prior tasks as re-
lated tasks are consolidated into the MTL network.

This work discovered that the proper conditions for con-
solidation are (1) a sufficiently large amount of training ex-
amples for both new and prior tasks, (2) an abundance of in-
ternal representation (number of hidden nodes), (3) a small
learning rate so as to ensure slow integration of the new
task into the existing representation and (4) a method of pre-
venting the network from over-fitting and therefore creating
high-magnitude weight representations. The first condition
is met by our LML system because training examples can
be synthesized through task rehearsal. The second and third
conditions are met with the only impact being an increase
in computational space and time for training the neural net-
work. The last condition can be satisfied by employing a
weight decay term or an early-stopping technique that uses
a validation set of data.

The Effect of Curriculum on Consolidation

In (Poirier and Silver 2005) we investigated the effect of cur-
riculum, ie. the order in which tasks are learned, on the
consolidation of task knowledge. We researched the use of
curriculum in education and developed a theory based on
two extremes in the organization of knowledge delivery and



acquisition. One extreme is the rapid feature capture cur-
riculum; this ordering of tasks forces the network to create
all the internal features as soon as possible. This provides
all subsequent tasks with the necessary prior knowledge for
developing accurate models. Unfortunately, it means that in
the early stages of consolidation there is no knowledge trans-
fer and the mean accuracy of the consolidated tasks may be
low. The other extreme is the gradual feature capture cur-
riculum; this task ordering spreads out the acquisition of the
various features over the greatest number of tasks. This cur-
riculum has the advantage that many new tasks can receive
beneficial knowledge from previously consolidated tasks. Its
disadvantage is the number of tasks that must be learned in
order to acquire all the internal features used in the domain.

We ran two experiments using a synthetic domain of tasks
for which we know the shared use of features. Our objec-
tives were (1) to examine the effect on consolidated task ac-
curacy under various short curricula where the order of tasks
varies by their sharing of internal features and (2) to examine
the effect on task accuracy when learning a larger set of tasks
under various curricula. The results showed that curriculum
matters and that task ordering affected the accuracy of con-
solidated knowledge, particularly for the first few tasks that
are learned. The results also suggest that as more tasks of a
domain are encountered and shared features are learned, the
mean accuracy of consolidated domain knowledge tends to
converge, regardless of the curriculum.

Continued Practice and Consolidation of Tasks

Our previous research concentrated on sequentially learning
each task fully before going on to the next. This approach
may be unrealistic, since a lifelong learner may not have ac-
cess to all the training data for a task at one time. More
typically, training data becomes available over the life of the
learner. In (O’Quinn, Silver, and Poirier 2005) we inves-
tigated the feasibility of learning a task through continued
practice with small, impoverished data sets as compared to
learning the task in a single session with a larger, richer data
set. We were interested in the conditions under which the
practice of one or more tasks leads to accurate long-term
consolidated hypotheses. We proposed that MTL with task
rehearsal provides a method of accomplishing this without
needing to explicitly store past training examples.

Experimental results showed that even in the presence of
unrelated tasks, positive knowledge transfer does occur from
past practice sessions to promote an overall improvement in
performance on the task. The experiments also revealed that
more training examples are required to develop accurate hy-
potheses through continued practice than would be required
if all the examples could be used at once.

Consolidation with csMTL Networks

In (Fowler and Silver 2011) we addressed the problem of
knowledge consolidation and the stability-plasticity prob-
lem, within a machine lifelong-learning system using a mod-
ified MTL neural network, called a context sensitive MTL,
or csMTL network. A ¢sMTL network is a feed-forward
network architecture of input, hidden and output nodes that
uses the back-propagation of error training algorithm. The
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csMTL network requires only one output node for learning
multiple concept tasks. The input layer can be divided into
two parts: a set of primary input variables for the tasks and
a set of inputs that provide the network with the context of
each training example. The context inputs can be used to
associate each training example with a particular task. This
research extends the work presented in (Silver, Poirier, and
Currie 2008), in which a ¢sMTL network is demonstrated
as an effective method of transfer learning. A csMTL-based
system can focus on learning shared representation, more
than an MTL-based system, because all weight values in the
csMTL network are shared between all tasks. The system is
meant to satisfy a number of LML requirements including
the effective consolidation of task knowledge into a long-
term network using task rehearsal, the accumulation of task
knowledge from practice sessions, and effective and efficient
inductive transfer during new learning.

The experiments demonstrated that consolidation of new
task knowledge within a ¢sMTL without loss of prior task
knowledge is possible but not consistent for all tasks of the
test domain. Our empirical findings indicated that repre-
sentational transfer of knowledge through the use of prior
weights, in addition to functional transfer through task re-
hearsal, improves retention of prior task knowledge, but
at the cost of less accurate models for newly consolidated
tasks. We conclude that the stability-plasticity problem is
not resolved by our current csMTL-based LML system.

Recent Work and Future Directions

Our most recent efforts have focused on ways to better the
results of (Fowler and Silver 2011) by improving the method
of task rehearsal of prior tasks. We have developed meth-
ods of retaining the probability distribution of examples over
the input space for each new task and have used this meta-
knowledge to generate more appropriate rehearsal examples.
We plan to continue our research into LML systems that use
MTL and task rehearsal for knowledge consolidation, how-
ever recent results with deep learning architectures suggests
that unsupervised learning methods that develop features of
the input space need to be incorporated into our approach.
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