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Abstract

In many real-life design problems, there is a require-
ment to simultaneously balance multiple tasks or objec-
tives in the system that are conflicting in nature, where
minimizing one objective causes another to increase in
value, thereby resulting in trade-offs between the ob-
jectives. For example, in embedded multi-core mobile
devices and very large scale data centers, there is a con-
tinuous problem of simultaneously balancing interfer-
ing goals of maximal power savings and minimal per-
formance delay with varying trade-off values for differ-
ent application workloads executing on them. Typically,
the optimal trade-offs for the executing workloads, lie
on a difficult to determine optimal Pareto front. The na-
ture of the problem requires learning over the lifetime
of the mobile device or server with continuous evalua-
tion and prediction of the trade-off settings on the sys-
tem that balances the interfering objectives optimally.
Towards this, we propose an on-line learning method,
where the weights of experts for addressing the objec-
tives are updated based on a convex combination of their
relative performance in addressing all objectives simul-
taneously. An additional importance vector that assigns
relative importance to each objective at every round is
used, and is sampled from a convex cone pointed at
the origin Our preliminary results show that the convex
combination of the importance vector and the gradient
of the potential functions of the learner’s regret with re-
spect to each objective ensure that in the next round, the
drift (instantaneous regret vector), is the Pareto descent
direction that enables better convergence to the optimal
Pareto front.

Introduction
Power is an expensive resource in embedded devices like
mobile phones, that exhibit increased computational capac-
ity. There are rising user demands for being able to exe-
cute high performing applications on those devices without
decreasing the battery lifetime of the device. This presents
a challenging multiple objective trade-off problem that of
maximum power or battery life savings with minimum per-
formance or application runtime delay (Dhiman and Rosing
2009). With increasing number of cores and hyper-threading
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capability in such devices, more battery usage and appli-
cation performance settings are available (Esmaeilzadeh et
al. 2012; 2011). With such a wide range of settings, that
the system can be configured to, makes it difficult to de-
termine the optimal power-performance trade-off configu-
ration that would enable the optimum balance between the
objectives. Hyper-threading on cores also complicates the
power-performance challenges by means of making it ex-
tremely difficult to analyze the power-performance situa-
tion due to the parallel execution of applications with shared
locks (Cochran et al. 2011; Meisner et al. 2011). Further, this
problem is also exhibited in large scale data centers with in-
creased computational demands. These data centers are pro-
vided a power constraint which allows for operation of a
certain number of server units. If the power constraint is ex-
ceeded, the circuit breaks and causes interruption (Cochran
et al. 2011). Typically, the best power-runtime trade-off set-
ting also depends on the workload (a workload indicates the
applications executing together on the device or server at any
point in time) and this setting may vary during execution of
the workload (Cochran et al. 2011). Since the objectives are
conflicting in nature, improving one objective is only pos-
sible by compromising the other objective: Pareto nature.
This implies that the Pareto frontier or the optimal Pareto
front contains the optimal runtime values as a function of the
power usage values. What is interesting is that every work-
load has its own Pareto front of optimal power-performance
trade-off values when it executes on the system.

