
  
  

Modeling Microtext with 
Higher Order Learning 

Christie Nelson       Hannah Keiler       William M. Pottenger 
RUTCOR, Rutgers University     Statistics, Columbia University   DIMACS & RUTCOR, Rutgers University 
cnelson@dimacs.rutgers.edu     hpk2108@columbia.edu          drwmp@cs.rutgers.edu   

 
 
 
 

Abstract 
Processing data manually is especially problematic during a 
natural disaster, where aid and response are quickly and 
urgently needed.  In real time scenarios, a difficult yet 
important problem is to be able to get an accurate picture of 
needs from streaming data in a short time.  When the 
streaming data includes microtext, this problem becomes 
even more challenging.  In the application of emergency 
response, modeling microtext in real-time is especially 
important.  Once messages have been classified and/or 
topics learned, the predicted categories and/or topics can be 
used by emergency responders to rapidly respond to needs. 
 
In this effort, microtext from social media and text messages 
during the 2010 Haitian earthquake were modeled using 
novel machine learning algorithms: Higher-Order Naïve 
Bayes (HONB) and Higher-Order Latent Dirichlet 
Allocation (HO-LDA).  Both illustrate that Higher-Order 
Learning can be valuable in classifying text data.  Higher-
Order Learning improves model generalization in online or 
real-time scenarios when smaller amounts of data are 
available for learning.  Results from this research are 
promising in that when using samples of training data, the 
HONB classifier statistically significantly outperformed 
Naïve Bayes in all trials based on the accuracy metric.  
Promising results were also obtained in the comparison of 
HO-LDA versus traditional Latent Dirichlet Allocation. 

 Introduction   
In real time scenarios, such as emergency response for 
disaster events, an accurate picture of the situation at hand 
is needed quickly.  This can be obtained from streaming 
data, such as from text messages and social media sources.  
This type of data tends to be in the form of microtext, short 
pieces of text, so the problem of modeling the data 
becomes even more challenging. 
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 In a real-time situation like responding to a natural 
disaster, the ability to build models on small amounts of 
data is critical since in general less data is available. 
Higher-Order Learning techniques are invaluable in this 
type of situation, as leveraging relational information in 
model construction results in models that generalize better 
on smaller amounts of data.   
 Here, various learning approaches involving Higher-
Order Learning will be discussed.  In this research, Naïve 
Bayes and its Higher-Order counterpart, Higher-Order 
Naïve Bayes (HONB), are used to classify text data from 
the 2010 Haitian earthquake.  A second approach involves 
modeling the data using topic modeling approaches such as 
Latent Dirichlet Allocation and Higher-Order Latent 
Dirichlet Allocation (HO-LDA).  Once messages have 
been classified and/or topics learned, the predicted 
categories and/or topics can be used by emergency 
responders to more rapidly respond to emerging needs. 
 This paper is organized as follows. In the following 
section, Background and Related Work are presented.  
Next, the Approach and then Results are presented.  
Conclusions and Future Work are discussed in closing. 

Background and Related Work 
Haitian Earthquake 
On January 12, 2010, Haiti was hit with a devastating 
earthquake of magnitude 7.0.  It was the worst to strike 
Haiti in 200 years and resulted in over 230,000 deaths and 
an additional 300,000 injured people (Heinzelman and 
Waters 2010).  Despite the fact that many organizations 
arrived in the wake of the earthquake offering aid and 
supplies, there were many deaths after the earthquake due 
to unsanitary living conditions and unclean water.  
Emergency responders using traditional methods of 
disaster response had difficulty collectively prioritizing and 
physically locating people and areas of need. 

