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Abstract 
Command and Control (C2) is the practice of directing 
teams of autonomous units, regardless if the units are di-
rected by human decision making or are unmanned. Hu-
mans are adaptive and their behaviors are recognizable to 
their superiors who were educated in a similar manner. This 
paper describes the sparse supervisory control that must be 
exercised over teams of highly autonomous units, and con-
siders what it means for a commander to supervise autono-
mous un-manned systems (AUS) that employ machine 
learning and cooperative autonomy. Commanders must de-
cide whether to trust behaviors they have never seen before, 
and developing that trust may require several strategies. 
This paper describes some possible strategies in an effort to 
explain the challenges that must be solved. 

 Sparse Supervisory Control   
In this paper we envision the future of unmanned vehicle 
command and control (C2). Our assumption is that vehicle 
autonomy in a basic sense will be successfully implement-
ed for our domain and that vehicles will conduct the basic 
elements of completing a task without specific human di-
rection. As autonomy matures, vehicles will become pur-
poseful members of a team (Schuster et al. 2011) and begin 
to execute stages of information processing on their own. 
 However, complex strategic decisions involving teams 
of autonomous vehicles will still be desired, and are not 
currently provided in most conceptualizations of multi-
vehicle C2. Human commanders will, as they have always 
done with team of autonomous units (albeit human popu-
lated), direct the employment of assets and determine the 
objectives for a team. Additionally, human commanders 
will monitor team performance to determine if adjustments 
are necessary. Higher levels of autonomy will allow con-
trollers to ‘invert the ratio’ of operators to units and exert 
control over larger groups of autonomous unmanned sys-
tems (AUS) with fewer humans.  The term adopted is 
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sparse supervisory control, but we view it as virtually syn-
onymous with command and control. 
 The control exercised by a military commander over 
forces is described as “…guiding the operation” (Willard 
2002). The presumption is that there is a mission state-
ment, a set of assets with which to perform the mission, 
and an environment to operate in that may include an op-
posing force. According to Willard, there are several ways 
in which a commander guides an operation. 
• Maintain alignment: The commander must ensure that 
all decisions remain aligned with the operation’s mission 
and the commander’s intent. 
• Provide situational awareness: The commander must 
assess the status of plan execution constantly, utilizing a 
common operational picture (COP). 
• Advance the plan: The commander must monitor the sta-
tus of plan execution against the plan’s timeline. 
• Comply with procedure: The commander oversees com-
pliance with warfighting procedures to avoid mistakes 
(e.g., friendly fire engagements or collateral damage) and 
achieve efficiencies. 
• Counter the enemy: The commander must be responsive 
to emerging intelligence, surveillance, and reconnaissance 
information that differ significantly from expectations. 
• Adjust apportionment: Changes to asset availability or 
changes to requirements and priorities may require reap-
portionment of assets. 

Human Management of Automation 
Automation has also been shown to result in two highly re-
lated phenomena. These are complacency, in which opera-
tors may fail to detect an automation malfunction, and au-
tomation bias, which consists of operators blindly follow-
ing automation recommendations or failing to act unless 
the automation requests the human action within decision 
making systems (Parsasuraman and Manzey 2010). The in-
formation provided to the operator, and the method by 
which it is provided matter greatly to the success or failure 
of human management of automation. 
 It is possible that it is specifically the integration that 
plays a large role in determining the effectiveness of a sys-
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tem outcome.  In (Leli and Filskov 1984), automated diag-
nostic systems consistently outperformed clinicians when 
in isolation; however decision accuracy decreased as a di-
rect result of integrated clinician application of the aid to 
diagnose psychological conditions. This result suggests 
that perhaps the most critical aspect of automation is not 
the engineering behind the automation itself, but the inter-
action between any automation and the operator who is ex-
pected to work together with it. 
 Issues have also been identified related to the ability of 
human operators to understand the actions of any automa-
tion (Parasuraman and Wickens 2008). The operator's trust 
and ability to evaluate the performance of autonomous sys-
tems comes, in part, from an ability to recognize behaviors 
as correct or incorrect given contextual constraints. AUS 
that have been programmed to perform in a particular fash-
ion may or may not exhibit recognizably correct behaviors 
that are, however, optimal for the given situation. 

