Designing Intelligent Robots: Reintegrating AI II: Papers from the 2013 AAAI Spring Symposium

Configuration Planning with Multiple Dynamic Goals*

M. Di Rocco and F. Pecora and P.K. Sivakumar and A. Saffiotti

Center for Applied Autonomous Sensor Systems, Orebro University, SE-70182 Sweden
{modo, fpa, pkr, asaffio} @aass.oru.se

Abstract

We propose an approach to configuration planning for
robotic systems in which plans are represented as con-
straint networks and planning is defined as search in the
space of such networks. The approach supports reason-
ing about time, resources, and information dependen-
cies between actions. In addition, the system can lever-
age the flexibility of such networks at execution time to
support dynamic goal posting and re-planning.

1 Introduction

Planning in AI was born with robots (Fikes and Nilsson
1972). Since then, the field of Al planning has progressed
enormously. Yet, if you look inside a typical autonomous
robot today you will see little evidence of this progress, and
you may suspect that planning in Al has focused on issues
which are not the main concerns of robot builders. We share
this suspicion. If you ever tried to program a robot to accom-
plish tasks in unstructured, everyday environments, what
you expected from an Al planner was probably the ability to:
(i) reason about the physical aspects of the domain, like time,
space, information requirements and resources; (ii) dynam-
ically accommodate new goals, which might interact with
the current ones; (iii) generate plans that enable some de-
gree of flexibility during execution; and (iv) deal with mul-
tiple robots and devices, and with their physical and logi-
cal dependencies. While planners exist that exhibit some of
the above features (Ghallab and Laruelle 1994; Parker 1998;
Knight et al. 2001; Doherty, Kvarnstrom, and Heintz 2009;
Barreiro et al. 2012) you will have a hard time to find a sin-
gle system that gives you all of them. This paper is a first
step toward the construction of such a system.

We present a configuration planner: a system that gen-
erates configuration plans for robotic systems that consist
of mixed ecologies of robots and devices (Saffiotti et al.
2008). Such plans specify what actions the different ac-
tors should execute and what information they should ex-
change in order to perform a given task. Configuration plan-
ners have been proposed before (Parker and Tang 2006;

*This work was funded by the EC Seventh Framework Pro-
gramme (FP7/2007-2013) grant agreement no. 288899 Robot-Era.
Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

12

Lundh, Karlsson, and Saffiotti 2008), but they cannot deal
with multiple dynamic goals, time or resources. By contrast,
our planner can accommodate time, resources, multiple dy-
namic goals, and flexible execution. This is achieved by: (1)
representing a (configuaration) plan as a constraint network;
(2) defining the configuration planning process as search in
the space of such networks; and (3) sharing the constraint
network between the planner and the executor. The first two
steps allow for the integration of multiple facets in the plan-
ning problem, e.g., time, resources, and information depen-
dencies; the third one allows for flexible execution and dy-
namic goal posting.

2 Representation

Our approach is grounded on the notion of state variable,
which models elements of the domain whose state in time
is represented by a symbol. State variables, whose domains
are discrete sets, represent parts of the real world that are
relevant for the configuration planner’s decision processes.
These include the actuation and sensing capabilities of the
robotic systems, and the various aspects of the environment
that are meaningful. For instance, a state variable can rep-
resent the capabilities of a physical device such as a robot,
whose meaningful states might be “navigating”, “grasping”
and “idle”. Similarly, a state variable can represent the in-
teresting states of the environment, e.g., the state of a light
which can be “on”, “off” or “broken”. Let S be the set of
state variables in a given application scenario.

Some devices require resources when they are in given
states. We employ the concept of reusable resource, i.e.,
a resource with a limited capacity which is fully available
when not required by a device. An example of reusable re-
source is power: a maximum wattage is available, and de-
vices can simultaneously require power so long as the sum
of requirements is less than the maximum power. We denote
with R the set of all resource identifiers. Given a resource
R € R, its capacity is a value Cap(R) € N.

Finally, devices in our domain may serve the purpose of
providing or requiring certain information contents. For in-
stance, a software component may require range data from a
laser range finder, and provide localization information. Let
the set of all information contents be denoted IC.

