
Online Object Representation Learning and its Application to Object Tracking

Amirreza Shaban1

shaban@ce.sharif.edu
Hamid R. Rabiee1

rabiee@sharif.edu

1Department of Computer Engineering,
Sharif University of Technology,

Tehran, Iran.

Mehrdad Farajtabar2
mehrdad@gatech.edu

Mohsen Fadaee1
m fadaee@ce.sharif.edu

2College of Computing,
Georgia Institute of Technology,

Atlanta, GA, USA.

Abstract

Tracking by detection is the topic of recent research that has
received considerable attention in computer vision commu-
nity. Mainly off-line classification methods have been used,
however, they perform weakly in the case of appearance
changes. Training the classifier incrementally and in an on-
line manner solves this problem, but nevertheless, raises drift-
ing due to soft or hard labeling in the online adaptation. In
this paper a novel semi-supervised online tracking algorithm
based on manifold assumption is proposed. Target object and
background patches lie near low-dimensional manifolds. This
motivates us to make use of the intrinsic structure of data in
classification, and benefit from the smooth variation of the la-
beling function with respect to the underlying manifold. Un-
labeled data make connections between different object poses
to overcome difficulties due to appearance changes and par-
tial occlusion. Moreover, the proposed method doesn’t rely
on self-training, therefore, it is more robust to drifting. Ex-
perimental results substantiate the superiority of the proposed
method over the ones that does not consider the geometry of
data.

Introduction
Tracking is the process of pursuing an object in an image se-
quence. It has a variety of applications in human-computer
interaction, security systems, medical imaging. There are a
large number of challenges associated with tracking: shape
and appearance changes, illumination variations, difficulty
in distinguishing the target object from its background due
to the background clutter, non-linear dynamics of object ap-
pearance caused by pose variations, and partial occlusion.
These issues make tracking a hard problem to tackle with.

Traditional algorithms for tracking merely focus on mod-
eling the object, and completely ignore the background
(Balan and Black 2006). This approach fails when the back-
ground is complicated and the object is not easily distin-
guishable from its background. To overcome these draw-
backs (Lin et al. 2004) and (Avidan 2004) initiate the idea
of tracking with a discriminative approach, by considering
background as well as the object. This way, tracking is re-
garded as a background/foreground classification problem.
The data to be classified are patches from the image.
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Training the classifier in an off-line manner raises an
immediate challenge; when the appearance of the tar-

get object dramatically changes during tracking, the tracker
fails. To cope with this problem, object model should be
updated during the tracking, i.e., the decision boundary is
learned in an online manner. An online boosting classifier
is constructed in (Grabner and Bischof 2006) that acts as
a feature selector to discriminate the object from the back-
ground. Authors in (Babenko, Yang, and Belongie 2009)
cast tracking as a multiple instance learning problem. Al-
though very robust, it suffers from being intrinsically a varia-
tion of self-training, the demerits of which will be discussed
shortly. Also Avidan et al. (Avidan 2005) adopt an ensemble
of SVMs as a classifier for tracking.

Although these methods provide a solution to varying ap-
pearance issue, introduce a new problem: the drifting of the
classifier. Since the aforementioned online methods are all
rooted in self-training, during the tracking, erroneous up-
dates might be made to the algorithm which results in ac-
cumulation of errors and tracker failure. To defeat this new
problem semi-supervised learning comes to help. Instead
of hard labeling the detected objects and its surroundings,
they treat them as unlabeled data. To elaborate, they use
some kind of pseudo-labeling in order to alleviate the disad-
vantages of hard-labeling. Inspired by co-training, authors
in (Tang et al. 2007) proposed two online SVM classifiers
based on independent features which train each other us-
ing unlabeled data. In (Grabner, Leistner, and Bischof 2008)
authors modified semi-boost (Mallapragada et al. 2009) to
operate in an online manner. A novel idea for online semi-
supervised tracking is proposed in (Zeisl et al. 2010) where
multiple instance learning is used to manage the updating of
the classifier during tracking.

Soft-labeling procedure has two disadvantages, First these
soft-labels are assigned according to the current knowledge
of the data distribution, and are constant in time. As a re-
sult, further exploration of the problem space, may lead to
invalidation of the primarily assigned pseudo-labels. Invalid
labels may then mislead future tracking, especially in initial
training levels where the classifier is only moderately ac-
curate (Zhang and Zhou 2010). Second, the classifier may
over-focused on the last few frames, so it fails in rapid ap-
pearance change of object.

