
 
 

Simplifying Verification of Nested Workflows with Extra Constraints  

Roman Barták 
Charles University in Prague, Faculty of Mathematics and Physics, Malostranské nám. 25, 118 00 Praha 1, Czech Republic 

bartak@ktiml.mff.cuni.cz 
 
 
 
 

Abstract 
Workflow verification is an important aspect of workflow 
modeling where the verification task is to ensure that the 
workflow describes feasible processes. It has been shown 
that verifying nested workflows with extra precedence, 
causal, and temporal synchronization constraints is an NP-
complete problem and a verification method based on 
constraint satisfaction has been proposed. This paper 
theoretically justifies the task-collapsing component of this 
method and provides examples of easy-to-verify constraints. 

 Introduction   
The importance of process description has increased in the 
enterprise information systems in recent 15 years. At the 
same time, various case studies showed that process 
designers tend to make many errors when describing the 
process (van der Aalst et al. 2011). Hence, the methods to 
formally verify the process models are becoming 
increasingly important. 
 A workflow is a formal description of a set of related 
processes. It consists of activities that can be grouped to 
tasks and that are connected via constraints such as 
temporal relations. In this paper we focus on a particular 
type of workflows called nested workflows that are 
obtained by decomposition operations. To increase 
flexibility of these workflows for real-life problems they 
can be extended by extra precedence, causal, and temporal 
synchronization constraints between the tasks (Barták et al. 
2011). The verification problem consists of determining if 
each task can appear in some feasible process. If this is the 
case, the workflow is called sound. The nested workflows 
are always sound but if we add the extra constraints then 
the verification problem becomes intractable (Barták, 
2012). A constraint-based method to verify nested 
workflows was proposed in (Barták and Rovensk  2013). 
This method uses an efficiency enhancement based on 

                                                
Copyright © 2013, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

collapsing some tasks. In this paper we will formally 
define the task collapsing method and we will show under 
which conditions the task collapsing can be used in the 
verification process. We will also present several examples 
of extra constraints that can be easily verified (are either 
violated or redundant). 
 The paper is organized as follows. We will first give a 
formal definition of the nested workflow with extra 
constraints. Then we will formulate the verification 
problem and sketch the verification method from (Barták 
and Rovensk  2013). After that we will justify the method 
of task collapsing. Finally, we will describe the method to 
identify some constraints as redundant or violated. 

Nested Workflows with Extra Constraints 
There exist many formal models of workflows such as 
BPMN (Business Process Modeling Notation, 
www.bpmn.org) or YAWL (Yet Another Workflow 
Language, www.yawlfoundation.org). These are very generic 
models that support repetition of parts of the workflow and 
many specific constraints between the activities. In this 
work we use nested workflows from the FlowOpt system 
(Barták et al. 2011) that are based on the formal model of a 
Nested Temporal Network with Alternatives (Barták and 

epek 2008). The nested structure resembles the idea of 
hierarchical task networks leading to Temporal Planning 
Networks (Kim et al. 2001) and it is a quite common 
structure in real-life workflows (Bae et al. 2004). 
 The nested workflow is obtained from a root task by 
applying decomposition operations that split the task into 
subtasks until primitive tasks, corresponding to activities, 
are obtained. Three decomposition operations are 
supported, namely parallel, serial, and alternative 
decomposition. Figure 1 gives an example of a nested 
workflow that shows how the tasks are decomposed. The 
root task Chair is decomposed serially into two tasks, 
where the second task is a primitive task filled by activity 
Assembly. The first task Create Parts decomposes further 

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

28



to three parallel tasks Legs, Seat, and Back Support. Back 
Support is an example of alternative decomposition into 
two primitive tasks with Buy and Welding activities 
(Welding is treated as an alternative to Buy). Naturally, the 
nested workflow can also be described as a tree of tasks 
(Figures 1 and 2). Formally, the nested workflow is a set 
Tasks of tasks that is a union of four disjoint sets: Parallel, 
Alternative, Serial, and Primitive. For each task T (with the 
exception of the root task), function parent(T) denotes the 
parent task in the hierarchical structure. Similarly for each 
task T we can define the set subtasks(T) of its child nodes 
( subtasks(T) = { C  Tasks | parent(C) = T } ). The tasks 
from the sets Parallel, Alternative, and Serial are called 
compound tasks and they decompose to some subtasks: 
T  (Parallel  Alternative  Serial)  subtasks(T)  , 
while the primitive tasks do not decompose: 