Analyzing Microtext: Papers from the 2013 AAAI Spring Symposium 
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Figure 1. Ushahidi map of needs concentrated 
aroundPort-au-Prince 

Choose θ ~ Dirichlet(α) 
For each of the N words wn: 
Choose a topic zn  ~ Multinomial(θ) 
Choose a word wn from p(wn | zn; β), a multinomial 
probability conditioned on the topic zn and parameterized 
by the topic distributions β 

 
Figure 2. The generation of a corpus of documents 

using the Latent Dirichlet Allocation Model 

In an effort to combat the chaos that ensued from the 
earthquake, an organization called Ushahidi gathered 
information from social media sources such as blogs, 
Twitter, and Facebook, as well as text messages.  This 
valuable information was then used to illustrate areas with 
the greatest need on a visual map, which was publicly 
available.  An example of a map made by Ushahidi is 
shown in Figure 1.  Ushahidi began gathering information 
and reports within two hours of the earthquake.  Ushahidi 
volunteers found that they had the most difficulty in 
verifying and triaging the massive amount of information 
that came in during the early days of the disaster.  Manual 
translation and triaging were performed, which was time 
consuming at a period when speed was vital.   

 The research goal of this work is to examine and 
improve the modeling of social media emergency text.   
The hope is that in the future there will be a way to 
automate categorization in an emergency.  This will 
improve the response time within which emergency needs 
can be met. 
Topic Modeling 
A topic model is a statistical model for discovering the 
unobserved topics which explain why individual text 
documents within a collection of documents (called a 
corpus) are similar.  This research focused on a type of 
topic modeling first proposed by Blei, Ng, and Jordan 2003 
named LDA (Figure 2).  An important assumption is that 
each document is a “bag of words,” which means that the 
order of the words does not matter.  Given a collection of 
documents, the posterior distribution of the latent variables 
(the underlying topics and the distribution with which each 
document exhibits them) given the words determines the 
decomposition of the underlying topics of the collection.  
In this application, the observed data were the words of 

each social media message, and the individual social media 
messages were treated as documents.   

The underlying topics, their structure, and their 
distribution within a document can be learned by using 
posterior inference.  In this project, Gibbs Sampling was 
used, which is a standard algorithm.  In order to perform 
inference using a Gibbs Sampling algorithm, the 
conditional probability of occurrence of a topic for a given 
word in the corpus is used: 

 
(1) 

 
 
The underlying distribution that is assumed to generate 

the corpus is parameterized by a Dirichlet parameter α.  
The number of topics is assumed to be some T.  Suppose W 
is the size of the dictionary of words.  α is a vector of 
length T and β is a T x W matrix where each row of the 
matrix is a Dirichlet parameter vector of length W.  This 
formula is used in sampling the topic for the term w at 
position i.  The term  corresponds to the number of 
occurrences of the term w that are assigned to the topic j, 
not including the current (ith) occurrence and is the 
total number of words assigned to topic j, not including the 
current one. di corresponds to the ith document.  Basically, a 
word is assigned to a topic with probability proportional to 
its frequency of occurrence in that topic. 

The computational complexity of LDA is O(NKV) for N 
documents, V number of words in the vocabulary, and K 
number of topics (Blei 2008).  Posterior multinomals do 
not need computed for each instance of each term in a 
document.  Rather, they can be computed just once per 
unique term in a document. 
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Table 1: Mean Classification Accuracies obtained on the 
Science subset of the 20 Newsgroups dataset (Ganiz, Lytkin, 

and Pottenger 2009) 

Higher-Order Learning 
Traditional machine learning techniques make assumptions 
that attributes, or words in our case, are IID (independent 
and identically distributed).  These traditional methods can 
be thought of as “zero-order” since they do not leverage 
relationships between attributes across instances. The 
traditional IID assumption does not permit traditional 
machine learning methods to leverage “higher-order” 
relationships (Ganiz, George, and Pottenger 2011).  
Higher-Order Learning techniques can be useful in this 
area, as they do not assume that attributes are IID.  Instead, 
Higher-Order methods take advantage of the latent 
information in higher-order paths between attributes.  
These paths leverage relationships between attribute values 
regardless of instance boundaries. 