2.1 Representing Configuration Plans and Goals

We employ activities to represent predicates on the possible
evolution of state variables:

Definition 1 An activity a is a tuple (x,v,I,u,In, Out),
where

e x € S is a state variable;

e Vv is a possible state of the state variable x;

e] = [I;I.] is a flexible temporal interval within
which the activity can occur, where Iy = [ls,uql, I, =
[le; e, lsjes usje € N represent, respectively, an interval
of admissibility of the start and end times of the activity;

e u: R — N specifies the resources used by the activity;

e In C IC is a set of required information contents;

e Out C IC is a set of provided information contents.

Henceforth, we indicate with (-)(*) an element of the five-
tuple pertaining to activity a. The pair (x(*), v(®)) of an ac-
tivity a asserts a particular state v of the state variable x; the
flexible temporal interval I(*) represents possible temporal
intervals of occurrence of the state v(*) of state variable x(®).
Note also that a pair of activities (a, b) is possibly concur-
rent if 1(2) N I®) #£ (). A pair (a,b) of possibly concurrent
activities thus indicates that state variables x(*) and x(*) can
be, respectively, in states v(@) and v(®) at the same time.

Unspecified parameters of an activity are indicated with
(-)—e.g., (x,-,I,u,In, Out) indicates a predicate asserting
that state variable x can be in any state during interval I,
using resources as indicated by wu, etc.

Activities can be bound by femporal constraints, which
restrict the occurrence in time of the predicates. Temporal
constraints can be of two types:

e Binary temporal constraints in the form a Cb prescribe
the relative placement in time of activities a,b — these
constraints are relations in Allen’s Interval Algebra (Allen
1984), and restrict the possible bounds for the activities’
flexible temporal intervals 7() and 1(®);

e Unary temporal constraints in the form Ca prescribe
bounds on the start or end time of an activity a — these
constraints are commonly referred to as release time con-
straints and deadlines.

Allen’s interval relations are the thirteen possible temporal
relations between intervals, namely “precedes” (p), “meets”
(m), “overlaps” (0), “during” (d), “starts” (s), “finishes” (f),
their inverses (e.g., p~ '), and “equals” (=).

When state variables are used to represent a system, the
overall temporal evolution of such system is described by a
constraint network:

Definition 2 A constraint network is a pair (A,C), where
A is a set of activities and C is a set of constraints among
activities in A.

A constraint network can be used to represent a config-
uration plan. Configuration plans are said to be feasible if
they are consistent with respect to the resource, state, and
temporal requirements. Specifically,

Definition 3 A configuration plan (A, C) is feasible iff:

13

e the constraint network is temporally consistent, i.e., there
exists at least one allocation of fixed bounds to intervals
such that all temporal constraints are satisfied;

e activities do not over-consume resources, l.e.,
Y oaca u(“).(R) < Cap(R),V.R. € R, where A C Ais a
set of possibly concurrent activities;

e qctivities do not prescribe that state variables assume
different states in overlapping temporal intervals, i.e.,
vl £ v®) (g, b) € AxA:x® =x®) ywhere AC A
is a set of possibly concurrent activities.

A goal for a configuration planning problem is also repre-
sented as a constraint network, therefore expressing tempo-
ral, resource, state and information requirements. Typically,
a goal (A,, Cy) is an under-specified configuration plan. Ini-
tial conditions are feasible sub-networks of a goal. Maintain-
ing constraints on the configuration plan rather than commit-
ting to a specific configuration plan directly enables dynamic
goal posting, execution monitoring, and incremental adapta-
tion to contingent events, as we show in Section 3.

2.2 Domain

Given a goal (4,, Cy) and a configuration plan (A, C) which
contains the goal, the feasibility of the configuration plan
is not a sufficient condition for achieving the goal. This is
because feasibility does not enforce information and causal
requirements. The way these requirements are to be enforced
depends on a domain:

Definition 4 A configuration planning problem is a pair
((Ag,Cy), D), where (Ay, Cy) is a goal constraint network,
and D is a domain. The domain is a collection of operators,
which describe the information and causal dependencies be-
tween activities.