Here, we consider the problem of learning and predict-
ing the optimal Pareto front of trade-off values for a se-
quence of workloads executing on the device or server. We
believe that once the optimal Pareto front is identified for a
sequence of workloads, this automatically finds the optimal
Pareto front for each workload. Since these values depend
on the workloads that vary at runtime and that the environ-
ment is primarily non-deterministic, the learning happens in
an on-line fashion. Also, as the the exhaustive set of power-
performance settings, that the system can be possibly con-
figured to are pre-determined, it makes sense to investigate
the on-line learning with experts framework (Cesa-Bianchi
and Lugosi 2006) in this context, where the learner has no
control on the individual expert’s prediction.
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Related Work
Multiple objective optimization is a well known field. Here,
more than one objectives are optimized while satisfying
multiple constraints (Fliege and Svaiter 2000). Methods
generally used to solve these problems include normal-
boundary intersection method, normal constraint method,
multiple runs of single-objective optimization for sam-
pling the trade-off surfaces, or use of additional con-
straints (Singhee 2011). Usually, the additional constraints
these methods use, make the optimization problem more
time consuming, difficult to solve (Singhee 2011) and hence
computationally expensive. This makes such methods un-
suitable for the application areas of low-powered embed-
ded devices and power restricted data centers. Evolution-
ary algorithms have been used to deal with multi-criteria
optimization problems where the fitness function evaluates
non-domination by other solutions. Typically, these meth-
ods use stochastic optimization to approximate the Pareto
set or the Pareto front (Bokrantz and Forsgren 2011; Hu,
Huang, and Wang 2003; Zitzler, Laumanns, and Bleuler
2004). However, these algorithms have very high computa-
tional costs due to lack of strong search directions and main-
tains many candidate solutions for the purpose convergence.
In our problem on embedded mobile devices, we cannot
use these approaches again due to the high computational
costs associated with them. Adaptive light-weight machine
learning methods are good candidates for such problems.
On related work in the on-line machine learning commu-
nity, the tracking of the best expert problem (Herbster and
Warmuth 1998) deals with cases where the underlying true
distribution changes with each subsequence or partition of
data seen sequentially, for a limited number of times. Our
work is different from their’s in that we track the Pareto
optimal set of experts; experts that lie on the Pareto front
for a sequence of workloads seen; their best expert is or
the set of experts tracked over the whole sequence are not
necessarily Pareto optimal. Further, we do not know in ad-
vance how many switches are necessary to converge to the
best expert for every partition seen. The recent work on
on-line multi task learning (Lugosi, Papaspiliopoulos, and
Stoltz 2009) does not address conflicting objectives that the
learner needs to address, rather focuses on a tuple of actions
that the decision maker selects. The other related work on
the subset of experts in changing environments by Hazan
et. al (Hazan and Seshadhri 2009)- PAC subset selection of
bandits (Kalyanakrishnan et al. 2012) and learning experts
by Eban et. al (Eban et al. 2012) are different from ours in
that they work under different settings and assumptions of
the environment.

Contributions
Our main contribution is in the formulation of the tasks
of learning multiple objectives and predicting Pareto op-
timal trade-offs as an on-line learning with experts prob-
lem. Consequently, we show how the multiplicative weight
update step of the learning algorithm can be significantly
improved by exploiting Pareto descent directions that is
obtained through a convex combination of the potential

function of the regret of the learner with respect to each
objective. We devise an importance vector α that is ob-
tained by sampling from a convex cone pointed at the ori-
gin of the vector space by exploiting the simultaneous lin-
ear inequality of the Blackwell condition (Blackwell 1956;
1954). The convex combination of α and the potential func-
tion of the regret of the learner with respect to each objec-
tive, enables the learner to converge to the optimal Pareto
front while minimizing its regret with respect to each objec-
tive.

Preliminaries
From the knowledge of multi-criteria optimization prob-
lems (Fliege and Svaiter 2000; Harada and Kobayashi 2006;
Singhee 2011); when a point is far from the local optima,
search directions can be found that simultaneously opti-
mize the multiple objectives. However, as the point gets
closer to the local optima, the search direction cannot op-
timize both objectives together; the solutions thus obtained
are Pareto optimal (Brown and Smith 2003) and they are
said to lie on the Pareto front. The Pareto optimal ob-
jective vector dominates all other objective vectors in the
feasible space of solutions (Hu, Huang, and Wang 2003;
Zitzler, Laumanns, and Bleuler 2004).
Definition 1. Dominance: An objective vector yi is said to
dominate another objective vector yj , (yi � yj), if no com-
ponent of yi is worse than the corresponding component in
yj and at least one component is better.
Definition 2. Non-Dominated and Pareto Optimal Sets: In
the set of feasible solutions Y , if the set of solutions Y ′ is
said to dominate every other solution in Y , then the set Y ′
is the non-dominated set or the Pareto-optimal set.

