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Abstract

Abnormalities in the brain are one of the leading causes
of disability amongst people. There is a significant de-
lay between monitoring the onset of these disorders and
their treatments. This paper presents a brain-mobile-
cloud interface (BMCI) to integrate the mobile plat-
form, cloud computing technology and existing brain
monitoring systems to remotely monitor the brain sig-
nals of an individual using their electroencephalograms
(EEGs) in unconventional environments. Further, we
discuss the potential of our proposed framework in
applications like tracking mental activities, identify-
ing distracted driving behavior and their corresponding
changes in cerebral blood flow (CBF).

Introduction

The use of Electroencephalography (EEG) to analyze brain
activity has existed since 1924 after its invention by a
German Scientist Hans Berger (Haas 2003). EEG measures
the potential difference across the scalp as a result of ionic
current flows, when the neurons in the brain communicate
with each other. Previously, it was not a fully developed
diagnostic tool but has now become viable in diagnosing
and treating neurological disorders especially epilepsy,
seizures, brain tumors, sleep disorders, coma and brain
death.

One of the initial attempts to provide real-time remote
EEG monitoring (Chen and Lee 2008) was developed as an
internet based EEG information system using the wireless
local area network (WLAN) and a WLAN compliant EEG
sensor node named pEEG. In another work, (Gad 2011)
proposes architecture based on Cloud Computing and
MapReduce for Ubiquitous Learning systems. However,
in his scheme only generated EEG data sets and virtual
users were used. (Ericson, Pallickara, and Anderson 2010)
also offer the use of cloud runtime to allow training of
neural networks for EEG classification of different mental
tasks from multiple users to use their intended actions for
keyboard input or control motion of wheel chair. Their
results were based on only pseudo generated EEG streams

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and a static data set.

The main motivation of our brain-mobile-cloud interface
for EEG monitoring is to bridge the enormous gap between
diagnosis and treatment of mental disorders. Also, a con-
straint EEG recording environment cannot accurately deter-
mine the onset or presence of many of the complex neural
disabilities. As more and more people have access to smart
phones, adding mobility in EEG data collection provides
unrestrained, remote monitoring of people for more accu-
rate, up-to-date patient data readily available to the doctors.
This helps to deliver patient centric care and prioritize the
resources of hospitals towards acute patients. It will prevent
unnecessary visits to healthcare centres thereby cutting over-
all costs involved in mental healthcare. In the following sec-
tions we discuss the proposed infrastructure of the BMCI
design, application interface, relevance of our work in ap-
plications of self-tracking behavior and finally, some chal-
lenges and future work.

Application Interface Prototype

The system design as shown in Figure 1 is a detailed
overview of the proposed architecture for brain-mobile-
cloud interface. The EEG brain signals are captured using
a headband called Mindband (Neurosky ). The Bluetooth in-
terface i.e. brain-mobile interface obtains data on the smart
phone and the android API displays the collected data from
the EEG sensor on the mobile phone. The phone has a 1
GHz processor with 512 MB internal storage. Light weight
on board processing can be performed in the smart phone
itself for preliminary data analysis. The expected urgent re-
sults are displayed using the existing API; otherwise the data
is sent to the cloud network via the mobile-cloud interface.

Brain-Mobile Interface

In our system we use the headband as the brain-mobile in-
terface to obtain the EEG data of the user. The headband
contains a single sensor dry electrode with an ear clip refer-
ence to record signals from the scalp. It is comfortable and
convenient to wear. Additionally, it does some preprocessing
of EEG data and provides bluetooth connection for transfer
of data to peripheral devices.
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Figure 1: System design for the Brain-Mobile-Cloud Interface

Mobile-Cloud Interface

To realize the mobile-cloud interface, we have used the NSL
server (Network Security Lab at UNT) to test the upload of
raw EEG data file onto the server from the mobile phone. For
this process, we used the available Intents from the AndFTP
application to perform the upload, download and browsing
process. AndFTP is a FTP, SFTP, SCP, FTPS client for an-
droid devices (Lysesoft ). To use these Intents in our cur-
rent brain-mobile API, the AndFTP application needs to be
already installed in the mobile system (Android ). The file
transfer is performed over a secured SSH connection using
Wi-Fi and the authentication process is carried out by veri-
fying a username and password.

Applications

The idea behind development of the BMCI design is to pro-
vide a platform for monitoring the brain health of an individ-
ual, in parallel to the emerging health trends for quantified
self. We explore the relationship between EEG signals and
Cerebral Blood Flow (CBF) estimates in two scenarios; per-
forming mental activities and distracted driving behavior.

Tracking Mental Activities

Significant work has been done by (Buxton et al. 2004)
to show neurovascular coupling between EEG signals and
CBF. The estimated CBF from EEG signal in case of per-
forming mental tasks such as finding a word in a reading pas-
sage and doing a simple multiplication in mind, co-insides
with the theory of neuronal activation and vascular coupling
(Freeman 2008). Figure 2 shows the baseline CBF of an
individual for an EEG signal recorded when the eyes are
closed. Figures 3 and 4 show the increase in CBF while
performing mental activities compared to the baseline CBF.
Amplitude coupling appears to be linear as observed in our
experiment in healthy individuals. Thus, we observe that the
neural responses evoke CBF response, though CBF values

are not calibrated here, only nature of change is studied. The
CBF response as computed from the SPM canonical HRF
function is in agreement with the literature which shows a
delay by 1-2 seconds following the neural activation with
peaks around 4- 6 seconds after neural response (SPM ).
The actual mechanism of rise and fall of CBF values within
a mental activity may be related to bursts of neuronal activa-
tion while executing that task.

