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Abstract 

Future robotic systems are expected to transition from tools 
to teammates, characterized by increasingly autonomous, in-
telligent robots interacting with humans in a more natural-
istic manner, approaching a relationship more akin to hu-
man–human teamwork. Given the impact of trust observed 
in other systems, trust in the robot team member will likely 
be critical to effective and safe performance. Our thesis for 
this paper is that trust in a robot team member must be ap-
propriately calibrated rather than simply maximized.  We 
describe how the human team member’s understanding of 
the system contributes to trust in human-robot teaming, by 
evoking mental model theory. We discuss how mental mod-
els are related to physical and behavioral characteristics of 
the robot, on the one hand, and affective and behavioral out-
comes, such as trust and system use/disuse/misuse, on the 
other.  We expand upon our discussion by providing rec-
ommendations for best practices in human-robot team re-
search and design and other systems using artificial intelli-
gence.  

Background  
Robotic platforms are used in many civilian and military 
applications, for example, to conduct search and rescue op-
erations (Murphy 2004), deal with IEDs in southwest Asia 
(Sharkey 2008), and perform tasks in other environments 
hostile to human beings.  Despite the wide use of robotic 
platforms, however, the aforementioned tasks are currently 
accomplished with direct human oversight in which the ro-
bot is primarily a tool that is tele-operated, rather than a 
collaborating teammate. There is now a renewed emphasis 
in the military domain for autonomous systems that “ex-
tend and complement human capability in a number of 
ways” (Defense Science Board 2012). 
 Future robotic systems are expected to be able to process 
the complexity of our world and be active participants in 
human-system collaboration. In turn, soldiers will take on 
more of a supervisory role, as autonomous capabilities re-
duce the need for constant human supervision from a con-
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trol station. In turn, this will allow soldiers to participate as 
active members in decision making and task execution. 
Therefore, the transition from tools to teammates is charac-
terized by increasingly autonomous, intelligent robots in-
teracting with humans in a more naturalistic manner, ap-
proaching a relationship more akin to human–human 
teamwork. 
 With the transition in robotics from tools to intelligent 
teammates, questions about the factors that influence the 
quality of a human–robot team must be answered.  One of 
the most pressing questions is how human performance 
will be affected by the shift from operator to collaborator. 
As technology enables robots with greater intelligence and 
autonomy, human teammates will need to better under-
stand robots and anticipate robotic behaviors (Philips, 
Ososky, Grove, and Jentsch 2012). Further, human team-
mates will have to bring forward both trust and a healthy 
dose of skepticism when interacting with these systems.  
 The tendency of humans to attribute sophisticated hu-
man-like qualities to non-human entities, including atti-
tudes and motivations underlying judgments such as trust, 
comes easily (Nass and Moon 2000), and this tendency is 
easily influenced by seemingly superficial qualities of ro-
bots (Lee, Kiesler, Lau, and Chiu 2005). In fact, humans 
are increasingly willing to think of a robot as being “alive”, 
due in part to the ubiquity of lifelike machines and agents 
found in movies, video games, and toys (Garreau 2007). 
However, this phenomenon may have unintended, negative 
consequences in dangerous situations, such as military ap-
plications — a Soldier once ran across a battlefield in Iraq 
under machine gun fire to “rescue” his robot (Singer 2009, 
p. 339). 
 Although there may be similarities in the way users of 
robotic systems regard intelligent robots and human team-
mates, it would be inappropriate to apply human-teaming 
constructs, such as trust, to human-robot teams without 
recognizing the differences between these two types of 
teams. Similarly, we posit that there will be critical differ-
ences between future human-robot trust and what is al-
ready known about trust in automation, in general. There-
fore, while robot teammates will offer a unique form of 
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human-robot interaction, this interaction will be similar to 
both exclusively human teams and current automated sys-
tems. 
 It is for these reasons that an effective human-robot team 
will be better characterized by appropriate trust than by 
maximizing trust. Appropriate trust minimizes negative 
performance outcomes at either end of the spectrum. Trust 
develops through the cognition of the human in the context 
of the robot and environment. Put simply, the better under-
standing by the human team member leads to more appro-
priate trust of the robot team member.  