We re-iterate the definition of descent directions and
Pareto descent directions from (Harada and Kobayashi
2006) as follows:
Definition 3. Descent Directions: A descent direction is a
direction that falls in the same half-space as the negative
gradient of the function to minimize.
Definition 4. Pareto Descent Direction: The descent direc-
tions in which no other descent directions are superior in
improving all objectives together are known as Pareto De-
scent directions. No Pareto descent direction is better than
another Pareto descent direction and all Pareto descent di-
rections are better than all descent directions.

Problem Formulation
Let T denote finite number of rounds and L denote finite
number of experts designated as ξ1, ξ2, . . . , ξL. The short-
hand “expert i” is used to refer to expert ξi. Let the number
of objectives that the learner has to address in the system be
denoted by M . At every round t, the learner is given an in-
put and is asked to predict the appropriate trade-offs for each
of the M objectives using the experts predictions that the
learner has access to. The prediction of the learner as well
the true outcome at round t are both objective vectors of the
type ŷt = (y1, y2, . . . , yM ) ∈ M,M ∈ RM . The unknown
sequence y1, y2, . . . , yT of elements form the true outcome
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space Y . The learner’s predictions p̂1, p̂2, . . . , p̂T belong to
decision spaceD, which is assumed to be a convex subset of
a vector space. The experts predictions at round t are given
by the set {fi,t : i ∈ ξ} where, fi,t ∈ D. We assume that
the experts’ predictions belong to a feasible, objective space
of vectors that lie on an exhaustive spread of convex Pareto
curves. The learner has no knowledge of these underlying
Pareto curves where the predictions of the experts(objective
vectors) lie and its goal is to converge to the best possible
sequence of experts that lie on the Pareto optimal front or
true Pareto front. The learner assigns weights or beliefs in
the experts given by the vector wmi,t = (w1, . . . , wM ) ∈ RM
for the expert i; each component of the weight vector is the
belief the learner has in the expert towards addressing each
objective m. The notation of superscript “m” in any symbol
is used to indicate which objective is being addressed by the
relevant operator. Conversely, the subscript “m” indicates
that the operator is involved in the summation over all ob-
jectives. The loss function used to measure the learner’s loss
is a convex loss function l. The performance of the learner
after T rounds is measured by the notion of regret given by:

RmT =
T∑
t=1

(lm(p̂t, yt)− lm(fi,t, yt)) (1)

l is used to denote loss in any particular round and the cu-
mulative loss is denoted by L̂T

m
=

∑T
t=1 lm(p̂t, yt), where

L̂t is the learner’s cumulative loss in round t and Li,t is the
expert i’s cumulative loss in round t. The learning rate is
denoted by η. All throughout, vector inequalities are to be
understood component-wise. We deal with two objectives in
our case as described in the learning algorithm below.

Learning Algorithm
The goal of the learner in this setup is to be able to pre-
dict trade-off values for the multiple objectives in the system
such that the predictions are optimal. In our example prob-
lem discussed in previous sections, by optimal solutions, it
is meant that the learner should be able to provide power-
performance trade-off solutions such that no alternative so-
lution achieves lower power and shorter runtime than this.
The role of the learner then is to make predictions that lie on
the Pareto front of solutions. The learner has no idea about
the optimum Pareto front and has access only to the predic-
tions of the experts, and the confidence or belief, the learner
has in each of the experts. We have seen in the formulation
of the problem, the performance of the learner in the on-line
learning set-up is evaluated by the notion of regret which is
the difference in cumulative loss of the learner and that of the
best expert in hindsight as in (1), which should sub-linearly
reach zero as shown in (2) (Cesa-Bianchi and Lugosi 2006),
also known as Hannan Consistency.

