

Integration of Sequence of Computational Modules Dedicated
ory Typed Approach to Text Analysis: A Combinat

Ismaïl Biskri, Marie Anastacio, Adam Joly, Boucif Amar Bensaber
LAMIA, Département de Mathématiques et Informatique, Université du Québec à Trois-Rivières

C.P. 500, Trois-Rivières (QC) G9A 5H7, Canada
{ismail.biskri; marie.anastacio; adam.joly; boucif.amar.bensaber}@uqtr.ca

Abstract
In informational terms, a module dedicated to process
information always has specific inputs and outputs. It
describes a particular process constrained by specific rules.
A processing chain can be a serial combination and/or a
parallel combination of such modules. Thus, in an
architecture of language engineering, each processing chain
becomes a particular instantiation of all possible paths. A
processing chain is built from a choice of modules
underlying tasks that an engineer wants to apply to the text.
In our paper we will present our theoretical model of logical
representation of the processing chains, based on
combinatory logic and a formal approach based on
categorial grammars and applicative grammar, along with
many cases of modules configurations.

Introduction
Language engineering, and by extension, information and
knowledge engineering, has become a major and essential
theme due to the critical need to assist human users to
access information and extract knowledge from it.

Many methods, approaches and technologies have been
proposed during the past four decades. Some exploit
linguistic models whereas others are predicated on
numerical and empirical approaches. Despite the high
scientific value of these different models, they have yet to
answer the various needs expressed by the scientific
researcher community as well as the user community. The
current and proposed technologies offer one or many from
simple to complex functionalities, such as stemming,
lemmatisation, classification, categorization, syntactic
analysis, semantic analysis, morphological analysis, etc.
However, these functionalities respond to very specific
objectives and do not allow to adapt to initially unforeseen
objectives gradually identified during the discovery
process. This is, of course, a flexibility issue. Besides, the
proposed technologies are often closed and thus cannot
easily modify, replace or integrate new functionalities.

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Therefore, updating these tools requires a major
computational investment. Consequently, the scientist
researcher or the user feels unable to use them in a way
that would allow him to integrate his own processing
chains according to his own objectives.

Despite the high level of computational modeling
offered by the programming paradigms such as object-
oriented, and open source approaches, these limits remain
persistent.

This kind of problems starts to find some echoes among
scientists. It is in this way that an inclusive vision is being
developed. Therefore we find in literature projects on : (i)
the creation of complex processing chains (Hallab & al.
2000; Moscarola & al., 2002) that offers assembling of
many functions and operations, and (ii) the creation of
software platforms for language engineering which
integrate statistical analysis, such as Aladin (Seffah & al,
1995), D2K/T2K (Downie & al., 2005) and Knime (Warr,
2007), or linguistic analysis, such as Context (Crispino &
al, 1999) and Gate (Cunningham et Al., 2002)). These
platforms are supposed to facilitates the fast prototyping of
text mining and text analysis experiments.

From these new platforms emerge new interests on
processing chains about their coherence, their flexibility,
their adaptability, etc. Some of these platforms have been
used in several projects in which researchers collaborate as
NORA, TAPoR, etc.

Despite this progress, certain limits remain. In particular,
the addition of new modules to the platform requires
knowing the platform and the programming language used
to implement it.

In our paper we will present our theoretical model of
logical representation of the processing chains, based on
combinatory logic and a formal approach based on
categorial grammars and applicative grammar, along with
many cases of modules configurations.

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

303

Combinatory Logic
Before introducing the formal model itself, let us first
present combinatory logic. The origins of combinatory
logic bring us back to the works of Schönfinkel who
defined the notion of combinators in 1924, and also,
sometime later, those of Curry and Feys (1958). This
notion was introduced with the objective to bring a logical
solution to some paradoxes, like the Russell’s Paradox, but
also to eliminate the need for variables in mathematics.
Combinators are abstract operators that use other operators
to build more complex operators. They act as functions
over arguments, within an operator-operands structure.
Each specific action is represented by a unique rule that
defines the equivalence between a logical expression with
a combinator versus one without a combinator, which is
called a -reduction rule. Although many more
combinators exist, we show in the table opposite the
combinators we used in our works and their corresponding

-reduction rule.