Definition 5 An operator is a pair (a, (A, C)) where
e a=(x,v,- -, 0ut) is the head of the operator;
o A= A,UA.U/{a} isa set of activities, where
- Ap is a set of preconditions, i.e., requirements, in terms
of state variable values, information input, and re-
source usage, needed to achieve the state v\®) of state
variable x\9 and o produce Out(a);

— A, is a set of effects, i.e., state variable values entailed
by the achievement of state v(*) of state variable x(®;

o Cis a set of temporal constraints among activities in A.

Computing a configuration plan consists in selecting and
instantiating operators form the domain into the goal con-
straint network. Unlike in classical planning (Ghallab, Nau,
and Traverso 2004), the relevance of an operator (y~1') is
not determined by unifying effects with sub-goals, rather by
the unification of an operator’s head with a sub-goal. The
head of an operator is a non-ground activity which describes
the value of a state variable and the information provided as
a result of applying the operator. Preconditions and effects
are nevertheless modeled, as their presence in the constraint
network is dealt with differently at execution time (see Sec-
tion 4).

An operator can be used to specify the information re-
quirements needed for achieving a particular functionality.
For instance, the MoveFromTo operator, which does not
provide any information content, requires the current posi-
tion of the robot:

a = (MoveFromTo, kitchen_livingroom, -, -, -,)
Ap = {a1,a2}, Ac = {as}, where
a1 = (-, -, {position})
a2 = (RobotLocation, kitchen, -, -, -, -)
as = (RobotLocation, livingroom, -, -, -, -)

C = {adahamf1 az,amas}

The head of the operator is a predicate on the func-
tionality MoveFromTo. The operator is considered rel-
evant when the constraint network contains an activity
(MoveFromTo, kitchen livingroom, -, -, -, -), i.e., when
a (sub-)goal stating that the robot must move from the
kitchen to the living room is present in the network. The op-
erator also prescribes the temporal relations that must exist
between the activities, namely that the MoveFromTo func-
tionality should occur during the availability of the position
data (a d ay), that it should be met by the precondition of the
robot being in the kitchen (a m~" ay), and that it meets the
effect of the robot being in the living room (a m ag).

An operator can also be used to represent a means to
achieve certain information requirements. For example, the
operator

a = (VisualSLAM, running, -, u(CPU) = 10, -, {position})
Ap = {a‘lva?}»Ae = @,where

C = {adal,am_1 a2}

specifies one way to achieve the necessary information re-
quirement (position) for the MoveFromTo operator, namely
through visual SLAM. This localization functionality re-
quires (1) a functionality which provides range data, (2) a
reference frame for the computation of the position estimate,
and (3) 10% of the CPU resource. Also, the operator states
that range data should be available during the entire dura-
tion of the localization process, and that the reference frame
is needed at the beginning of the process.

The above operator does not specify how to obtain the
needed information inputs. For instance, the range data
might be provided through the following operator:

a = (StereoCamDriver, on, -, u(Caml) = 1, -, {range_data})
A, ={a1}, Ac = 0, where a1 = (Light,on, -, -, -, ")
C={adai}
An operator may also specify that the reference frame is ob-

tainable by invoking a functionality of the stereo camera’s
pan-tilt unit:

a = (PanTilt, return_ref frame, -, -, -, {ref_frame})

Ay =0,A.=0,C=0

The above operators can be applied to obtain a configura-

14

tion plan from the following goal constraint network:

A = {ap = (MoveFromTo, kitchen_livingroom, Iy, -, -,)},
c=10

Specifically, a particular application of the above operators
may refine the given constraint network to the following:

A = {ao = (MoveFromTo, kitchen _livingroom, Iy, 0, 0, 0)

a1 = (VisualSLAM, running, I, u(CPU) = 10,
{ref_frame, range_data}, {position})

a2 = (RobotLocation, kitchen, I, 0, (), 0)

as = (RobotLocation, livingroom, I3, (), 0, 0)

as = (StereoCamDriver, on, Iy,
u(Caml) = 1,0, {range_data})

as = (PanTilt, return_ref_frame, I5, (),
(0, {ref frame})

as = (Light,on, Is,0,0,0)},

1
C ={apdai,aom " az,ao mas,ar das,a1 mas,asdag}

This network represents a temporally consistent configura-
tion plan in which resources are never used beyond their ca-
pacity, and state variables are never required to assume dif-
ferent values in overlapping temporal intervals. The plan is
therefore feasible. Furthermore, the plan contains activities
providing the required information contents as determined
by the operators in the domain. However, not all causal de-
pendencies are necessarily achieved by construction. If, e.g.,
the initial condition does not state that the light is on, the
configuration planner would regard the activity ag as yet an-
other sub-goal to satisfy, and might do so by applying the
following operator:

a = (Light,on, -, -, -,)
Ap =0, Ac = {a1}, where a; = (LightController, on, -, 0, -, -)
C = {apfl ar}

This operator models an actuation process (Light rep-
resents an environment variable), and its application
would refine the configuration plan by adding an activ-
ity a; = (LightController, on, I7,{,,?) to the network,
along with the constraint agp~'ay, prescribing that the
LightController be in state on before the light is required
to be on. Note that the light control functionality has no in-

formation requirements (In(al) =0).

3 Constraint-Based Search

The planning process used in our approach is incremental in
nature, and yields a refined constraint network, which itself
represents a feasible configuration plan which achieves the
given goal. The resulting constraint network represents one
or more temporal evolutions of the state variables that guar-
antee the achievement of the goal under nominal conditions.
Feasible and goal-achieving configuration plans are ob-
tained in our approach by means of four interacting solvers:
Temporal solver. The temporal consistency of the constraint
network is checked through temporal constraint propagation
by means of a Simple Temporal Problem (STP) (Dechter,

Meiri, and Pearl 1991) solver. The solver propagates tem-
poral constraints to refine the bounds [I5, us], [lc, ue] of the
activities in the network, and returns failure if and only if
temporally consistent bounds cannot be found.

Resource scheduler. This solver enforces that resources
are never over-consumed. The maximum capacities of re-
sources restrict which activities can occur concurrently, and
this solver posts temporal constraints to the constraint net-
work enforcing that over-consuming peaks of activities are
avoided (Cesta, Oddi, and Smith 2002).

State variable scheduler. State variable scheduling ensures
that activities do not prescribe conflicting states in over-
lapping intervals. Similarly to the resource scheduler, this
solver posts temporal constraints which impose a temporal
separation between conflicting activities.

Information dependency reasoner. Operators model the
information dependencies between functionalities'. This
solver instantiates into the constraint network relevant op-
erators (in the form of activities and temporal constraints)
so as to enforce the information dependencies.

Causal planner. Operators in the domain also model causal
dependencies between states. This solver instantiates into
the constraint network relevant operators (in the form of ac-
tivities and temporal constraints) so as to enforce the causal
dependencies of the configuration plan.

As noted, resource over-consumption and multiple con-
current states are averted by imposing temporal constraints
which sequence potentially concurrent activities; trivially,
there are alternative sequencing decisions that can be made
to resolve such a conflict, e.g., enforcing apb or ap~!b.
Also operator selection is subject to alternative choices, as
more than one operator may provide the necessary informa-
tion output and/or support the necessary causal dependency
(e.g., the presence of light in the environment may be ob-
tained as a result of invoking the light controller or by open-
ing the blinds.) Note that only temporal feasibility enforce-
ment is not subject to multiple choices, as the problem is
tractable. In our approach, all requirements which may entail
alternative courses of action are seen as decision variables
in a high-level Constraint Satisfaction Problem. Given a de-
cision variable d, its possible values constitute a finite do-
main 6¢ = {(A%,CY),...,(AL,C%),}, whose values are
alternative constraint networks, called resolving constraint
networks. The individual solvers are used to determine re-
solving constraint networks (A%, C%);, which are iteratively
added to the goal constraint network (A,4, Cy).