In this paper, a novel semi-supervised tracking algorithm
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is proposed which learns low dimensional manifolds of ob-
ject and background in an online manner. Our approach is
truly semi-supervised, in the sense that we perform nei-
ther hard-labeling nor pseudo-labeling. In graph based semi-
supervised methods, maintaining the repository of accumu-
lated object appearances is the main problem. We suggested
to omit the redundant data by coarse graining so we can keep
main appearances of the object during the tracking and use
this knowledge for further usages. Unlabeled data connect
the initial labels (which are of high confidence) to the fu-
ture data in a natural way, thus there is no more need for any
kind of labeling. In addition our method does not suffer from
over-focusing in one region of the manifold, since it utilizes
all the appearances of the object seen so far.

Our contribution is three fold: First, we propose to use
classification methods based on manifold assumption in
tracking which is supported by the very essence of data. Sec-
ond, a novel coarse graining algorithm is proposed for data
reduction while preserving manifold structure of target and
background patches. Third, an incremental method to dis-
criminate object/background patches.

The rest of the paper is organized as follows. First we dis-
cuss the advantage of manifold-based classification meth-
ods over other tracking methods. Then the proposed method
which consists of three steps is thoroughly explained. In the
end, experimental results showing the superiority of the al-
gorithm are presented.

Manifold-based Tracking
In many real world learning problems, data points lie on a
low dimensional manifold. Visual data strongly support this
claim. Image sequences and videos vary with very limited
degrees of freedom, therefore, the set of these points lie near
a low dimensional manifold. Figure 1 shows patches of a
walking person taken from PETS-ECCV 2004 dataset ac-
companied with some of images. The person starts walk-
ing, then stands and raises his hand, and finally walks back.
The target object patches are projected into a 2 dimensional
space. As can be seen from the evolution of walking, the
data don’t occupy the whole space, instead, in this 2 dimen-
sional space, the data lie near a 1 dimensional manifold.
A good practice is to utilize this prior knowledge (mani-
fold structure) in tracking. The fact that object and back-
ground patches lie near low-dimensional manifolds leads to
better results in tracking in the same way as manifold learn-
ing methods are superior to non-geometric algorithms. The
more the data satisfy the manifold assumption the better is
the result.

Suppose we have u unlabeled and l labeled points. Let
n = u+ l be the total number of data points. Also let yt be a
vector of length n with yt(i) = 0 for unlabeled xi and yt(i)
equals to the −1 or 1 corresponding to the class labels for
the labeled data points. Our goal is to predict all the labels,
f , where f(i) is the label associated to xi for i = 1, . . . , n.

A graph is constructed for modeling the manifold. For
each data point a node is considered and two nodes are con-
nected if they are locally close enough, i.e., if one of them is
among the K nearest neighbors of the other. The weight is

usually assigned exponentially parameterized with the band-
width σ: W (i, j) = exp(− ||xi − xj ||2 /2σ2). W measures
the local similarity of data points. Define the diagonal ma-
trix D with nonzero entries D(i, i) =

∑n
j=1Wij . Symmet-

rically normalizeW by S = D−1/2WD−1/2. The laplacian
matrix is L = I − S.

Manifold regularization algorithms in their general forms
amount to minimize

J(f) = fTQf + (f − y)TC(f − y) (1)

with respect to the prediction, f , where Q is a regulariza-
tion matrix (usually the laplacian itself) and C is a diagonal
matrix with C(i, i) equal to the importance of the ith node
to stick to its initial value yt(i). The first term represents
smoothness of the predicted labels with respect to the un-
derlying manifold and the second term is squared error of
the predicted labels compared with the initial ones weighted
by C.

Harnessing local and global consistency(LGC) (Zhou et
al. 2004) is one of the pioneering works on manifold-based
classification methods. We use it as a base classifier because
of its simplicity, robustness against noise and state-of-the-
art performance. Semi-supervised tracking uses very small
number of labels which can be noisy instances of the object
model, thus LGC’s robustness against noise makes it very
favorable choice for tracking.

In LGC, Q = L and C = µI . It may easily be shown that
the solution is equal to:

f = (I − αS)−1yt, (2)

where 0 < α = 1
1+µ < 1 is the parameter which controls

the trade-off between smoothness of the labeling function
on the manifold and the empirical error on the initially la-
beled points. In subsection we show how to compute LGC’s
solution in an on-line manner with incrementally computed
eigen-pairs of P .