Combinator Role -Reduction rule
B Composition B x y z x (y z)
C Permutation C x z y x y z
S Distributive

Composition
S x y u x u (y u)

W Duplication W x y x y y

The composition combinator B combines two operators
x and y together in order to form the complex operator B x
y that acts on an operand z according to the -reduction
rule. The permutation combinator C uses an operator x in
order to build the complex operator C x such as if x acts on
the operands y and z, C x will act on those operands in the
reverse order, that is to say z and y. Given the two
operators x and y, and the operand u, the general
composition combinator S distributes the operand u with
the two precedent operators x and y. (y u) becomes the
operand of the complex operator (x u). Finally, given the
binary operators x, and the operand y, the combinator W
duplicates y so that the operator x will have two identical
arguments.

We can also combine recursively many elementary
combinators together to form an infinitely range of
complex combinators. For example we could have
combinatory expressions such as “B C x y z u” or “S B C x
y z u v”. Its global action is determined by the successive
application of its elementary combinators, from left to
right. If we have the combinatory expression “B B C x y z
u v”, the reduction order would be B, B, then C. The
resulting expression without combinator is the normal
form, which is, according to Church-Rosser, unique.

(i) B B C x y z u v
(ii) B (C x) y z u v
(iii) C x (y z) u v
(iv) x u (y z) v

There exist two more cases of complex combinators:
combinators with “power combinators” and “distance
combinators”. In the first case, a power value of n
reiterates n times the action of the combinator , such as 1
= and n = B n-1. Thereby, the action of the expression
B2 a b c d e would be B B B a b c d e … a (b c d) e.

In the latter case, an index value of n postpones the
action of a combinator of n steps, such as 0 = and n =
Bn-1 . If we consider the combinatory expression C2 a b c
d e, the action of the complex combinator would be given
by B C a b c d e … a b c e d.

The Formal Model
The main goal behind modular approaches is to reuse one
or many already existing programs instead of having to
write them from scratch again, which cost time and money,
especially when the size of the programs are quite
substantial.

Our model refers programs as modules and concerns
systems for which the modules are processed serially only,
that is, the so-called processing chains. We are particularly
interested into natural language processing systems, for
which it could be very useful to simply have to switch a
module by another one with compatible inputs and outputs.

A module acts like a mathematic function that takes
arguments, processes one specific action and gives a result.
Each module is independent and can be seen like a black
box: we are only interested to the general function it
accomplished and not how it is programmed internally.

The modules must also have the capacity to
communicate together with the help of a protocol.

A processing chain is a layout of modules. It is governed
by three mains rules: (i) the chain must contain at least one
module; (ii) the chain must be syntactically correct; (iii)
the semantic aspects of the chain are the responsibility of
the language engineer (we call language engineer any
researcher or developer who has some interests into
language engineering. The former can be a computer
scientist as well as a linguist, a terminologist, a
philosopher, etc.) to assure that the chosen modules serve
the goals of the processing chain.

From a formal point of view, a processing chain is an
integrated sequence of computational modules dedicated to
specific processings, put together in a (pertinent) order
according to a process goal determined by the language
engineer. A processing chain will have to allow the
composition of the modules. Therefore, it is essential to
answer to two fundamental questions:

(1) Given a set of modules, what are the allowable
arrangements which lead to coherent processing chains
(the syntactic correctness)?
(2) Given a coherent processing chain, how can we
automate (as much as possible) its assessment (in the
sense of its calculability).
In order to do so, a formal system is needed. Such a

system will be at the center of our theoretical model.

304

The model chosen is based on applicative and
combinatory categorical grammar (Biskri & Desclés,
1997), a model we widely used in natural language
processing.

Applicative and combinatory categorial grammar has
won its spurs in syntactics and semantics. It proposes a
dichotomous view on the linguistic units. Some of these
linguistic units work as operators and others as operands.
This is translated by an assignment of categories to the
linguistic units in a way to reflect their nature. This view
is, of course, applicative.

According to this view, a module accomplishes an
operation which applies to one or many objectal entities
from a given type and returns other objectal entities from
another type. We therefore assign to each module a
categorial type to reflect how it acts on its operands.