1

T
(L̂T

m
− min
i,...,L

Lmi,T )
T→∞→ 0 (2)

For keeping the learner’s regret as low as possible, the in-
stantaneous regret vector is used which is given by rmt =
(rm1,t, . . . , r

m
L,t) ∈ RL,m ∈ RM , M is the number of

objectives. The instantaneous regret vector is the vector
of regret values of each individual expert in that round,
which shows how each expert performs with respect to the
best expert in hindsight. The corresponding regret vector
of the learner is then given by RmT =

∑T
t=1 rmt . Addi-

tionally, a monotonically increasing convex potential func-
tion is used as a function of the learner’s regret φm(R)

given by φ : RL → R,Φ(um) =
∑L
i=1 φ(umi ), where u =

(u1, . . . , uL) ∈ RL (Cesa-Bianchi and Lugosi 2003) to
measure the distance from origin of the learner’s regret in
a generalized way. With the help of the potential function it
is obvious that the learner regret Rt at round t, will be kept
close to the minimum of φ by the Blackwell condition.

sup
yt∈Y

rmt .5 Φ(Rmt−1) ≤ 0 (3)

where u.v stands for the inner product of two vectors de-
fined by u.v = u1v1 + · · · + uNvN . In other words (3) im-
plies that at round t, by keeping the regret vector to point
away from the gradient of the potential function, the point
Rt can be kept close to the minimum of Φ. The potential
function is used to keep the drift or instantaneous regret vec-
tor in the same half-space as the negative gradient of the po-
tential of learner’s regret. Since the learner has no control on
the predictions of the experts; it can only control the belief
it has in each of the experts in every round and the strat-
egy it uses for making its prediction. This suggests that the
way to achieve (3), the belief or weights the learner assigns
to each expert is crucial in keeping the regret of the learner
low. Intuitively, in every round t, the weight of each of the
expert up to previous round: wmi,t−1 is related to the regret of
the expert Rmi,t−1 as wmi,t−1 = φ′(Rmi,t−1) for the ith expert.
A larger weight wi,t−1 is assigned to expert i, if Rmi,t−1 is
large and vice versa (Cesa-Bianchi and Lugosi 2006). The
multiplicative weight update at every round t allows the se-
lection of an instantaneous regret vector rmt for prediction
that will keep its regret of the learner low in the next round,
the prediction given by:

p̂t
m =

∑L
i=15Φ(Rmt−1)

i
fi,t∑L

j=15Φ(Rmt−1)j
(4)

Independent Weight Update (IWU)
This is the baseline method where the on-line learning
framework is used without any modification to the weight
update step of the experts (Cesa-Bianchi and Lugosi 2006).
The weights of the experts for each objective in the next
round is independently updated based on the expert’s per-
formance in the previous round and is given by:

wmi,t =
wmi,t−1e−ηlm(fi,t,yt)∑L

j=1 wmj,t−1e−ηlm(fj,t−1,yt)
(5)

In our problem formulation however, as the objectives are
conflicting in nature, updating the weight components of the
weight vector wmt respective to each objective does not si-
multaneously decrease the regret of the learner for all objec-
tives. This is because the learner has no information avail-
able in terms of how to relatively weigh each objective with
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respect to the other; the components of the weight vector
wmi,t of expert i has information on how the expert fairs in-
dividually on the objectives, but does not relate the regret
component for one objective with the regret component for
the other objective. Without the guidance on relative perfor-
mance on both objectives as we discuss later, the learning
algorithm is not as good as it can be in addressing the objec-
tives together.