 Higher-Order Learning has been shown to work well in 
several applications in the statistical relational learning 
field.  Sometimes there is only a small amount of labeled 
training data available.  When approaching this problem 
using traditional machine learning methods, traditional 
algorithms often do not perform very well.  An underlying 
issue is the previously discussed assumption of IID 
attributes.  Traditional machine learning methods do not 
leverage the relationships between attributes across 
instances.  This is where Higher-Order Learning 
techniques can be very useful.  Therefore, Higher-Order 
Learning techniques often outperform traditional machine 
learning techniques, providing much better results 
especially when data is sparse (Nelson et al. 2012).  

In related prior work done by Ganiz, Lytkin, and 
Pottenger 2009, higher-order paths were successfully 
leveraged in entity classification using HONB, a generative 
learner, and Higher-Order Support Vector Machines 
(HOSVM), a discriminative learner.  Table 1 portrays a 
sampling of the results, which demonstrate the value of the 
Higher-Order learning framework.  Illustrated in the results 
of Table 1 are mean classification accuracies (reproduced 
from Ganiz, Lytkin, and Pottenger 2009) obtained on the 
Science subset of the 20 Newsgroups dataset.  This dataset 
contained four classes; 5% (25 documents per class) of the 
data was used for training, the remaining 95% (475 
documents per class) was used for testing.  Performance of 
every pair of classifiers was significantly different at 95% 
confidence level.  As Table 1 portrays, HONB statistically 
significantly outperformed both Naïve Bayes and SVM, 
despite the latter approach (SVM) being well-known to 
perform well on text classification tasks.  Likewise, 
HOSVM outperformed Naïve Bayes and SVM.   

 

As detailed in (Ganiz, Lytkin, and Pottenger 2009), these 
results from Table 1 are representative in general of the 
performance of algorithms that leverage Higher-Order 
Learning techniques.   
Prior Work – Nuclear Detection Using HONB 
Prior research was performed on a nuclear detection 
dataset using HONB by Nelson and Pottenger 2011.  The 
detection of potentially threatening nuclear materials is a 
challenging homeland security problem.  This research 
involved the application of a novel statistical relational 
learning algorithm, HONB, to improve the detection and 
identification of nuclear isotopes.  When classifying 
nuclear detection data, distinguishing potentially 
threatening from harmless radioisotopes is critical.  This 
research applied Higher-Order Learning to nuclear 
detection data to improve the detection and identification 
of four isotopes: Ga67, I131, In111, and Tc99m.  

 In this nuclear detection research, traditional IID 
machine learning methods were applied, and the results 
were compared with the performance of leveraging 
Higher-Order dependencies between feature values using 
HONB.  These findings gave insight on the performance of 
higher-order classifiers on datasets with small positive 
class size.  In this research, Naïve Bayes was compared 
with its Higher-Order counterpart, HONB.  HONB was 
found to perform statistically significantly better for 
isotope Ga67 when using a pre-processing methodology of 
discretizing then binarizing the input sensor data.  Similar 
results were seen for various samples of training data for 
I131, In111, and Tc99m.  HONB was also found to 
perform statistically significantly better for isotopes I131 
and Tc99m when the pre-processing involved 
normalization, discretization then binarization.  This study 
showed that Higher-Order Learning techniques can be very 
useful in the arena of nuclear detection.  
Prior Work – Nuclear Detection Using HO-LDA 
Prior work was performed on the same nuclear detection 
dataset by Nelson et al. 2012, only this time using a novel 
topic modeling approach, HO-LDA.  In total, seventeen 
different nuclear radioisotopes were modeled, and the 
performance of Higher-Order versus traditional techniques 
was then evaluated. 

This project employed LDA and HO-LDA on a nuclear 
detection numeric dataset to obtain a topic decomposition 
for each instance.  For evaluation purposes these learned 
topics were then used as features in a traditional supervised 
classification algorithm.  In essence, the LDA or HO-LDA 
topic assignments were used as features in supervised 
learning algorithms that predicted the class (isotope), 
treating LDA or HO-LDA as a feature space transform.  
Results demonstrated further evidence that Higher-Order 
Learning techniques can be usefully applied in topic 
modeling applied to nuclear detection.  
 