Achieving Sparse Supervisory Control 
Where we previously had one operator (or more) manually 
controlling only one AUS, we plan to have one operator 
now oversee the workings of several semi or fully autono-
mous vehicles, changing the role to one of supervision and 
overseeing automated functions. This role shift is where 
the control of automation merges back with command and 
control in terms of goals and where what has been learned 
about the management of automation must be applied to 
succeed in exercising sparse supervisory control of AUS. 
 For command and control to function there are critical 
requirements. One such requirement is that commanders 
must be able to communicate intent to AUS teams, and 
commanders must trust that the teams understand this in-
tent and must be able to recognize when decisions made by 
the team are out of alignment with that intent. This is true 
whether the units in the team are autonomous due to hu-
man intelligence, or through computer automation. 
 Trust between human controllers and human crews of 
ships and aircraft is enhanced due to a common language 
and education. Computer-based autonomous systems do 
not have those features in common with their human con-
troller. While it is possible to create a standard encoding of 
commands and status information that is both human and 
machine readable (e.g., some Extensible Markup Language 
based grammar), there is little likelihood of the human hav-
ing a clear understanding of the processing of a command 
from a connectionist vehicle controller (e.g., one utilizing 
artificial neural networks).  
 The basic opportunity for developing the necessary in-
sight and resulting trust is likely to come from repeated 
practice. Simulation-based and live training of the human-
AUS team is a natural approach. In the next section of this 
paper, we introduce added complexity by arguing that 

AUS will necessarily become adaptive systems. This adap-
tation is likely to occur at a rapid pace during team train-
ing, and indeed we suggest that the need for simulation 
systems that will support this type of training and adapta-
tion will be essential. But adaptation is likely to occur after 
deployment. Certainly human-occupied systems (the hu-
man components in particular) adapt while deployed. AUS 
will necessarily adapt to avoid being returned to a laborato-
ry environment at every significant change by either the 
environment or an opposition. Therefore trust will have to 
be developed in other ways as well. 

Adaptive Behaviors 
A common approach to the design of autonomous systems 
is to design with fixed policies in place to guide behaviors. 
Such systems face many challenges. One difficulty is that 
unexpected situations can cause the autonomy to not work. 
Another is that opposing forces can take advantage of pre-
dictable behaviors. This lack of robustness is due to the 
expansive state space that exists in the real world. Human 
designers will not be able to test or even anticipate every 
situation the autonomous system will be exposed to. Addi-
tionally, fixed systems often lack scalability. In particular, 
the designs will be tied to a particular number of autono-
mous agents, or a particular team composition, meaning 
each time the number or types of unmanned vehicles 
change, the autonomy must be redesigned. 
 In a proof of concept experiment, such a fixed system 
was compared to a multiagent learning method. Multiagent 
Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT) approaches the problem of multiagent 
learning by focusing on the geometric relationships among 
agent policies (D'Ambrosio and Stanley 2008). The policy 
geometry is the relationship among policies located at par-
ticular positions and the team behavior.  
 Whether due to malfunctions or due to changing com-
mand decisions, team composition will change. The 
multiagent HyperNEAT approach allows such scaling be-
cause it represents team policies indirectly as a function of 
team geometry. Thus new agents can be added by simply 
generating the policy for their assigned team position. 
 Overall, the results from our experiments showed that 
policies created by multiagent learning approaches are 
more robust to change (Calinescu and Garlan 2012). The 
scripted parallel search and learned multiagent 
HyperNEAT policies were compared on three variations of 
a threat detection task. 
 The first variation is the training task for multiagent 
HyperNEAT, in which there were seven simulated un-
manned vehicles patrolling and threats could randomly ap-
pear along any of the four edges of the square operational 
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area. In this task, the learned policy had statistically the 
same performance as the scripted policy.  
 In the second variation, the tactics employed by the 
threats were altered such that they now appeared from just 
two of the four sides at random, thus increasing the density 
of the attacks along that vector and testing the robustness 
of the approaches. The learned policy significantly outper-
forms the scripted policy. In the third variation, the num-
ber of simulated unmanned vehicles in the team was in-
creased from seven to eleven. The learned policy exploited 
the increased number of vehicles, decreasing the missed 
threats to zero. However, the scripted policy was unable to 
take advantage of the new vehicles and did not significant-
ly change in performance.  