Mental Models: Building Blocks of Trust 
For a human to appropriately trust a robot, he/she must un-
derstand the robot’s capabilities and limitations in the con-
text of the current mission’s goals. Human understanding 
of robots as team members can be examined through the 
lens of mental models. Mental models are internal repre-
sentations used by humans to understand world around 
them (Craik 1943). Shared mental models (SMM), then, 
apply specifically to teamwork as “knowledge structures 
held by members of a team” (Cannon-Bowers, Salas, and 
Converse 1993, p. 223), including understanding of rele-
vant equipment, the task, of team members, and the inter-
action among team members.  
 Mental models are used to mentally examine various 
system state outcomes based on potential action selection, 
which Rasmussen (1979) described as “experiments on an 
internal representation or model.” (p. 8) A purpose of an 
accurate mental model, then, is to allow users to make cor-
rect predictions about future system states (Wickens & 
Hollands 1999). Some common themes emerge from exist-
ing definitions: mental models are internalized representa-
tions of systems; they can also be run internally to generate 
system-state expectations. Further, humans maintain and 
select from multiple mental models held for different sys-
tems and situations. 
 Cannon-Bowers and colleagues (1993) identified four 
knowledge content models within SMM that need to be 
held by teams in order to be effective: The equipment 
model contains knowledge about the operation, functions, 
and limitations of tools and technologies. The task model 
consists of procedures, strategies, contingencies for com-
pleting the work. The team interaction model identifies 
team members’ roles, communication patterns, and de-
pendencies. Finally, the team model contains knowledge 
about other teammates’ knowledge, skills, and abilities. 
SMMs help team members to predict and adapt to chang-
ing demands made on the team, as well as coordinate their 
actions to cope with said demands, especially in circum-
stances in which the team cannot overtly communicate 
with one another (Mathieu, Heffner, Goodwin, Salas, and 
Cannon-Bowers 2000).  

 The content models and overall framework were origi-
nally defined in the context of expert human teams. This 
framework can be adapted to human–robot teams, given a 
few important distinctions. Specifically, an intelligent, au-
tonomous robot is unique in that it is both “equipment” and 
“team member”. Therefore, a human’s mental model of a 
robot teammate (as part of a SMM) includes knowledge 
about a robot’s capabilities, limitations, and “personality”. 
It follows that mental models are internally leveraged to 
guide human–robot interaction (Lohse 2011), including 
trust in robotic systems. 
 Similarly, prior research has suggested that other hu-
man—non-human teams involve interactions in which hu-
mans leverage mental models of both equipment and team 
member to accomplish work (e.g., human-animal teams). 
These teams can provide insight into fostering appropriate 
trust in future robotic teammates. For instance, because 
humans have more experience interacting with animals 
than with robots, they are generally able to recognize and 
accept an animal’s capabilities. More specifically, animal 
partners may be skilled at performing some tasks and lim-
ited in others (Phillips, Ososky, Swigert and Jentsch 2012). 
This type of understanding often comes through experience 
and interaction with non-human teammates like animals. 
Additional research by Ososky, Phillips, Swigert and 
Jentsch (2012) provided support for this notion; they found 
that people tended to report more trust in a robotic team-
mate after observing it in a series of videos than a robot 
teammate they imagined. This lends further support for the 
role of experience and familiarization with robotic team-
mates in fostering human-robot trust. As with animals, op-
portunities for acclimation and exposure may be critical 
components for building trust within humans working as 
part of a human-robot teams. 