Categorial types are developed from basic types and
from one constructive operators “F” as follow:

(i) Basic types are types.
(ii) If x and y are types then Fxy is a type.

We note a module (Figure 1) as follows: [M1: Fxy] in

which M1 is the identifier of the module and Fxy is the
type of M1. M1 is then considered as a function whose the
operand is of type x and the result of the application of M1
on X is of type y. We note the module M2 (figure 2) by
[M2: Fx1Fx2y]. M2 is a function with two operands: X1
and X2. M2 applies on X1 in order to construct a new
function (M2 X1) whose operand is X2. The application of
(M2 X1) on X2 gives Y. That is the meaning of the type
Fx1Fx2y.

Figure 1: A graphical representation of a module with one
input

Figure 2: A graphical representation of a module with two

inputs

Within this approach, the processing chains become
applicative “combinations” of typed functions. This view is
in sum natural for computational modules given the fact
that they are functions (in its general meaning, not the
computational one) from the set of inputs to the set of
outputs. Such combinations will be interpreted, like in
some works in metaprogramming (Coquery, Fages, 2001),
for the functional semantic interpretation of textual
sentences (Steedman, 2000) or in artificial intelligence for
scheduling issues, with the help of lambda-calculus (and
unification) or using combinatory logic if we want to avoid
a telescoping of variables (Curry, Feys, 1958; Hindley,
Seldin, 2008). The interpretation of a processing chain will
constitute the outcome of its underlying primitive

operations and the way that these operations are organized
accordingly to the principle of compositionality. The set of
composed processing chains becomes a set of theorems for
the proposed formal system. The system in itself is
inferential. It proceeds by successive reductions of
applicative categories assigned to operations concerned by
the composition.

Let us, now, show the rules of our model1 :

[X : x] + [M1 : Fxy]
Applicative rule ----------------------------

[Y : y]

[M1 : Fxy] + [M2 : Fyz]
Composition rule (a) -----------------------------B
 [(B M2 M1) : Fxz]

[M1 : FxFty] + [M2 : Fyz]
 (b) -------------------------------B2
 [(B2 M2 M1) : FxFtz]

[M1 : Fxy] + [M2 : FxFyz]
Distributive composition rule --------------------------------S
 [(S M2 M1) : Fxz]

[M1 : FxFyz]
Permutation rule (a) ---------------------C
 [(C M1) : FyFxz]

[M1 : FxFyFtz]
 (b) -----------------------------C#
 [(C (C2 M1)) : FtFxFyz]

[M1 : FxFxy]
Duplication rule ----------------------W
 [(W M1) : Fxy]

The premises in each rule are typed “connected
modules”, and the results are typed applicative expressions
(of modules) with an eventual introduction of one
combinator. These applicative expressions allow the
interpretation of the processing chains. Types of modules
in the premises will allow us to validate the application of
the rules, and therefore to accept or reject the connection of
the modules. In other words, an inferential calculation on
types will allow verifying the syntactic correctness of
processing chains. Combinatory logic fills two major
goals: (i) it gives an interoperable and formal
representation of the solution and (ii) it gives the direct
execution order of the modules which form the processing
chain.

Within this formal system, in order to build a processing
chain, we need specific data: (i) the list of the modules and
(ii) the list of their inputs and outputs.

1 Due to space limitations, we show here only the rules we use in this
paper. In fact these rules suppose that modules have a maximum of two
inputs.

X2

M1 X Y

X1 Y
M2

305

Let us consider connection of two modules (Figure 3).

Figure 3: Accepted connection of two modules

The first module M1 is of type Fxy. M1 applies on the

input X of type x in order to yield the output Y of type y.
The second module M2 is of type Fyz. M2 applies on the
input Y of type y in order to yield the output Z of type z.
The graphical notation in Figure 3 will be expressed by the
following expression: [M1 : Fxy] + [M2 : Fyz]. The first
composition rule given above returns the complex module
(B M2 M1) of type Fxz. In other words, the composition of
M2 and M1 is possible, and the new module applies on one
input of type x in order to yield one output of type y. In the
case of the example given in Figure 4, graphical notation
will be expressed by the following expression: [M1 : Fxy]
+ [M2 : Fza]. The first composition rule previously
described does not allow the composition of M2 and M1
since the type z of the input of M2 given in the type Fza is
not similar to the type y of the output of M1 given in the
type Fxy. The connection of M1 and M2 is rejected.