In order to search for resolving constraint networks, we
employ a systematic search (see Algorithm Backtrack),
which occurs through standard CSP-style backtracking. The
decision variables are chosen according to a variable order-
ing heuristic hy, (line 1); the alternative resolving constraint
networks are chosen according to a value ordering heuristic
hya (line 5). The former decides which (sub-)goals to at-
tempt to satisfy first, e.g., to support a functionality by ap-
plying another operator, or to resolve a scheduling conflict.
The latter decides which value to attempt first, e.g., whether

'In our approach, the domain is such that information depen-
dencies constitute an acyclic propositional Horn theory.

15

Function Backtrack (Ag, Cy) : success or failure
d < Choose ((Ag,Cy), hvar)
if d # () then
8% = {(A%,C), ...
while 6% # () do
(Aff, C’f)1 < Choose (d, hya)
if (A, U A, Cy U C?) is temporally consistent then
| return Backtrack (A, U A% CyUCH)
5% 6\ {(AL, i}

| return failure

) (Avd"7 Cg)”}

N=T- - I 7 A N S

return success

[
>

to prefer one operator over another. Note that adding resolv-
ing constraint networks may entail the presence of new de-
cision variables to be considered.

The possible values for resource contention or unique
state decision variables are temporal precedences among ac-
tivities. Values for information decision variables are ground
operators, as shown in the previous Section. Lastly, values
for causal decision variables are either ground operators,
or unifications with activities that already exist in the con-
straint network. Two activities ¢ and b can be unified if
x(@) = x(® A v(®) = v(2) Unifications are enforced by
imposing a temporal equality constraint ¢ = b among the
activities. Supporting unification is obviously necessary to
allow the search to build on previously added activities —
e.g., leveraging that the light has already been turned on
to support a previously branched-upon causal dependency.
More importantly, unification also allows to accommo-
date on-going sensing and execution monitoring processes
during configuration planning. For instance, activity a =
(Light,on, I®) (), (),)) could be supported by unification
with an activity asensea = (Light, on, [[0,0][13,13]],0,0,0)
which models the temporal interval within which a light
source was sensed by a sensor in the environment.

4 Plan Execution and Dynamic Plan Update

The ability to support on-line sensing is directly enabled
by the constraint-based representation: sensing is reduced to
dynamically updating the constraint network with new ac-
tivities and constraints representing the sensed state of the
environment; the same mechanism also supports prediction
(i.e., “sensing in the future”) and to other on-line plan mod-
ifications, such as temporal delays and dynamically posted
goal constraint networks.

Our approach is based on the alternation of planning and
plan execution monitoring. The former consists of the plan-
ning procedure shown above. The latter consists of two pro-
cesses, sensing and plan update. The sensing process adds
to the constraint network activities and temporal constraints
representing the current view of the environment as pro-
vided by sensors. The plan update process maintains and
updates temporal constraints which bound on-going activ-
ities (sensed states or functionalities in execution) with the
current time. This is done in O(n?). Also, this process im-
poses constraints that verify the existence of preconditions
and trigger the manifestation of effects contained in the plan.
Specifically, the presence of a precondition is verified by at-

tempting to unify the activity representing the precondition
with a sensed activity. If the unification is not possible, the
precondition is delayed by inserting a temporal constraint,
and is re-evaluated at the next iteration. The process enforces
the occurrence of activities representing effects by posting
temporal constraints which fix their start time to the current
time. The effect of the constraints posted by these processes
is that functionalities start when possible, are delayed until
the preconditions hold, and their effects are imposed when
necessary. This step also requires polynomial computation.

In our current implementation, all solvers monitor the net-
work for new decision variables. Thus “re-planning” occurs
by temporal propagation, resource or state variable schedul-
ing, or operator application, depending on the situation. This
mechanism is what enables dynamically posted goals, as in
other temporal constraint-based continuous planners (Mc-
Gann et al. 2008; Barreiro et al. 2012), but here we also deal
with resources, sensor data and information constraints. We
show an example of this behavior in the next Section.

5 Experiments

We now present a series of experiments aimed at describing
the main features of our approach. All the experiments are
related to the following elderly assistance scenario.

Sven lives in a smart home equipped with two ser-
vice robots. The robots carry a pill dispenser and can
fetch packages and mail delivered to the apartment.
The apartment has 3 rooms: a living room (L), an en-
trance (E) and a kitchen (K) accessible through a con-
trollable door. Sven has specified that he never wants
two robots in the kitchen at the same time, as it is a clut-
tered environment. The robots require laser- or Kinect-
based localization to navigate, but the Kinect should
not be used in the kitchen for privacy concerns.