 

 NB HONB SVM HOSVM 
Mean 0.632 0.833 0.751 0.792 
Stdev. 0.071 0.043 0.029 0.039 
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Problem Definition 
There are several objectives of this research.  The 
overarching goal is to improve machine learning of 
microtext, a challenging research area.  The second goal of 
this research is to illustrate that methods based on Higher 
Order Learning outperform traditional techniques.  In 
particular, the goal is to show that topic modeling with 
HO-LDA outperforms LDA on our emergency response 
social media dataset, and similarly that HONB outperforms 
traditional Naïve Bayes on this data.  However, since one 
is unsupervised and the other not, we will not be directly 
comparing HO-LDA with HONB.  

Approach 
Higher-Order Naïve Bayes 
Naïve Bayes is a traditional classifier, based on Bayes 
Rule.  Bayes Rule states that for some events A and B: 

 
P(A|B) = P(B|A)P(A) / P(B)    (2) 

Naïve Bayes assumes strong “naïve” independence, and 
also assumes that the absence (or presence) of a particular 
attribute is unrelated to the absence (or presence) of any 
other attribute.  Assuming independence makes a good 
estimation challenging when considering real world 
applications.  In practice, sometimes there is only a small 
amount of training data to use.  In these cases, it can help 
to use other more sophisticated machine learning 
techniques that do not make the IID assumption.   

 As shown in Figure 3, HONB utilizes relationships 
between attribute values across instances.   In Figure 3, 
there are three sample instances shown, instances D1, D2, 
and D3. Instance D1 has two attributes (a and b), instance 
D2 has two attributes (b and c), and instance D3 has two 
attributes (c and d).  Traditional Naïve Bayes does not 
leverage the latent Higher-Order paths.  However, HONB 
uses these Higher-Order paths to create a link between 
attributes.  In this example, attributes a and d are linked by 
leveraging the higher-order paths between attributes in D1, 
D2, and D3.  
Higher-Order Latent Dirichlet Allocation 
One potential shortcoming of LDA is that it only considers 
relationships between observations within individual data 
instances (documents) while disregarding the dependencies 

that link observations across documents.  It assumes the 
instances are IID.  In other words, LDA looks at “zero-
order” relations.  To address this, Higher-Order LDA was 
developed (Nelson et al. 2012).  This novel approach to 
topic modeling modifies the Gibbs-sampling formula of 
LDA given in (1) by replacing feature frequencies in topics 
with their Higher-Order path counts (see Figure 3).  In 
other words, in Equation 1, these counts were replaced 
with higher path counts for the feature w in topic j. Results 
demonstrated further evidence that Higher-Order Learning 
techniques can be usefully applied in topic modeling 
applied to nuclear detection.  

 
 

(3) 
 

The Data 
The data came from an organization called Ushahidi, 
which was created during the 2007-2008 post-election 
violence in Kenya.  Ushahidi was designed as a way to 
report incidents and provide up-to-date information about 
the violence.  It is “an open source crisis mapping 
platform” (Chaturvedi, Swami, and Singh 2011) that relies 
on crowdsourcing information from text messages and 
social media outlets to report and illustrate locations of 
need. Responders and the general public can use this to see 
where needs are concentrated and to find information not 
yet reported in the news. 
 Ushahidi was deployed within two hours of the 2010 
Haitian earthquake.  Volunteers quickly realized that much 
more manpower was needed to be able to handle the 
massive volume of information and messages coming in.  
Within four days of the earthquake, a collaborative effort 
between Tufts University, FrontlineSMS, the United States 
State Department, and Digicel set up a system that allowed 
Haitians to send text messages to an emergency number, 
and then volunteers manually classified the needs and then 
mapped them using Ushahidi.  Approximately 85% of 
Haitian households had access to mobile phones after the 
earthquake, and many of the phone towers had been 
repaired by the time it became operational, aiding in the 
success of the Ushahidi Haitian deployment. 

The Ushahidi Haitian data includes 3,598 texts from 
social media sources and text messages sent in the wake of 
the 2010 Haitian Earthquake. 3,561 of these messages are 
in English or were translated into English. The rest are in 
French or Haitian Creole and were not used in this 
research. Messages include medical needs, texts for help 
from survivors in the rubble, updates about infrastructure, 
and messages stating that supplies are available or are 
needed.   