Figure 4: Rejected connection of two modules

Examples given in Figures 3 and 4 concern the
connection of two modules. But what about if we have
three modules (Figure 5)?

Figure 5: Accepted connection of three modules

The analysis begins by connecting modules M2 (with
the type is Fyz) and M1 (with the type is Fxy). By using
the first composition rule, the analysis yields the complex
module (B M2 M1) whose type is Fxz. This module is then
composed with M3. The resulting module is: (B M3 (B M2
M1)) whose type is Fxa (in other words the input of the
obtained complex module in this case must be of type x
whereas the output must be of type a).

Overall, when we have several modules connected in a
linear chain processing, analysis iterates the application of
the first composition rule to modules from left to right.

The first composition rule can also be used in the case of
the example presented in Figure 6 in which two modules
are connected to a third one. M1 is of type Fxy. M2 is of
type Fza. M3 is of type FyFau.

Since M1 is of type Fxy and M3 of type FyFau, the first
composition rule allows the construction of the complex
module (B M3 M1) with the type FxFau. The processing
chain given in Figure 6 will thus be equivalent to the
processing chain given in Figure 7. In fact, the processing
chain in Figure 7 corresponds to the following applicative
expression: (B M3 M1) X (M2 Z), in which X is the first
operand of the complex module (B M3 M1), and (M2 Z)
the second. However, we need to have all inputs at the

most right of our expressions. To do this, we apply the first
permutation rule on the category [(B M3 M1) : FxFau]. It
yields the equivalent category [(C (B M3 M1)) : FaFxu]
that corresponds to the processing chain in Figure 8. We
then carry on with the use of the first composition rule,
given the types Fza for M2 and FaFxu for (C (B M3 M1)).
We finally obtain the complex module (B (C (B M3 M1))
M2) whose type is FzFxu (Figure 9).

M1 Y X M2 Z Y

Figure 6: Two modules connected to a third module

Figure 7: Module connected on the first input

Figure 8: Permutation of the first input

Figure 9: Complex module with two inputs

Figure 10: Two modules with the same input connected to

a third module

Figure 11: Complex module with the same input repeated

Figure 12: Complex module with one input

We encounter the case of Figure 10 often in the domain

of text mining. The same input is required for one or more
modules whose outputs are used as inputs to another
module. This processing chain is similar to the one given
in Figure 6, even if the inputs of M1 and M2 are the same.
The analysis will be also identical to the previous one
applied to the processing chain described by Figure 6. The
obtained complex module will be (B (C (B M3 M1)) M2)
with the type FxFxu (Figure 11). For practical reasons, we
must eliminate the duplication of input X. To do this, the
application of the duplication rule to the category [(B (C
(B M3 M1)) M2) : FxFxu] provides a module (W (B (C (B
M3 M1)) M2)) that requires a single input (Figure 12) from
a module that requires two inputs. The type of the new
complex module is Fxu.

In the case of the processing chain given in Figure 13,
the use of the distributive composition rule is crucial. Here

U X (W (B (C (B M3 M1)) M2))

U
X
X (B (C (B M3 M1)) M2)

M1

M2

Y

A

X

X A

Y
M3 U

U
X
Z (B (C (B M3 M1)) M2)

M2 A Z
U

X
A (C (B M3 M1))

M2 A Z U
X
A (B M3 M1)