Trusting Adaptive Behaviors 
Using HyperNEAT to develop team tactics will create 
more robust and scalable policies and behaviors. However, 
we must also be concerned with whether or not the human 
controller will recognize the behaviors as being safe and 
correct. As the HyperNEAT approach produces artificial 
neural networks (ANNs), we can only look at the team tac-
tics as black boxes, and even within the proof of concept 
experiment, interpretation of behaviors was difficult. A 
human controller in such a system however, must be able 
to decide if the tactics being employed are aligned to the 
mission and whether or not they are properly countering 
the enemy or handling arising complications.  
 One of the primary drawbacks to learning behaviors is 
that in the search for optimal actions the agents can behave 
in ways that seem foreign and unintelligible to the human 
operators. It may be the case, that agents that behave in a 
more humanlike fashion are more easily trusted by human 
observers. The development of humanlike agents is possi-
ble through hand coding and expert systems, but it is a te-
dious and complicated process. However, learning human-
like behavior is possible through observation. Such behav-
ior can then be improved with practice and feedback. 
 FALCONET is a method of agent training that follows 
the biologically inspired cycle of observation and experien-
tial learning. It was designed to enable the creation of high 
performing, humanlike agents for real time reactionary 
control systems (Stein 2009).  
 The training in FALCONET follows such a two phase 
training approach. First, a supervised observational phase 
is conducted in which the objective of the learning is to be 
similar to the actions of a human trainer. Human trainers 
run through selected tasks starting from many different 
scenarios to generate an observational training set. The 
agents are then trained on this data set while being graded 
on how closely they mimic the decisions of the human. In 
the second, experiential phase, the agents are trained fur-

ther using a measure of performance on the task. In FAL-
CONET all training is done by a hybrid genetic algorithm 
(GA) particle swarm optimization (PSO) algorithm called 
PIDGION-alternate. This is an ANN optimization tech-
nique that generates efficient ANN controls from simple 
environmental feedback. FALCONET has shown that it 
can produce agents that perform as well or better than ex-
periential training alone while incorporating humanlike be-
haviors. The results from FALCONET also show that 
unique human operator traits can be incorporated and can 
be behaviorally evident in the final highest performance 
controls, that is to say, agents sourced from different hu-
man trainers have slightly different, and importantly inter-
pretable, behavioral ‘quirks’. 

Layered Learning 
The potential state space of system containing a large 
number of AUS acting in a noisy, real-time, cooperative, 
and adversarial environment is staggering. Utilizing a sin-
gle learning method or utilizing a single adaptive controller 
for a team or each member of a team does not appear prac-
tical. With so many decisions being made from a small set 
of intelligent components, the likelihood of gaining trust in 
the decision making seems small. 
 One approach that can mitigate this problem is layered 
learning (López de Mántaras and Plaza 2000). Layered 
learning is a technique that decomposes a task into separate 
layers and uses learning algorithms tailored to the needs of 
each layer. Some possible layers in naval AUS system 
might include the classification of reconnaissance targets, 
the planning and scheduling of patrols, and the reactive 
controls of the individual AUS. 
 Layered learning is meant to facilitate learning in prob-
lems where it is intractable with current algorithms to learn 
a direct mapping from environmental inputs to system out-
puts. There are four major principles of layered learning: 
• A mapping directly from inputs to outputs is not tracta-
ble when the state space is large, continuous, noisy, and 
contains hidden states. Layered learning uses a bottom up 
approach to incrementally learn a solution from low level 
tasks to high level strategic behaviors. 
• The layers of the system are a function of the domain to 
be learned. The layers are defined a priori by the machine 
learning opportunities in the domain. However, it could be 
possible to combine layered learning with an algorithm that 
learns abstraction levels. 
• Learning is done at each layer, and can be done off-line 
or on-line. The type of learning is dependent on the subtask 
being learned. 
• The learning at each layer affects the next layer in the 
chain. A learned sub-task can affect the next layer by 