Influence of Robot Characteristics on Mental 
Models 
Mental models of robots are quickly formed around super-
ficial characteristics, including physical form. Kiesler and 
Goetz (2002) found that participant ratings of a robot’s re-
liability changed based on physical appearance. Partici-
pants were also willing to assign significantly different 
personality trait ratings (e.g., cheerful, responsible) to a 
humanoid robot versus a vehicle-shaped robot. Sims and 
colleagues (2005) found similar results in ratings of robotic 
forms viewed on a computer screen: Robots with spider-
legs were rated as more aggressive than robots with two 
legs, wheels or treads. Additionally, vehicles with arms 
were rated as more aggressive and intelligent than those 
without. The researchers hypothesized that certain features 
served as affordances to bio- and anthropo-morphism in 
human perceptions of robots. Humans anthropomorphize 
in order to rationalize the actions or behaviors of non-
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human objects, including computers, animals, and robots 
(Duffy 2003). 
 Superficial influences on mental models are not limited 
to physical traits either. Lee and colleagues (2005) found a 
predictable pattern of robot knowledge estimation based on 
the spoken-language and country of manufacture of the ro-
bot. If the robot spoke Chinese, for example, participants 
estimated higher robot-knowledge of Chinese landmarks 
and locations than an English-speaking robot. Even within 
human–human relationships, mental models of individuals 
are formed based on relevant and pseudo-relevant infor-
mation; while confidence in those models is determined by 
richness, independent of information accuracy (Gill, 
Swann, and Silvera 1998). Because a humanoid robot was 
used in the study, participants estimated the robot’s 
knowledge using mental models based on human interac-
tion metaphors, not machine knowledge. 
 Further, because of the propensity to anthropomorphize, 
humans attribute animacy and intention even in the sim-
plest interactions. Already in 1944, Heider and Simmel 
asked participants to write about what they saw in an ani-
mated film in which two triangles and a circle moved about 
a rectangular box on a black and white display. Nearly all 
of the participants wrote a narrative of connected events 
about animated beings. These shape-entities were per-
ceived as having intentions, and reacting to one another. 
Similarly, Ju and Takayama (2009) conducted a study in 
which people observed the motion of an automatic door. 
The findings suggested that the variations in the door’s 
motion behavior were interpreted as gesture with intent: re-
luctant, welcoming, or urging. Finally, Saerbeck and Bart-
neck (2010) asked participants to observe the motion of an 
iRobot Roomba at different accelerations and path curva-
tures. The researchers reported that all but one participant 
used emotional adjectives to describe the robot’s behavior, 
with nearly all of the participants attributing personality to 
the Roomba. In summary, “what matters for the human–
robot relation is how the robot appears to human con-
sciousness” (Coeckelbergh 2011, p. 199). 
 As technology enables robots with greater intelligence 
and autonomy, human teammates must possess a clear and 
accurate understanding of robots (Phillips, Ososky, Grove, 
and Jentsch 2011). The quality of a futuristic robot team-
mate will be of little benefit if humans misunderstand its 
purpose or misinterpret what it is doing. The problem is 
that the misinterpretation of robotic characteristics or be-
havior results in the incorrect assessment of robotic capa-
bilities and functions, misaligned trust and reliance, and in-
appropriate social responses toward robots in complex and 
/ or dangerous situations. 
 
Proposition 1. Robot characteristics may impact on human 
perception, affecting both human-robot interaction and per-
formance.  

Proposition 1.1. Humans are easily influenced by super-
ficial characteristics of robots, both physical and social. 
Proposition 1.2. Humans tend to anthropomorphize 
technology, relating robots to perceived organic analogs.  

Influence of Robot Characteristics on Trust 
A recent meta-analysis (Hancock et al. 2011) suggested 
that robot characteristics have the strongest influence on 
trust within human-robot teams, followed by environmen-
tal characteristics. Robot related characteristics include 
performance-based factors such as behaviors, reliability, 
and transparency, in addition to attribute-based factors 
such as personality, type, and anthropomorphic qualities. 
Environmental characteristics include teaming factors and 
task demands. Likewise, the analysis also supported the 
notion that trust, in general, is a relevant aspect of human–
robot teaming (Oleson, Hancock, Billings, and Schesser 
2011). Trust in robots, like other aspects of mental models, 
is continuously refined through interaction. 

 Appropriate Trust in Robotic Systems 
Trust alone in a robot’s reliability does not guarantee better 
teamwork. An inaccurate or incomplete mental model may 
lead to an overestimation of a robot’s abilities, creating a 
pitfall for automation misuse. Automation misuse describes 
failures resulting from a mis-calibrated, overreliance on au-
tomation capability (Parasuraman and Riley 1997). On the 
other hand, a human may choose not to work with an au-
tonomous robot teammate at all or in a minimal capacity. 
The “underutilization of automation” (Parasuraman and Ri-
ley 1997, p. 233) is known as automation disuse. Given a 
task of sufficient personal risk, a human may decide not to 
leverage the abilities of a robot teammate at all if trust in 
that asset is low or diminished. However, given a task of 
sufficient complexity (e.g., IED defeat or urban patrol op-
erations), some use of the robot may be imperative to 
reaching higher performance outcomes. Therefore, in hu-
man-robot teaming, appropriate trust is maintained when 
the human uses the robot for tasks or subtasks the robot 
performs better or safer while reserving those aspects of 
the task the robot performs poorly to the human operator. 
Humans must have a sufficiently developed mental model 
of the robot in order to appropriately trust the robot. 
 