As messages could contain requests for multiple types of 
help needed, various labeling schemes were evaluated to 
deal with messages requiring multiple messages.  For 

a, b b, c c, d 

a b d c 
D1 D2 D3 

Figure 3. Example of Higher Order Relationships 
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example, one of the texts in the dataset “THERES A 
BRIDGE IN DELMAS 31 THAT IS DAMANGED, 
THERES NO FOOD AND NO GAS YET” reports both a 
damaged structure and a need for food and gas.  The 
original Ushahidi data has 36 categories.  However, after 
examining these messages, it became clear that in the haste 
of the emergency, many of the text messages were 
incorrectly labeled (i.e., a message of someone looking for 
information about a family member was labeled as 
“Services Available”).  Initial trials were performed using 
the 36 categories created by Ushahidi, but classification 
accuracy was low.  In addition, the original 36 categories 
were not rigorously defined, so a new labeling scheme was 
created, and the messages were entirely re-labeled to 
ensure correctness of the labeling scheme for experiments.  
19 clearly defined categories were used for the scope of 
this research.  Each message was labeled with all relevant 
categories.  

As the classifiers employed in this project used only one 
label per message, three labeling schemes were examined 
to determine which performed best in early trials, which 
will be discussed later in the paper.  First, the importance 
of the labels was priority ranked by most important to least 
important.  For example, responding to violence would 
require more urgent attention than delivering clothing.  
Then a message was first labeled by the “most important” 
relevant class (“Rank 1”), with an inter-rater reliability of 
92.7%, and a “second most important” relevant class 
(“Rank 2”), with an inter-rater reliability of 38.7%.  A third 
labeling method was to qualitatively determine which label 
was the “Most Relevant.”  This was done by using the need 
that was emphasized or stated the most times within the 
message (having nothing to do with importance).  Different 
trials were performed with all three different labels.  
Ultimately, the “Rank 2” labeling schema slightly 
outperformed the other two labeling approaches with 
respect to the metrics accuracy, precision, recall, and F-
measure.  The reason “Rank 2” performed the best requires 

further investigation, but performance was only slightly 
better.  In fact, labeling was a challenging part of this 
research: reading and correctly labeling 3,561 messages 
was time-consuming, again illustrating the importance of 
using machine learning in the arena of text classification.  
Two Approaches to Preprocessing 
In order to prepare the text data to be used in the 
classification algorithms, each word in each message had 
to be represented as a draw from a multinomial 
distribution, which is the input that LDA and HO-LDA 
require.  Two approaches were initially evaluated, and the 
same methods were used for both HONB and HO-LDA 
experiments.   
 To convert the text data for input into the various 
learners, a dictionary of words was created.  This 
dictionary was created by first stemming the words, and 
then using all of the stems to create a dictionary.  In 
particular, to determine the dictionary stems, common 
words (and, the, or, etc.), punctuation, and words occurring 
no more than once in the entire dataset were removed.  The 
“common words” were those in the NLTK stopwords 
(www.nltk.org).  The remaining words were then stemmed 
using the Porter Stemmer (Porter 1980) to create a 
dictionary of stems.  Next, the remaining words appearing 
in each of the messages had to be given numeric values 
corresponding to the appropriate stem(s) and the dictionary 
index location of the stem(s).   

The first approach for converting the text messages for 
input, Multiple Stem feature creation, used all stems that 
corresponded to a word.  This means that one word may 
have multiple index values.  For example, if the words 
“child” and “children” appeared separately in messages, 
then both the stems “child” and “childr” were in the 
dictionary of stems after the Porter Stemmer removed 
suffixes.  Suppose “child” has index 20 and “childr” index 
332.  As a result, when using this method, the word 
“children” was represented by the two numbers of the 
index in the dictionary, 20 and 332. 