41



providing a portion of the behavior to be learned, defining 
the features that are learned, or by pruning the output set. 
 The original application of layered learning was in the 
robo-soccer domain (Stone and Veloso 2000). In this case 
the layered learning system had three layers; the first layer 
was an interception behavior learned by a neural network 
off-line. An agent was set up in the simulation to learn how 
to intercept a ball from varying initial states.  
 The second layer was a decision tree to learn when it 
was safe to pass the ball to a team mate, and in this layer 
the agents in the simulation used the previously learned in-
terception behavior as the decision tree was being trained. 
In this way, the first layer provided a portion of the behav-
ior of the agents and made the training data for the decision 
tree more robust.  
 The final layer was a reinforcement learning technique. 
In this layer the output of the decision tree from the previ-
ous layer was used as inputs to the reinforcement learning 
providing confidence levels for passing to each of the 
agent's teammates. In this manner the second layer was 
used as a state generalization algorithm for the third layer. 
 Robust layered learning is an adaptation aimed at mak-
ing the system robust to failure and change (Richert and 
Kleinjohann 2007). Instead of having each layer feed di-
rectly into the next layer, layer interfaces are defined which 
restrict how the layers communicate. By doing this it be-
comes possible to switch out the learners at each layer 
without significantly changing the other layers. These layer 
interfaces are usually in the state language of the lower 
layer, meaning the higher layer in effect tells the lower 
layer which state it would like to be in, then the lower layer 
attempts to achieve that state.  
 Each higher layer is a more abstract representation of the 
environmental state space. By isolating each layer through 
the layer interfaces it makes it easier to try different learn-
ing techniques at each layer, or to have a system with re-
dundant layer techniques. For instance, one layer could be 
a rule-based system that performs well in known situations, 
but might degrade when faced with novel situations. Once 
the rule based system starts to perform poorly, a more gen-
eral learning system could be swapped in. The cost of us-
ing robust layered learning comes at the expense of defin-
ing the layer interfaces as well as the layers as part of the 
design. On the other hand, having these interfaces in place 
ensures that each layer encapsulates knowledge such that it 
can be transferred to other systems. 
 From the standpoint of trust, robust layered learning ap-
pears to have significant benefits. Once the levels and in-
terfaces have been designed it would be possible to pick 
and choose where learning takes place and where hard 
coded deterministic behaviors are in control. Moreover, it 
creates a system that could be upgraded over time with 
more learning techniques as the system progresses and the 
need for them becomes more obvious. 

 A similar strategy that provides this feature without lay-
ering the learning is to utilize unlike redundancy of com-
plete subsystems (Calinescu and Jackson 2011). Layered 
learning accomplishes this same capability and provides 
support for learning at various levels of abstraction.  

Conclusions 
When fielding a team of autonomous vehicles, one expects 
emergent behaviors. In fact, one fields a team of AUS in 
order to get emergent behaviors; and a single AUS that is 
allowed to adapt by definition will result in emergence. A 
team of AUS that includes interaction and cooperative au-
tonomy is likely to exhibit emergence even without adap-
tive techniques. 
 Novel but correct behaviors and intentions may be mis-
interpreted by the operator and interrupted. For robust use, 
we will likely require teams of AUS to exhibit adaptive 
behaviors. To trust those behaviors, human controllers will 
need to be able to recognize those behaviors as correct. To 
prevent catastrophe, controllers will also need to be able to 
recognize emergent aberrant behaviors; we suggest that a 
combination of observational and experiential learning will 
lead to behaviors that can adapt but yet also be utilized 
within a command and control framework.  
 Layered learning provides an approach that will aid in 
the acquisition of complex behaviors, and does it in a man-
ner where confidence and trust can be gained at each layer. 
Unlike redundancy, it can also be developed within the 
layered learning structure. 
 We also suggest that the level of abstraction and the 
manner in which information is provided to the human 
controller is critical. Studies of complacency and automa-
tion bias show that humans often misinterpret the state or 
intentions of complex automated systems. Heterogeneous 
teams of AUS that employ adaptation will result in the 
need for situational awareness much like military com-
manders must have for complex battle spaces. The key dif-
ference will be that the unmanned systems will speak a dif-
ferent language and do not share a common educational 
background as the controller.  
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