Proposition 2. Mental models provide a foundation for 
appropriate trust in robotic systems.  

Proposition 2.1. Incomplete or inaccurate mental mod-
els crate pitfalls for robotic system misuse or disuse.  
Proposition 2.2. Sufficiently developed and accurate 
mental models allow team members to appropriately use 
and not use robotic systems.  
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Trust in Robot Teammates versus Human Team-
mates 
What, then, distinguishes robot reliability from human reli-
ability? Sheridan succinctly highlighted the differences in 
human and machine (automation) reliability, respectively. 
He stated that, “humans differ enormously from machines, 
in that they are inherently variable and unreliable in their 
detailed behavior, while simultaneously being hyper-
adaptable and metastable in their overall behavior because 
they perceive and correct their own errors” (Sheridan 2002, 
p. 166). Robots embodied in, and reacting to, a dynamic 
world, are more than simple machines. To this point, Sher-
idan noted that complex systems interacting with the world 
introduce an almost infinite number of failure points for 
which planning is practically impossible.  
 There are numerous ways in which current, task-oriented 
robots fail outside of the control of laboratory settings. 
Carlson and Murphy (2005) included a wide range of oc-
currences in their review of UGV reliability that can be 
classified as failures. Failure was defined as “the inability 
of the robot or the equipment used with the robot to func-
tion normally” (p. 424). Failures included: robot is stuck, 
sensor malfunction, communication breakdown, loss of 
power, controller issues, etc. The researchers also identi-
fied the outcomes of failures: either field-repairable or not, 
terminal or not. Not surprisingly, the combination of fail-
ure types, task environments, and actual UGV robots sur-
veyed (Talon, Packbot, etc.) created a range of failure 
modes whose consequences varied wildly. The conclusion 
of the investigation was that current UGV robot reliability 
equated to between 6 and 20 hours between failures (i.e. 
low reliability), which did not include the time required to 
diagnose and correct the failure (hours, even days).  
 Do the reliability issues of current robots render them 
useless to humans? No, robots do not need to be perfectly 
reliable. Instead, they need to behave in understandable 
and/or predictable ways. Lee and associates (2010) investi-
gated ratings of robot service performance given physical 
forms, robot reliability and error mitigation strategies. 
They found that errors on task negatively impact ratings of 
a robot’s service performance. This negative impact was 
observed when interacting with both human-like and ma-
chine-like robots; however the negative impact was miti-
gated with forewarning of the robot’s limitations. Wieg-
mann, Rich and Zhang (2001) investigated the effects of 
human interaction with a diagnostic aid that shifted relia-
bility during trials. When the reliability of the aid shifted 
from 100% to 80%, human subjective ratings of the diag-
nostic aid’s reliability were lower than that of participants 
interacting with an 80% reliable aid all along. While the 
researchers concluded that trust is easily lost and hard to 
regain, the argument can also be made that the participants 

had no knowledge of the nature or cause of the change in 
reliability.  
 Consider that the calibration of appropriate trust is more 
a function of a human’s mental model of the robot’s ability 
and limitations, than the ground-truth reliability of the ro-
bot itself. With the appropriate mental model, human 
teammates should be able to adapt to the limitations of the 
robot and adjust the utilization of the robot accordingly. 
Without this knowledge, however, it would prove difficult 
to coordinate within a task-environment given an unpre-
dictable robot teammate. 
 
Proposition 3. Human subjective assessment of trust in 
robots ultimately determines the use of robotic systems. 

Proposition 3.1. Robots need not be perfectly reliable, 
rather, they must perform in predictable and understand-
able ways. 
Proposition 3.2. Limitations of robot ability or reliabil-
ity may be mitigated by forewarning human teammates 
of such limitations to calibrate trust appropriately. 