The second method, called Longest Stem feature 
creation, used only the longest stem corresponding to each 
word. In the same example, the word “children” was 
represented only by one index value - the index number 
corresponding to the stem “childr” which was 332. 
 Our dictionary follows Zipf’s Law, which states that in a 
natural language corpus, the frequencies of occurrences of 
words are inversely proportional to their rank (Zipf 1932), 
illustrated by the linearity of the log-log plot in Figure 4.  
Pre-processing for Higher-Order Naïve Bayes 
For the HONB trials, only the Longest Stem feature 
creation method combined with the Rank 2 labeling 
scheme were used for the trials.  Trials were performed for 
training sample sizes 20% through 65% at 5% intervals. 

Figure 4. log-log plot of rank vs. frequency for the dictionary 
of stems made from the Haitian text data  
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Samples were selected in a randomized, stratified manner. 
The accuracy metric was examined.  
Approach for Higher-Order Latent Dirichlet Allocation 
After the initial preprocessing was performed on the text 
data, as discussed above, initial trials were performed 
examining both preprocessing methods (Multiple Stem and 
Longest Stem feature creation), as well as the three 
labeling approaches (Rank 1, Rank 2, and Most Relevant).  
After examining early results, Longest Stem was the 
feature creation selected with the Rank 2 labeling scheme.  
Results presented in this paper reflect these choices.   
 Trials were first performed for the entire training set, a 
sample size of 100% of the data.  The preprocessed data 
was modeled using LDA and HO-LDA for 5, 10, and 20 
topic models.  Then, the topic probability assignments 
were used as attribute values, and the instances were 
classified using the decision tree induction algorithm J48 in 
the WEKA Workbench.  30 trials were performed for each 
experiment (e.g., 30 for the LDA 5 topic model, 30 for the 
HO-LDA 5 topic model, etc.) using standard 10 fold cross 
validation.  Standard metrics of accuracy, precision, recall, 
and F-measure were recorded.  
 Sampling for the Haitian text data was also examined.  
For each training sample size (15%, 25%, and 50%), 30 
randomized, stratified datasets were created.  The 
remaining data that was not used in the training sample 
was used for testing.  The data was again classified using 
the same experimental design.   Standard metrics of 
accuracy, precision, recall, and F-measure were recorded.  

Results 
Higher-Order Naïve Bayes Results 
In this section, results from the Longest Stems feature 
creation approach with the Rank 2 labeling scheme are 
presented.  See Table 5 for complete results.  In all cases, 
HONB statistically significantly outperformed Naïve 
Bayes.  HONB accuracy results ranged from 39% to 47%, 
and Naïve Bayes accuracy results ranged from 27% to 
45%, illustrating the difficulty of this classification 
application on microtext.  
Higher-Order Latent Dirichlet Allocation Results 
When using the Longest Stem feature creation approach 
with Rank 2 labels, HO-LDA consistently performed as 
well or statistically significantly better than LDA across all 
training set sample sizes of 15%, 25%, 50% and 100% 
(even though performance was not much better).  These 
results indicate that leveraging Higher-Order Learning for 
topic modeling results in statistically significant 
improvements over the standard zero-order approach in 
many cases.  Results are illustrated in Tables 2-4. 
 For a sample size of 100%, for all of the metrics: 
accuracy, F-measure, precision, and recall, HO-LDA 
statistically significantly (α=.05) outperformed LDA for 5 

and 10 topics. For 20 topics, HO-LDA and LDA 
performed the same.  

For a sample size of 15%, across all of the metrics, HO-
LDA outperformed LDA statistically significantly for 10 
and 20 topics. For 5 topics, there was no significant 
difference between HO-LDA and LDA.  

Next, for training sample size of 25%, across all of the 
metrics, HO-LDA outperformed LDA statistically 
significantly for 20 topics.  For 5 topics and 10 topics, 
there was no significant difference.  

Finally, for training sample size of 50%, HO-LDA 
statistically significantly outperformed LDA for 5 topics 
with the precision metric.  In other cases, there was no 
statistically significant difference.  These results are 
consistent with prior research in Higher-Order Learning 
that reveal significant performance gains especially when 
the available training data is small, a situation that arises in 
online or real-time learning scenarios. 