Relative Weight Update (RWU)
To avoid the problems of independent weight updates, and to
relate the performance of the learner with respect to each ob-
jective, we modify the multiplicative weight update step for
the experts. Initially, the weight of an expert in a weighted
average forecaster is allowed to vary as a convex combina-
tion of its regret on individual objectives such that the rela-
tive performance of the learner towards both objectives can
be influenced by the expert’s weight updates as follows:

wmi,t =
wmi,t−1

∑M
k=1 e

−ηlk(fi,t,yt)∑L
j=1 wmj,t−1e−ηlm(fj,t−1,yt)

(6)

The update step as in (6), relates performance of the ex-
pert i in terms of each of the m objectives at every step.
This modification serves the basic intuition of relating the
performance of the experts and hence the learner with re-
spect to both objectives together. However, the limitation
of this step is in not being able to relate the overall per-
formance of an experts in both objectives with the desired
overall performance in both objectives. The motivation be-
ing, that at the Pareto front, both objectives cannot be si-
multaneously improved - improving one inevitably degrades
the other. An additional desirability or importance factor if
associated with the process, when it converges towards the
Pareto front, would enable the algorithm to meet the desired
performance of minimizing regret with time while predict-
ing Pareto optimal solutions.

Pareto Descent Weight update (PDWU)
In this method, we show how to ensure that at every round t,
the instantaneous vector is chosen such that, the direction of
drift does not increase the regret much on individual objec-
tive and also the drift is in the direction where both the ob-
jectives are improved optimally. From our knowledge on de-
scent directions in multi criteria optimization, we know that
if a descent direction is sought that produces Pareto optimal
solutions, the best direction to choose is a Pareto descent
direction (Harada and Kobayashi 2006) which gives non-
dominated solutions (optimal solutions) in the best case, and
in the worst case the descent directions are automatically ob-
tained which gives dominated (sub-optimal)solutions. The
way to ensure this is to have an importance vector α =
(α1, . . . , αm) ∈ RM with constraints for convexity αk ≥ 0

and
∑M
k=1 αk = 1 that places relative importance on the

objectives. We use this notion of choosing Pareto descent
directions whilst choosing the instantaneous regret vector
rmt . The instantaneous regret vector and hence the weight
of the experts at every round, control the learner’s regret by

using the gradient of the potential information in keeping
the regret close to minimum and the convex combination of
the objective vectors control the direction of movement of
the learning algorithm towards the optimal Pareto front. The
convex combination is given by:

rmt =
M∑
k=1

αk 5 Φk(Rt−1) (7)

The weight wmi,t of expert i at round t for objective m is
then a convex combination of the importance vector and the
potential of the expert’s regret in the direction of individual
objectives, and is given by: wmi,t−1 =

∑M
k=1 αkφ

′(Rmi,t−1)
which simplifies to:

wmi,t =
wmi,t−1

∑M
k=1 αke

−ηlk(fi,t,yt)∑L
j=1 wmj,t−1e−ηlm(fj,t−1,yt)

(8)

Sampling Importance Vector α:
Another crucial part of our algorithm is the selection of
the importance vector αt at every round t. Typically, the
complete set of Pareto descent directions (which includes
the descent directions) give a convex combination of objec-
tive vectors; that forms a convex cone pointed at the ori-
gin (Harada and Kobayashi 2006), exploiting the simulta-
neous linear inequality as in (3) (Harada and Kobayashi
2006). For simplicity, we can consider the convex cone to
be a simplex as well, that is a triangle in this case that can
be generalized to tetrahedron or higher dimensions. We en-
force the condition that this simplex or the convex cone is
pointed at the origin by adding the following constraint to
(7): −1 ≥ rmi,t ≤ 1 for expert i. Any point sampled from the
convex cone then should give an importance vector αt and
the convex combination of αt and the objective vectors in
terms of gradient of the potential functions with respect to
to each objective φ(Rmt ) gives the descent (drift) direction
or instantaneous regret vector rmt in (7) for the learning al-
gorithm to proceed. We sample αt from the convex hull at
every round t of the learning algorithm.