Trust in Robot Teammates versus Trust in Auto-
mation 
Examining trust in a robot teammate requires a slightly dif-
ferent approach from traditional trust in automation ap-
proaches. Previous trust in automation studies found that 
humans tend to use automation when their trust in the sys-
tem exceeds their own self-confidence in performing a task 
(Lee and Moray 1994). However, the nature of the current 
context, the risk associated with task itself might be the de-
termining factor in the decision to deploy a robot-
teammate. Consider, for example, the real-world context of 
Soldier–robot teams tasked with either IED-defeat or patrol 
operations. A Soldier might always elect to allow a robot 
to attempt bomb disposal (see Greenemeier 2010), regard-
less of the Soldier’s self-confidence in his or her ability to 
disarm a bomb. Alternatively, patrolling civilian environ-
ments, characterized by competing goals and uncertain 
conditions, may require more calculated approach (i.e., the 
Soldier might take the lead on the patrol task). Within mili-
tary applications, team interdependency required by the 
task combined with the consequence of failure can dictate 
trust and reliance on robot-teammates. A critical differ-
ence, then, between traditional system automation and in-
telligent robots is that the robot is intended to be a collabo-
rating teammate (see Hoeft, Kochan and Jentsch 2006), not 
merely an automated tool that assumes the place or duties 
of the human. This requires that the human must have a 
sufficient understanding of how the robot can contribute to 
mission goals and integrate this information with other 
mission factors such as task interdependency, time pres-
sure, and safety. 
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Proposition 4. Under conditions of task complexity and 
uncertainty, human team members require an awareness of 
their own performance or risk to rely upon robots appro-
priately.  

Proposition 4.1. In human-robot team tasks, there may 
be sub-tasks for which robot performance is poor, but 
human performance is worse.   
Proposition 4.2. Assessment of human and robot per-
formance given situation factors, is necessary to allocate 
tasks to the best team member. 

Two Types of Trust in Robots 
It is also important to recognize and clarify two different 
types of trust as they relate to human–robot teaming. Lee 
and See defined trust as “the attitude that an agent will help 
achieve an individual’s goals in a situation characterized 
by uncertainty and vulnerability” (2004, p. 51). The impact 
of trust in the human-robot team depends on how trust af-
fects behavior. Hancock, Billings and Schaefer (2011) 
suggest two types of trust. There exists a notion of trust in 
intention, indicating that the human trusts that the robot is 
not deceptive in its directives or actions and will operate in 
a manner intended to benefit the goals of the team (Han-
cock, Billings and Schaefer 2011). Alternatively, there ex-
ists the quality of trust in competency or ability (Lee and 
See 2004). This type of trust aligns with the belief that the 
robot has the hardware or software necessary to complete a 
task and will reliably work toward completing team goals. 
Lee and Moray (1992) similarly defined this dimension as 
trust in  performance.   

In general, it is possible to have one type of trust (inten-
tion or ability) without the other, as well as both or neither. 
We typically think of trust in automated systems as a trust 
in ability or reliability. Conversely, knowledge of another 
person’s tendencies or intentions is a relevant factor in ex-
clusively human teams (Cannon-Bowers, Salas, and Con-
verse 1993). However, both types of trust may be im-
portant to the human–robot relationship, given the human 
propensity to anthropomorphize technology. Robots may 
act with intentions to complete a task in a certain manner 
as designed by programmers or engineers. However, it is 
important not to overlook the human perception of robot 
intent, whether real or imagined, that also factors into hu-
man subjective assessment of trust in robot teammates. 
 
Proposition 5. When evaluating trust in robotic systems, 
distinguish between trust in competency and trust in inten-
tion.  

Proposition 5.1. Trust in competency is more important 
in automated systems. Trust intention is more important 
in human teammates. 
Propostiion 5.2. Future robot teammates may embody 
elements of both types of trust. 

Conclusions 
As a collaborator, the human will have a greater responsi-
bility for understanding the mission context and the robot’s 
role within the mission. As we have described, this under-
standing can be understood as a series of mental models. 
Given the impact of trust observed in other systems, trust 
in the robot team member will likely be critical to prevent 
misuse or disuse, each of which can have critical conse-
quences. 
 The factors that contribute most to trust in the system are 
characteristics of the robot itself. Even seemly surface 
qualities of the robot can have a large impact on the result-
ing mental model of the human. At the same time, models 
are dynamic and can be molded through continued interac-
tion. The synthesis of trust and automation literature that 
we have provided here suggests that designers and re-
searchers should not make maximizing trust their goal. Ra-
ther, trust must be appropriately calibrated to the capabili-
ties of the robot and the task context. This can best occur 
when the human has a sufficiently complete and accurate 
mental model of the robot. We suggest that how robot fac-
tors can impact this mental model, and ultimately trust, 
should be the topic of future investigation. In the interim, 
we have provided research-based considerations for future 
robot systems based on the current state of the art and our 
initial results. 
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