Conclusion and Future Work 
In this effort we have demonstrated the value of applying 
Higher Order Learning techniques to the challenging 
problem of modeling microtext data for emergency 
response.  Both Higher-Order Learning algorithms 
evaluated, HONB and HO-LDA, performed comparably or 
statistically significantly better than their zero-order 
counterparts.  This is an important result given the need to 
model streaming data in real-time during emergency 
response. 
 There are many possibilities for future work in this 
interesting application domain.  One immediate future 
work item is to incorporate data from the 2010 Chile 
earthquake, as well as the 2011 Japan earthquake.  These 
earthquake datasets may be obtained from Ushahidi.  The 
use of additional training data may improve classification 
accuracy, another important goal for future work. 
 Another aspect of future work is the use of the topics 
learned by topic modeling algorithms like HO-LDA as 
input to resource allocation frameworks.  Such frameworks 
can benefit emergency response by allocating urgently 
needed resources based on real-time modeling of resource 
needs.  This idea is currently being explored further. 
 A final component for future work is to look at an open 
problem in the fields of clustering and topic modeling: 
determining the optimal number of topics for LDA or HO-
LDA.  In topic modeling, hierarchical topic models have 
been proposed in (Blei et al. 2004) as a way to avoid 
having to select the number of topics as an input parameter 
prior to creating the model.  The Chinese Restaurant 
Process (CRP) has been proposed as a basic way to think 
about a prior distribution for the number of topics.  The 
idea of CRP is that there is a Chinese Restaurant with an 
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infinite number of tables.  A person enters a restaurant and 
sits at an occupied table with probability proportional to 
the number of people already there or sits at a new table.  
The tables represent the topics, the people are the 
documents, and the number of tables is the number of 
topics.  In (Teh et al. 2006), an analog of the CRP called 
the Chinese Restaurant Franchise (CRF) was developed for 
use with LDA as a prior for the number of topics.  The 
schema for CRF is that there is an infinite number of 
restaurants in a franchise and a global menu of dishes.  The 
first customer who sits at a table orders a dish, which is 
shared among the subsequent members arriving at the 
table.  The dish corresponds to the topic, and the restaurant 
to the document, so topics can be shared across documents.  
In future endeavors, we hope to incorporate a version of 
CRF to HO-LDA.  
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Table 2. T-Test Results. HO-LDA vs. LDA using J48, 5 Topics 

  

HO-
LDA 
Avg. 

HO-LDA 
Standard 
Deviation 

p 
Value 

LDA 
Avg. 

LDA 
Standard 
Deviation 

Accuracy - 100% 0.2474 0.0055 0 0.2392 0.0064 

F-Measure-100% 0.2386 0.005 0 0.2305 0.006 

Precision - 100% 0.2329 0.0051 0 0.2254 0.0059 

Recall - 100% 0.2473 0.0054 0 0.2392 0.0064 

Accuracy - 50% 0.2384 0.0086 0.2258 0.2365 0.0107 

F-Measure - 50% 0.2295 0.0086 0.0552 0.2248 0.0133 

Precision - 50% 0.2238 0.0089 0.0427 0.2192 0.0113 

Recall - 50% 0.2384 0.0086 0.2391 0.2366 0.0108 

Accuracy - 25% 0.225 0.0112 0.1452 0.2222 0.009 

F-Measure - 25% 0.2161 0.0105 0.0789 0.2126 0.0083 

Precision - 25% 0.2105 0.0101 0.0539 0.2066 0.0083 

Recall - 25% 0.2249 0.0112 0.1529 0.2222 0.0089 

Accuracy - 15% 0.1993 0.0144 0.4373 0.1989 0.0078 

F-Measure - 15% 0.1909 0.0102 0.1317 0.1882 0.0082 

Precision - 15% 0.1856 0.0096 0.0515 0.1817 0.0086 

Recall - 15% 0.1994 0.0114 0.4376 0.199 0.0079 

Table 3. T-Test Results. HO-LDA vs. LDA using J48, 10 Topics 

  

HO-
LDA 
Avg. 