M1

M2

Y X Y
U M3

Z A A

M1 Y X M2 Z Y M3 A Z

M1 X Y M2 Z A

306

we have three parallel modules (M1, M2, and M3)
connected to a fourth one (M4). M1 is of type Fxy, M2 of
type Fxa, M3 of type Fxz, and M4 of type FyFaFzu. Since
the types of M1 and M4 are respectively Fxy and FyFaFzu,
the analyzer triggers the first composition rule. It yields the
category [(B M4 M1): FxFaFzu]. At this stage, our
processing chain takes the form shown in Figure 14. Since
the obtained complex module (B M4 M1) is of type
FxFaFzu and M2 of type Fxa, the analyzer applies the
distributive composition rule. We obtain the complex
module expressed by the category [(S (B M4 M1) M2) :
FxFzu] (Figure 15). This last complex module is composed
with M3 by using the distributive composition rule again
since they respectively have types FxFzu and Fxz. The
processing chain given in Figure 13 is then expressed by
the complex module (S (S (B M4 M1) M2) M3) whose
type is Fxu. The case of the processing chain given in
Figure 13 can be generalized to more than three modules
connected to a fourth one. It can be done by using
iteratively the distributive composition rule.

Figure 13: Three modules with the same input connected to

a fourth module

Figure 14: Two modules with the same input connected to

a complex module

Figure 15: Complex module connected on the first input

Construction of a Processing Chain
We have presented some cases of basic processing chains
and showed how to apply the rules of the formal model to
verify the syntactic correctness and to construct their
applicative representation, which will allow their
interpretation and their execution. All cases, we have
shown, have either arrangements of modules in series or
parallel arrangements. A serial processing chain is
composed of many modules connected together. When a
processing chain contains at least one module with more
than one input, we call it a parallel processing chain.

We tested many more particular arrangements of serials,
parallels and output-distributed modules as well as very
complex processing chains that we cannot show due to

space limitation. However, we are willing to give the
reader a glimpse of what an analysis based on a typed
combinatory approach of a somewhat complex processing
chain can look like. The processing chain given in Figure
16 is a combination of seven modules. M1 is of type Fx1y1.
M2 is of type Fx2z1. M3 is of type Fy1z2. M4 is of type
Fx3y2. M5 is of type Fz1Fz2t1. M6 is of type Fy2z3. M7 is of
type Ft1Fz3u.

The first step is to combine M3 and M1. Since M3 and
M1 are respectively of type Fy1z2 and Fx1y1, the first
composition rule is applied and the complex module (B
M3 M1) is constructed. Its type is Fx1z2. The processing
chain in Figure 16 is reduced to the one in Figure 17.

Figure 16: A complex processing chain

Figure 17: First step of the analysis

The second step is to combine M2, M5 and (B M3 M1).

We will not show the details of this combination. Simply
refer to the above analysis of the processing chain given in
Figure 6. The analysis yields the complex module (B (C (B
M5 M2)) (B M3M1)) whose type is Fx1Fx2t1 (Figure 18).

The third step is to combine M4 and M6. Since M4 and
M6 are of types respectively Fx3y2 and Fy2z3, the first
composition rule is applied and the complex module (B
M6 M4) is constructed. Its type is Fx3z3. The processing
chain in Figure 18 is reduced to the one in Figure 19.

Figure 18: Second step of the analysis

Figure 19: Third step of the analysis

Figure 20: Fourth step of the analysis

(B M6 M4) Z3

(B2 M7 (B (C (B M5 M2)) (B M3 M1)) U

X3

X1

X2

Z3

(B M6 M4) Z3

(B (C (B M5 M2)) (B M3 M1)) T1

Z3

T1
M7 U

X3

X1

X2

M6 Z3 X3 M4 Y2

(B (C (B M5 M2)) (B M3M1)) T1

Z3

T1
M7 U

Y2

X1

X2

(B M3 M1)

M6

Z2

Z3 X3 M4 Y2

M5 T1

Z3

T1
M7 U

M2 Z1X2

X1

Y2

Z2

Z1

M3

M6

Z2

Z3 X3 M4 Y2

M5 T1

Z3

T1
M7 U

M2 Z1 X2

M1 Y1X1 Y1

Y2

Z1

Z2

X
(S (B M4 M1) M2) U

M3 Z Z X

M2 A

X

X A
(B M4 M1) U

M3 Z Z X

M1

M2

Y X Y
U M4

A X A

M3 Z Z X

307

The fourth step is the application of the second
composition rule to M7 and (B (C (B M5 M2)) (B M3
M1)) since their respective types are Ft1Fz3u and Fx1Fx2t1.
We obtain the complex module (B2 M7 (B (C (B M5 M2))
(B M3 M1))) whose type is Fx1Fx2Fz3u (Figure 20).