Proposed Method
In this section, we propose a 3-step algorithm which learns
the manifold structure of data, summarizes it, and incremen-
tally computes the labels. To address time and memory lim-
itation in online learning, we limit the number of data points
which can be kept to, say n, fixed a priori. On the arrival of
new data, two data points are selected to be merged in the
manner which manifold structure of data is best preserved.
It will be discussed shortly that the spectrum of the stochas-
tic matrix helps us to find the two points which are nearest
pairs on the manifold in the first step. This spectrum is also
maintained in an online manner with the arrival of a new
data point in the second step, and help us compute labels of
the new data points in the third step. Our algorithm is sum-
marized in Figure 2.

Before proceeding, let us go through some prelimi-
nary explanations. Tracking algorithm is converted to a 2-
class classification problem by considering object and back-
ground patches as positive and negative instances respec-
tively. In semi-supervised learning, there are some labeled
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Figure 1: Image patches of a person walking accompanied with some images, which lie near a one dimensional manifold. The
Images are from PETS ECCV 2004 dataset.

Figure 2: Three steps in the proposed online classification method used in tracking

instances (positive and negative) and some unlabeled data
points which are to be labeled in the transductive setting.

For the rest of the paper suppose that the stochastic matrix
defined as P (i, j) = W (i,j)∑n

j=1W (i,j) , contains the probability
of reaching node j from i. We can write P equivalently as
P = D−1W .

Since P is a stochastic matrix, its spectrum is real. Let pi,
ui, and λi be its ith right and left eigenvectors and ith eigen-
value respectively, which are sorted decreasingly by eigen-
value. We also denote P t(i, j) as the probability of reach-
ing j from i in t steps. For P t which is a stochastic matrix,
right and left eigenvectors are the same as those of P and its
eigenvalues are those of P powered by t.

Merging on the Manifold
In this section, we provide a method to choose two data
points to be merged so that minimum amount of informa-
tion is lost. By information, we mean all we know about
the geometry of data, which is needed to predict labels of
new data points. The primary question is which two of these
data points are the most similar pair. A good measure should
take into account both the manifold structure of data and the
distribution of data on it. Assuming the manifold structure

of data is captured by the adjacency graph, a good method
to exploite distribution of the data in similarity measure is
considering all paths connecting two nodes. Inspired by the
work of (Lafon and Lee 2006) we employ diffusion dis-
tance as a similarity measure. Diffusion distance between
two nodes x and z is defined as (Lafon and Lee 2006):

L2
t (x, z) =

∑
y

(P t(x, y)− P t(z, y))2

u1(y)
. (3)

P t(x, y) represents the probability of reaching y from x
in t steps. The larger P t(x, y), the stronger the influence of x
on y in the label inference. Using this notion of influence, the
distance between two nodes x and z is defined as how these
nodes are regarded in the view of other nodes. This quantity
is small if the nodes are linked to each other via a lot of
short paths, therefore the density is considered. It has been
shown that there is a transformation T that embed the data
to a space in which Euclidean distance is an approximation
of diffusion distance (Lafon and Lee 2006):

T : x 7−→
[
λt1p1(x) λt2p2(x) . . . λtkpk(x)

]>
(4)

where k is the number of significant eigenvectors in terms
of absolute eigenvalues. Influence of other eigenvectors are
negligible.
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It has been proved in (Lafon and Lee 2006) that minimiz-
ing the following term

E =
∑
i

∑
x∈Si

u1(x) ||T (x)− C(Si)||2 , (5)

with respect to Si leads to minimum distortion on the trans-
formation T . In the above equation Si is the ith group
formed by merging some nodes and C(Si) is the center of
the group which is defined as average of the points within
the group weighted by their normalized degree.

In our specific application we want to merge just two
nodes. It is easily shown that choosing the those two ones
which are closest to each other in the embedding space min-
imizes the error bound, E. So the transformation is best
preserved. On the other hand, the embedding provided by
the eigensystem captures manifold structure. Therefore, in
merging process minimum change is occurred on the mani-
fold structure.

Time complexity of computing distances between n k-
dimensional vectors and choosing two nearest ones is
O(n2k). Considering n is constant and considerably small
this step is quite fast.

Update Embedding Space
On the arrival of a new data point the new stochastic matrix,
Pnew, is easily computed. Then, the embedding which re-
lies on the significant eigenvectors of the stochastic matrix
should be updated. A priori knowledge about adding a new
data is that the embedding would change a little, therefore
eigenvectors distortions is negligible (Kouropteva, Okun,
and Pietikäinen 2005). Instead of computing the eigenvec-
tors of Pnew from scratch, we develop an iterative proce-
dure based on power method which utilizes the previously
computed eigenvectors of Pold.