Simulation Results
We perform preliminary simulation experiments, to model
the example power performance problem we explained in
previous sections. These experiments on synthetic data illus-
trates our results. Typically on a multi-core based embedded
device (4 cores or more), the different power-performance
settings can be as many as 40. The number of experts in
our experiments is configured to 50. In reality, the power-
performance policy experts are functions of the workloads
currently executing on the device that predicts the objective
vectors of trade-off values for each objective. Here, we use
the objective vectors of power-performance trade-off predic-
tions as our experts, rather than the actual functions them-
selves as in the context of on-line learning with experts, what
matters are the predictions of the experts which can be imag-
ined to be functions of the workloads. As the power per-
formance trade-off values for any workload lie on a Pareto
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Figure 1: Instantaneous regret of learner for, (a) objective performance, (b) objective power. IWU is shown in solid GREEN,
RWU in BLUE dots and PDWU in dashed RED. Each line in the graph corresponds to an average over 1000 runs of the
experiment.

curve (Cochran et al. 2011), our experts are randomly cho-
sen from a huge set of convex Pareto curves; we assume
that this space constitute the feasible space of objective so-
lutions. We designate the optimal Pareto front as the true se-
quence of experts in hindsight (not available to the learner),
that the algorithm should converge to. The number of in-
puts (workloads) seen by our algorithm is preset to 20 but
this is not a restriction. As mentioned before, we have two
objectives, that of power savings and performance delay rep-
resented as m = 2 in our experiments. For most of our ex-
periments, we vary the learning rate between 0.3 to 0.5. We
also run experiments on learning rate of 0.01 and 0.8 for ver-
ifying bounds. All the on-line learning games comprise 100
rounds and the results are averaged over 1000 runs. We mea-
sure the normalized regret of the learning algorithm using
(2) as the main performance evaluation metric in these ex-
periments. Our importance vector αt is sampled uniformly
from the convex cone pointed at the origin. We perform ex-
periments using both exponentially weighted average fore-
caster and weighted average forecasters. Our convex loss
function is an absolute loss function.

Figure 1 shows the results of the normalized regret as ex-
plained in (2), as a performance measure for all the three
methods used in our learning algorithm. This performance
measure implies that the learner should have a vanishing
per-round regret or the instantaneous regret. The difference
in cumulative loss of the learner and the cumulative loss of
the best expert in hindsight should grow sub linearly(almost
surely) irrespective of the outcome the learner sees. We use
the independent weight update method as discussed in (5) as
our baseline method that has the on-line learning with ex-

perts framework without modification to the weight update
step for the experts. The methods of relative weight update
and Pareto descent weight update that use the weight updates
in (6) and (8), are compared against the baseline method.
Figure 1(a) shows results for objective performance while
figure 1(b) shows results for objective power. As seen from
the results, RWU in Figure 1(a) performs better than the
IWU. In this example, PDWU performs almost as good as
the baseline method. Figure 1(b) shows that in the case of
objective power, both methods RWU and PDWU perform
better than baseline method. We see sub linear growth in the
difference of cumulative loss of the learner and that of the
true expert for all our methods. The graphs in Figure 1 show
the instantaneous regret of the learner as it converges to zero.

Discussion and Extensions
In this paper we have seen how an on-line learning frame-
work can be adapted to the continuous learning of multi-
ple tasks problem. The independent weight update approach
evaluates the learner in how well it addresses each of the ob-
jectives separately. The relative weight update and Pareto de-
scent weight update methods perform a convex combination
of the performance of the algorithm in addressing multiple
objectives simultaneously, while making predictions from
the optimal Pareto front. An importance vector is used to
relatively weigh the objectives in each round. The convex
combination of the importance vector and the function of
learner’s regret provides a Pareto descent direction for faster
convergence on the Pareto optimal front.

A future direction of this work is to provide a theoretical
analysis of the learning approaches proposed and to achieve
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generalization bounds for the same. We would also like to
perform extensive experiments on empirical data obtained
from the real embedded device and the data servers to de-
termine how the lifetime of the battery or power source is
maintained while balancing the power-performance trade-
offs adequately.
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