References
Biskri, I., Desclés, J.P., 1997. “Applicative and
Combinatory Categorial Grammar (from syntax to
functional semantics)”, In Recent Advances in Natural
Language Processing. John Benjamins Publishing
Company.

At the fifth step the analysis applies the second

permutation rule to (B2 M7 (B (C (B M5 M2)) (B M3
M1)). This operation yields the complex module (C (C2
(B2 M7 (B (C (B M5 M2)) (B M3 M1)))) whose type is
Fz3Fx1Fx2u (Figure 21).

Coquery, E., Fages, F. 2001. “Programmes logiques avec
contraintes typés”, In proceedings of JFPLC 2001. Hermès.
pp 223-238.

(C (C2 (B2 M7 (B (C (B M5 M2)) (B M3 M1)))) U X1

X2

Z3 Z3 X3 (B M6 M4)
Crispino G., Ben Hazez S., Minel J.L. 1999. "Architecture
logicielle de Context ; plate-forme d’ingénierie
linguistique", in proceedings of TALN 99.

Figure 21: Fifth step of the analysis Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.

2002. “GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications”.
Proceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics (ACL'02).
Philadelphia, July 2002.

The last step concerns the application of the first

composition rule to complex modules (C (C2 (B2 M7 (B (C
(B M5 M2)) (B M3 M1)))) and (B M6 M4) since their
respective types are Fz3Fx1Fx2u and Fx3z3. It yields the
complex module (B (C (C2 (B2 M7 (B (C (B M5 M2)) (B
M3 M1)))) (B M6 M4)) whose type is Fx3Fx1Fx2u (Figure
22).

Descles, J. P. 1990. Langages applicatifs, langues
naturelles et cognition, Hermes, Paris.

(B (C (C2 (B2 M7 (B (C (B M5 M2)) (B M3 M1)))) (B M6 M4)) U
X1

X2

X3 Downie, J. S., Unsworth, J., Yu, B., Tcheng, D., Rockwell,
G., and Ramsay, S. J., 2005, A revolutionary approach to
humanities computing: tools development and the D2K
datamining framework. In Proceedings of the 17th Joint
International Conference of ACH/ALLC. 2005

Figure 22 : Last step of the analysis

At this last step the processing chain given in Figure 16

is considered as syntactically correct. The complex module
expressed in Figure 22 by means of combinators is the
combinatory expression underlies this processing chain.
The reduction of combinators by means of -reduction
rules gives the order in which each module can be running
on its inputs.

Curry, B. H., Feys, R. 1958. Combinatory logic , Vol. I,
North-Holland.

Hindley, J. R., Seldin, J. P. 2008. Lambda-calculus and
Combinators, an Introduction. Cambridge University
Press.

Seffah, A., Meunier, J.G. 1995. "ALADIN : Un atelier
orienté objet pour l'analyse et la lecture de Textes assistée
par ordinaleur". International Conferencence On Statistics
and Texts. Rome 1995.

Conclusion
The need for flexible, adaptable, consistent and easy-to-use
tools and platforms in a recent and active field such
language engineering is indisputable. Some projects with
this philosophy in mind have seen the light in the last
years. The model we propose has strong formal
foundations (Applicative Grammars and combinatory
logic). One of the principal advantages of our formalism is
to assure a firm compositionality of the different modules
in the different processing chains. Another but not least
advantage is the possibility to compose an infinity of
modules. We will not have the limits on the vocabulary
that, for example, a traditional context free grammar or a
regular grammar would impose.

Shaumyan, S. K. 1998. Two Paradigms Of Linguistics:
The Semiotic Versus Non-Semiotic Paradigm. In Web
Journal of Formal, Computational and Cognitive
Linguistics.

Steedman, M. 2000. The Syntactic Process, MIT
Press/Bradford Books.

Warr, A. W. 2007. Integration, analysis and
collaboration. An Update on Workflow and Pipelining in
cheminformatics. Strand Life Sciences.

A first prototype of this model named SATIM was
implemented in C++.

308