Power method calculates the eigenvector with largest
eigenvalue of a matrix with a simple iterative procedure
starting from a random vector: (v(l) is the estimated eigen-
vector at step l)

v(l+1) =
Pv(l)∣∣∣∣Pv(l)∣∣∣∣ . (6)

It is easily shown that this procedure converges to the largest
eigenvector (Saad and Saad 1996). To enhance the conver-
gence speed the starting vector, v(0), is initialized to the
eigenvector of Pold and padded by one 0 for the element
corresponding to the new arrived point.

The eigenvalue is then computed as

λ =
vTPv

vT v
. (7)

After computing the first eigenvector and eigenvalue, p1
and λ1, they are extracted out and the same procedure is
performed to update the next eigen-pair. Considering the de-
composition, P =

∑
i λipiu

T
i , subtracting λ1p1uT1 from P

causes the first eigenpair be removed from its spectrum. For
every i one can easily see that right and left eigenvectors of
the stochastic matrix are related by ui(j) = pi(j)u1(j).

Due to small distortion in eigenpairs, the eigenvectors
converges in a few number of iterations (which is prac-
tically confirmed) and the algorithm needs a few number
of sparse matrix-vector multiplication for each eigenvector
which leads to O(kKn), where K is the parameter of K
nearest neighbor graph construction and k is the number of
eigenvectors based upon we do coarse graining.

Label Prediction
We propose an incremental version of LGC based on incre-
mentally calculated eigen-pairs. We then show how to ap-
proximate LGC’s solution with the k large eigenvectors of
P which are maintained during the algorithm.

To begin with, let (λ, v) is an eigenvector and eigenvalue
pair of P , we prove that ((1−αλ)−1, D1/2v) is an eigenpair
of (I − αS)−1:

Pv = λv ⇒
D−1Wv = λv ⇒ D−1/2Wv = λD1/2v

(8)

Consider q = D1/2v we have:

D−1/2WD−1/2q = λq ⇒
(I − αD−1/2WD−1/2)q = (1− αλ)q

(9)

Therefore q is the eigenvector of I − αS corresponding to
eigenvalue 1−αλ. By inverting I −αS the claim is proved.

If (λ, v) is among the k largest eigenpairs of P then ((1−
αλ)−1, D1/2v) is also one of the k largest eigenvectors of
(I − αS)−1. Assuming other eigenvalues are not large the
LGC’s solution can be easily approximated by just these k
eigenvectors.

By decomposition we have (I − αS)−1 ≈ ΦΛΦT , where
Φ is the n × k matrix of significant eigenvectors and Λ is
the diagonal matrix of corresponding eigenvalues. Comput-
ing ΦΛΦT and then multiplying by yt is inefficient; since
ΦΛΦT becomes a non-sparse matrix of n2 elements. Instead
we compute the solution with the priority induced by the
parenthesization (Φ(Λ(ΦT yt))) which costs O(nk2) opera-
tions.

The entire tracking algorithm is summarized in the Alg.1.

Experiments
To show effectiveness of our algorithm 4 methods are com-
pared with the proposed one. The first one is Online Ad-
aBoost (OAB) described in (Grabner, Grabner, and Bischof
2006) which is a supervised tracker. Online SemiBoost
tracker (OSB) (Grabner, Leistner, and Bischof 2008) and
BeyondSemiBoost (BSB) (Stalder, Grabner, and Van Gool
2009) - which are semi-supervised methods - are chosen to
compare with our manifold-based tracker. Finally, the fourth
one is Frag (Adam, Rivlin, and Shimshoni 2006) which is
very robust to partial occlusion.

Combinations of color and edge-based features are used
for distinguishing patches. For color features, {R,G,B}
space is discretized into 4× 4× 4 sections and a 64 dimen-
sional histogram is extracted. To compute the HoG feature,
the patch is divided into 8 × 8 sub-patches of equal sizes
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Algorithm 1 Manifold-Based Tracking
Input: Dimention of embedding space k, Set of Vertices V , Ad-
jacency Matrix W
Output: Labels for y
loop
{Do this loop for each new patch arrival (xnew).}
(i∗, j∗)← arg mini,j ||T (xi)− T (xj)||
V ← (V − {xi∗ , xj∗}) ∪ {

xi∗+xj∗
2
}

V ← V ∪ {xnew} {Adding new arrived patch.}
Update W
for i = 1→ k do
{Update Embedding Space}
repeat
vl+1
i ← Pvl

i

||Pvl
i||

until convergence

λi ← vT
i Pvi
vT
i vi

and P ← P − λivi

end for
Φ← [v1, . . . , vk]
y ← (ΦΛ(ΦT yt)) {Label propagation}

end loop

. A HoG with 9 orientation bins is computed for each sub-
patch and the final feature vector is a concatenation of these
9-dimensional vectors.