The motion of a robot is managed by the MoveFromTo
functionality, whose localization requirement can be pro-
vided either by the robot’s laser-scanner or by its on-board
Kinect. A resource of capacity one is associated to the
kitchen, and all activities on state variables MoveFromTo
and Location concerning the kitchen consume one unit of
this resource. Another unit capacity resource is used as a
mutex to make sure that Sven picks the mail and the pills
from the robot sequentially.

In the following experiments, we describe the
plans obtained given the following two goals:
g1 = (Pills, DELIVER, I1,0,0,0), which re-

quires delivering pills to Sven who is in the kitchen;
g2 = (Post, DELIVER, I5,(,0,0), which requires
delivering him the mail after picking it up at the entrance.
The initial location of both robots is the living room, at their
docking station. A third goal is always added, namely that
a robot must return to the docking position after all other
goals have been achieved. Due to space limitations, the final
docking task is shown for one robot only.

In the first experiment, we provide only one robot, and we
impose a deadline on g;. This constrains the robot to deliver
the pills before fetching the mail (Figure 1, top). Both g;
and go are achieved by time ¢ = 110. Relaxing the deadline

16

lll 70 80 90 100 ll(l l)ll 151!

Robot1.MoveFromTo Bz
Robot1.Laser 77 //@Ll/ A7
Robot1.Post ; DELIVER
Robot1.Manipulation
Robot1.Pills <
Robot1.Location 7777877277772
Robot1.Docking i
Door.Kitchen Z A
10 50 7080 90 100 110 120 130
Robot1.MoveFromTo
Robot1.Laser /// R R
Robot1.Kinect [
Robot1.Post
Robot1. Manipulation
Robot1.Pills
[I{uI;xutl.Lfn(i\Itinll) 7777777877222
Robot 1.Docking H
Door Kitchen ZZ X
010 20 30 40 50 60 70 80 90 100 110 120 130
Robot2.Post DELIVER
Robot2. Manipulation
Robot2.MoveFromTo ; K
Robot2. Kinect [ZOBA
m.mu_m
Robot2.Location % //////////////”/////////////4
Robot1.Pills DELIVH
Robot1.MoveFromTo
Robotl.Location
Robot1.Laser
Robotl.Docking
Door.Kitchen

Figure 1: The three plans for achieving g1 and go (dotted lines
indicate the deadline for g1).

allows the robot to achieve g; and g» slightly earlier, as it
has time to first go to the entrance and then to reach the
kitchen, where it delivers both the mail and the pills within
time ¢t = 90 (see Figure 1, middle). In the second solution,
the planner has exploited the path used for one sub-goal to
achieve the other.

Considering both robots leads to achieving g; and g2 even
under the tighter deadline on g, as mail fetching and pill
delivery can be parallelized (Figure 1, bottom). The planner
has resolved resource contention on the kitchen resource, as
testified by the fact that (Robot2.Location, E, I, (), 0, §) has
been extended until Robot1 has reached L.

5.1 Contingencies and Dynamic Goal Posting

The experiment shown next is executed in simulation
with ROS/Gazebo? using two Willow Garage TurtleBots
equipped with a laser range finder and a Kinect. The nominal
durations of planned activities are modified during execu-
tion, and the constraint network is updated with constriants
and activities representing sensor readings, as described in
Section 4.

The experiment starts at time ¢ = 0, when g¢» is posted.
The resulting plan involves Robot2 (see Figure 2, top). At
time t = 20, goal g; is posted. The planner accommo-
dates this new goal, and execution proceeds as normal until
t = 70, when a sudden delay appears: the arrival of the post-
man at the door will require more than the nominal duration
of 20 (see Figure 2, middle), violating the deadline on g;. At
this point, re-planning is triggered: functionalities currently
in execution are retracted, and planning to achieve the two
previously posted goals occurs. The new plan considers the
situation reached through the previous plan, as well as sen-
sor readings and execution status information (which have
extended nominal durations of planned activities).