Figure 2: EEG signal (top) and estimated CBF for an indi-
vidual in resting state and eyes closed

Driver Distraction

Another potential application of our BMCI design is obser-
vation of distracted driving behavior in a real world scenario.
The distracted driving experiment is conducted to differen-
tiate between a texting event and a normal driving event. We
found that channel-4 (FC5) shows little activity in the base
profile, but sudden bursts of change in frequency of EEG
signals emerge while texting compared to other electrodes
as shown in Figure 5. It is very interesting to note that other
researchers also found similar regions of scalp active in de-
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Figure 3: EEG signal (top) and estimated CBF in case of
multiplication task

Figure 4: EEG signal (top) and estimated CBF in case of
reading task

tecting driver distraction (Lin et al. 2008) (Faro, Giordano,
and Spampinato 2006).

In order to quantify the behavior of distracted driving, we
need to devise a system in the smart phone that can detect
the changes in the frequency bands of EEG signal to charac-
terize such distraction events successfully.We also observed
changes in CBF corresponding to EEG signals recorded in
distracted driving events. To our surprise, significant varia-
tion is observed in estimated CBF values corresponding to
the texting events while driving as shown in Figure 6. The
other electrodes did not show much activity which indicates
the potential of characterizing spatial CBF responses as well
(provided we have more electrodes recording data simulta-
neously). Figure 7 shows the comparison of CBF values in
the case of texting while driving and not driving.

Discussion

The observed results in our experimental measurements
capture the features that have been reported in the model
framework of neurovascular coupling in literature and are in
accordance with the underlying assumptions. It highlights
the potential use of portable EEG monitoring devices to be

Figure 5: EEG recording of texting experiment while driving
from 14 channel headset

Figure 6: EEG signal of a texting event while driving
(top)and corresponding changes in estimated CBF

used for real time self-tracking of an individuals cerebral
blood flow in absence of fMRI, NIRS techniques (assuming
the state of the art techniques existing in EEG capturing
devices will expand to offer more miniaturized, reliable
and cost effective devices). Numerical validation of the
measures has to be carried out to provide a better estimate
of such measures for clinical relevance and personal health
monitoring. Though EEG signals qualitatively characterize
the CBF behavior, all the ideas motivating the model may
not be correct as neurovascular coupling still remains a
subject of debate with researchers and no consensus has
been established on exactly which aspect of neural activity
drives the hemodynamic response.

Further, we have shown that EEG signals from one chan-
nel may be sufficient to detect the intense thinking that
can be used to quantize drivers distraction index. Frequency
bands can be used for peak detection algorithms to quan-
tify any variations. Such algorithms involve less intensive
computation in low resource devices like mobile phones as
compared to detecting bursts in time domain. Thus, a mobile
implementation of these applications would be a major im-
provement in ensuring the health and safety of an individual.
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Figure 7: CBF Comparison in events of texting while driving
and not driving

Table 1: Performance Metrics for Data Transfer between the
two Interfaces

Brain-Mobile-Interface Mobile-Cloud-Interface
Metrics EEG Data Transfer Upload Process Download Process

to mobile phone
Transfer Size Streaming 2,644 KB 2,644 KB

(raw data at 512 Hz)
Transfer Rate 250 kbits/sec 344.08 KB/s 293.22KB/s

(RF data rate)

Performance Metrics

We used some metrics to evaluate the data transfer speeds
of our interfaces, namely; Bluetooth data transfer from
headband to mobile phone and upload, download processes
for mobile-server-interface. The results of our trials are
shown in Table I. We used the same file to perform the
upload and download for the mobile-cloud interface to
compare the metrics. The impact of transfer rates between
the different interfaces is more significant for real-time
alerts compared to the diagnosis and processing of data at
the health providers side.

The EEG recording of 1 minute from single electrode
amounts up to nearly 1.12 Mb of data. As the number of
electrodes and the duration of EEG recording increases, the
data storage requirement will be enormous. The mobile-
cloud interface will be a feasible solution to handle such
large data collections.Presently, upload of the EEG data file
to server and collection of the raw EEG data from the head-
band is not supported simultaneous in our application. How-
ever, transfer speed of 344 KB/sec during upload is sufficient
to allow the data recording and relaying being done simulta-
neously.

Conclusion and Future Work

The BMCI design described in this paper put forwards the
idea to carry a wearable headband that is easily connected
to the smartphone, which acts as a medium to transfer data
to the cloud network for analyses. It provides the ability
to use EEG signals with BMCI application as a means to
equip individuals with a self-tracking tool for monitoring
their brain signals for symptoms of developing any brain
injury. This self-knowledge about ones brain health leads to
timely acknowledgment of abnormalities, improved patient
centric treatments leading to an overall change in behavioral
response of both patients and doctors.

Further use of this application can be extended in driver
distraction detection which will lead to safe driving scenar-
ios with timely distracted alerts. More work is in progress
to study the relationship of our observations in the EEG
data of diseased patients. Also, we need to investigate what
kind of risk models can be developed for brain abnormal-
ities/distracted driving based on long-term assessment of
EEG self-tracked data in cloud. Lastly, the security and pri-
vacy of the EEG data has to be taken care at all times.
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