In practice, there is no need to compute the average of
the two selected nodes in coarsening process. Patches to be
merged are similar enough for it to be sufficient to consider
only one of them as a result of merging. Number of near-
est neighbors, K is set to 5. For our datasets buffer size
of 300 is seen to be empirically sufficient in order to pre-
serve the geometry of patches. σ is set in the way that edge
weights are distributed uniformly from zero to one. In our
semi-supervised setting we use only 16 labeled examples.
The first frame is used for initial labeling. The user deter-
mines the object’s bounding box, which is treated as the pos-
itive example. 8 other boxes around the target’s bonding box
are treated as 8 negative examples. In order to balance the
positive and negative examples, we suppose 7 predicted tar-
gets on the next 7 frames as positive examples. Note that
this is just a minor semi-supervised initialization and do not
mean a self-training which usually exists in other methods.
Because it is just on the first 8 frames of the image sequence.

Manifold Preservation

In the first experiment, we show the effectiveness of our
coarse-graining algorithm in summarizing essential data to
maintain the manifold. The face of the tiger in Tiger dataset
is considered as target to be tracked. In this scenario the
buffer size is 200. The 48 most relevant images remaining
after a long run of the algorithm are demonstrated in Fig-
ure 3. Different poses of the tiger, partially occluded faces
and blurred ones are all included in this small number of
samples. This number would have been much larger (ap-
proximately 1000) without coarse-graining; since a notable
amount of redundant patches would have been needed to
memorize all the appearance changes.

Figure 3: 48 top relevant object patches from the Tiger
dataset for tracking tiger’s face. Note the different poses and
appearances that remain in the set, due to elimination of the
redundancy by coarse-graining

Challenges
In this section, we provide some subjective clues to show
the effectiveness of the proposed method. The first video is
Sylvester and is illustrated in the first row of Figure 4. It is
noticeable that our method is robust to appearance changes
due to pose and illumination variations. Unlabeled data pro-
vided by the manifold of patches help the algorithm connect
these appearance changes to the true initial labeled patches.
The paths between initial patches and newly arrived patch
- which are constructed by the unlabeled nodes of the adja-
cency graph- make this connection.

The second scenario in the middle row of Figure 4 demon-
strates the strength of the proposed method to overcome par-
tial occlusions and appearance changes. Again the manifold
is responsible to detect the true patches. Since the partially
occluded targets are accessible by paths on the manifold, the
proposed method could easily recognize the target.

The third scenario in the last row of Figure 4 shows ef-
ficiency of the proposed method in rotation, scaling, and in
general appearance changes.

The average center location error (Babenko, Yang, and
Belongie 2009) of the proposed method is compared with
other methods in Table 1. The bold face and underlined num-
bers indicate the best and the second best performance, re-
spectively. Our proposed method is always among the two
best methods. It is either the best method or the second best
provided with a little error compared to the best one.

Conclusion and Future Works
In this paper a novel online semi-supervised tracking algo-
rithm is proposed based on manifold assumption. We claim
that by learning the hole manifold the classifier do better in
rapid appearance changes. Our tracking algorithm is quite
efficient, since no more than a fixed number of data are there
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Figure 4: First column: (Sylveser) Robustness to appear-
ance changes due to pose and illumination variations.
Second column: (Tiger1) Overcoming partial occlusions,
appearance changes, and background clutter. Third col-
umn: (David) Efficiency in rotation, scaling, and general
appearance changes.

Video Clip OAB BSB Frag OSB Proposed
Sylvester 17 19 13 18 14
Tiger 1 56 33 42 31 26
Tiger 2 23 42 39 71 25
David 60 58 48 45 22

Table 1: Average center location errors for 4 public datasets,
compared to 4 other methods.

to be processed. Our method has O(kn2) time complexity,
where n is the buffer size and is problem specific. In our ex-
periments on real-world videos, n = 300 was sufficient to
capture all the appearance changes of the target object and
its background patches. This low time complexity leads to
a fast method which is practical interest in real time appli-
cation. Our coarse graining method decides what instances
of object appearance and background patches to save in the
buffer in order to maintain the manifold structure of data.

Background patches usually lie on a complicated low di-
mensional manifold. Better results would be achieved via
modeling of background as multiple (and possibly over-
lapping) manifolds. Each general background entity (road,
trees, cars) may separately lie near a manifold. Employing
multi-manifold learning algorithms in tracking is another
suggested future research trend.
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