The plan resulting from re-planning involves the use of
both robots, as one robot is stuck at the door waiting for

*http://www.r0s.org/.

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 230 260 270 280 290 300 3]0 320 330 3J0
Robot2 Manipulation
Robot2.Post. DELIVER
Robot2.MoveFromTo
Robot2 MoveFromToSensed
Robot2.LocationSensed [(s)
Robot2. Laser W77zzzzzzz777727277750777777777777777777777
Robot2.Kinect PZ882)
Robot2.Docking [0}
Door.Kitchen A
Door.KitchenSensed
10 20 30 40 50 60 70 80 90 100 110 120 130 140 130 160 170 180 190 2

Robot2.Pills
Robot2 Manipulation
Robot2.Post

DELIVER

DELIVER

Robot2.MoveFromTo
Robot2.MoveFromToSensed
Robot2.LocationSensed
Robot2. Laser 7777777788777 477777777

Robot2.Kinect

Robot2.Docking 0¥
Door.Kitchen [
Door.KitchenSensed
210 220 230 240250
Robot2.Post [
Robot2 Manipulation
Robot2.MoveFromTo

Robot2.MoveFromToS
Robot2.Laser
Robot2.Location
Robot1.Pills
Robot1.MoveFromTo
Robotl.MoveFromToSensed
Robot1.Location
Robotl.Lascr
Door.KitchenSensed

)

W7zzzZ72882222

95

Figure 2: State of execution at times ¢ = 20 (top), ¢ = 70 (middle), ¢ = 340 (bottom). The dotted line indicates the deadline for g;.

the arrival of the postman, while the other is free to deliver
the pills. Figure 2 (bottom) shows the state of affairs at the
end of execution (f = 340). The simulator output during
significant moments in the execution of this experiment is
shown in Figure 3. Videos of both the simulated run and one
with real robots, together with the domain, are available at
http://aass.oru.se/~modo/AAAI-FSS-2013/.

Figure 3: Simulator output (re-planning occurs at snapshot 3).

6 Conclusions

Our work is a first step towards building an approach to plan-
ning that can be used with real robotic systems. On-going
work is addressing the issue of performance analysis and
deployment in physically instantiated scenarios. In our fu-
ture work we plan to study more sophisticated and efficient
re-planning strategies, address the issue of including pre-
dicted/perceived human plans dynamically, consider spatial
constraints, and take uncertainty into account.

References
Allen, J. 1984. Towards a general theory of action and time.
Artificial Intelligence 23(2):123-154.
Barreiro, J.; Boyce, M.; Frank, J.; latauro, M.; Kichkaylo,
T.; Morris, P.; Smith, T.; and Do, M. 2012. EUROPA: A
platform for Al planning. In Proc of ICAPS-ICKEPS.

17

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics 8(1):109—136.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61-95.

Dobherty, P.; Kvarnstrom, J.; and Heintz, F. 2009. A tem-
poral logic-based planning and execution monitoring frame-
work for unmanned aircraft systems. Autonomous Agents
and Multi-Agent Systems 19(3):332-377.

Fikes, R., and Nilsson, N. 1972. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3):189-208.

Ghallab, M., and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In AIPS, 61-67.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: Space exploration through con-
tinuous planning. Intelligent Systems 16(5):70-75.

Lundh, R.; Karlsson, L.; and Saffiotti, A. 2008. Au-
tonomous functional configuration of a network robot sys-
tem. Robotics and Autonomous Systems 56(10):819-830.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008. A deliberative architecture for auv
control. In ICRA, 1049-1054.

Parker, L., and Tang, F. 2006. Building multirobot coalitions
through automated task solution synthesis. Proc of the IEEE
94(7):1289-1305.

Parker, L. 1998. ALLIANCE: An architecture for fault tol-
erant multirobot cooperation. IEEE Trans on Robotics and
Automation 14(2):220-240.

Saffiotti, A.; Broxvall, M.; Gritti, M.; LeBlanc, K.; Lundh,
R.; Rashid, J.; Seo, B.; and Cho, Y. 2008. The PEIS-ecology
project: vision and results. In /ROS, 2329-2335.