HO-LDA 
Standard 
Deviation p Value 

LDA 
Avg. 

LDA 
Standard 
Deviation 

Accuracy - 100% 0.2474 0.0055 0 0.2392 0.0064 

F-Measure-100% 0.2523 0.0061 0.0005 0.2471 0.0055 

Precision - 100% 0.2496 0.0061 0.0018 0.245 0.0056 

Recall - 100% 0.2565 0.0062 0.0003 0.2509 0.0057 

Accuracy - 50% 0.2379 0.0104 0.4669 0.2381 0.008 
F-Measure - 50% 0.2336 0.01 0.4006 0.233 0.0083 

Precision - 50% 0.2307 0.0098 0.3031 0.23 0.008 

Recall - 50% 0.2379 0.0105 0.4211 0.2374 0.0088 

Accuracy - 25% 0.2086 0.0107 0.4099 0.2079 0.0129 

F-Measure - 25% 0.2042 0.0104 0.4077 0.2035 0.0126 

Precision - 25% 0.2012 0.0102 0.4065 0.2005 0.0125 

Recall - 25% 0.2086 0.0107 0.4099 0.2079 0.0129 

Accuracy - 15% 0.187 0.0067 0.0012 0.1804 0.0092 

F-Measure - 15% 0.1821 0.0067 0.0012 0.1754 0.0094 

Precision - 15% 0.1789 0.0069 0.001 0.1719 0.0096 

Recall - 15% 0.187 0.0068 0.0012 0.1804 0.0092 
 
Table 4. T-Test Results. HO-LDA vs. LDA using J48, 20 Topics 

  

HO-
LDA 
Avg. 

HO-LDA 
Standard 
Deviation p Value 

LDA 
Avg. 

LDA 
Standard 
Deviation 

Accuracy - 100% 0.2474 0.0055 0 0.2392 0.0064 

F-Measure-100% 0.2424 0.006 0.1125 0.2405 0.006 

Precision - 100% 0.2423 0.006 0.0618 0.2399 0.0059 

Recall - 100% 0.2442 0.0063 0.1483 0.2425 0.0062 

Accuracy - 50% 0.2155 0.01 0.1015 0.2126 0.0072 

F-Measure - 50% 0.2124 0.01 0.1177 0.2097 0.0072 

Precision - 50% 0.2105 0.01 0.1188 0.2078 0.0073 

Recall - 50% 0.2155 0.0101 0.0965 0.2125 0.0073 

Accuracy - 25% 0.2311 0.0087 0 0.1865 0.0129 

F-Measure - 25% 0.2285 0.0083 0 0.1833 0.0127 

Precision - 25% 0.2273 0.0082 0 0.1811 0.0124 

Recall - 25% 0.2311 0.0087 0 0.1865 0.0128 

Accuracy - 15% 0.1772 0.0053 0 0.1666 0.0099 

F-Measure - 15% 0.1737 0.0053 0 0.1628 0.0096 

Precision - 15% 0.1714 0.0052 0 0.1601 0.0094 

Recall - 15% 0.1772 0.0054 0 0.1666 0.0099 
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Training 
Size 

Avg. 
Accuracy 
HONB 

Avg. Standard 
Deviation 
HONB 

p 
Value 

Avg. 
Accuracy 
Naïve 
Bayes 

Avg. 
Standard 
Deviation 
Naïve Bayes 

65% 0.476 0.013 0.003 0.457 0.012 

60% 0.465 0.008 0 0.445 0.011 

55% 0.457 0.010 0 0.432 0.011 

50% 0.454 0.009 0 0.413 0.010 

45% 0.441 0.009 0 0.399 0.008 

40% 0.433 0.010 0 0.382 0.011 

35% 0.422 0.009 0 0.360 0.009 

30% 0.414 0.013 0 0.336 0.008 

25% 0.403 0.012 0 0.314 0.008 

20% 0.390 0.012 0 0.279 0.004 

Table 5. T-Test Results  –  HONB vs. Naïve Bayes 
Uusing Accuracy Metric 
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