T  Primitive  subtasks(T) = . 
We can now define tasks(T) as the set of all tasks in the 
decomposition of T: 

tasks(T) = T’  subtasks(T) tasks(T’)  {T}. 
In particular, if T is a primitive task then tasks(T) = {T} 
(because T has not subtasks) and if T is a compound task 
then tasks(T) contains the task T, all subtasks of T, their 
subtasks etc. For the workflow from Figure 1, 
tasks(Seat) = {Seat, Cutting, Polishing}. 
 The workflow defines one or more processes. A process 
P is a subset of tasks satisfying the following properties: 
 for each task T in the process, that is not a root task, its 

parent task is also in the process, 
T  P  T  root  parent(T)  P, (1) 

 for each compound task T in the process with a serial or 
parallel decomposition, all its subtasks are also in the 
process, 
T  P  (Serial  Parallel)  subtasks(T)  P, (2) 

 for each compound task T in the process with the 
alternative decomposition, exactly one of its subtasks is 
in the process, 
T  P  Alternative  | subtasks(T)  P | = 1. (3) 

So far we defined the hierarchical structure of the nested 
workflow, but as Figure 1 shows the nested structure also 
defines certain temporal relations. These temporal relations 
must hold for all tasks in a single process. Assume that ST 
is the start time and ET is the end time of task T. The 
primitive tasks T are filled with activities and each activity 
has some known positive duration DT. Then for the tasks in 
a certain process P the following relations hold: 
 T  P  Primitive  ST + DT = ET  (4) 
 T  P  (Parallel  Alternative  Serial)  (5) 
  ST = min{ SC | C  P  subtasks(T) } 
  ET = max{EC | C  P  subtasks(T) }. 
Notice that the duration of a compound task is determined 
by the time allocation of its subtasks while the duration of 

a primitive task is determined by the activity. Moreover, 
for the serial decomposition we expect the subtasks to be 
ordered, say T1, …, Tn, where n is the number of subtasks 
of a given task. Hence, the following constraint must hold 
for a serial task in the process: 
 T  P  Serial  subtasks(T) = { T1, …, Tn }  (6) 
  i = 1,…, n-1: Ei  Si+1 
A feasible process is a process where the time variables ST 
and ET can be instantiated in such a way that they satisfy 
the temporal constraints (4)-(6). If there are no extra 
constraints (see below) then any process is feasible – the 
process defines a partial order of tasks so their start and 
end times can be set in the left-to-right order while 
satisfying all the temporal constraints. 
 To increase flexibility of nested workflows when 
describing real-life processes, for example the alternative 
for one task influences the selection of alternatives in other 
tasks, the following extra constraints between any two 
tasks i and j can be added to the nested structure: 

 precedence constraint (i  j): i, j  P  Ei  Sj 
 start-start synchronization (i ss j): i, j  P   Si = Sj 
 start-end synchronization (i se j): i, j  P   Si = Ej 
 end-start synchronization (i es j): i, j  P   Ei = Sj 
 end-end synchronization (i ee j): i, j  P   Ei = Ej 
 mutex constraint (i mutex j): i  P  j  P 
 equivalence constraint (i j): i  P  j  P 
 implication constraint (i  j): i  P   j  P. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. Nested workflow as it is visualized in the FlowOpt 
Workflow Editor (from top to down there are parallel, serial, and 
alternative decompositions). 

29



There are basically two different locations where the extra 
binary constraint can be placed in the tree structure of the 
workflow. Either the constraint connects two tasks on the 
same path to the root task (for example the constraint 
between tasks A and B in Figure 2) or the constraint 
connects the tasks from different sub-trees with a common 
ancestor task (for example the constraint between tasks C 
and D in Figure 2).  We call this common ancestor task a 
parent of the constraint. The parent of the constraint 
between A and B in Figure 2 is A, while the parent of the 
constraint between C and D is E. Formally, if the constraint 
C connects two tasks i and j then the parent(C) is a task T 
such that {i,j}  tasks(T) and there is no task T’  tasks(T) 
such that {i,j}  tasks(T’). As we shall show later, the 
location of the constraint and its type can be used to 
deduce whether the constraint is redundant or violated. 
 It is interesting that if extra constraints are used then the 
existence of a feasible process is no longer obvious 
because of the violated constraints (for example, the extra 
precedence constraints may introduce a loop). In fact, 
Barták (2012) showed that the problem, whether a feasible 
process exists or not, is NP-complete. Because the 
existence of a feasible process is not guaranteed, it is 
important to verify the workflow structure before the 
workflow is used further (Giro 2007). 

Workflow Verification 
Various workflow verification methods have been 
proposed. The methods based on Petri Nets (van der Aalst 
and Hofstede, 2000) are probably the most widely applied, 
but they cannot cover the extra constraints. The 
verification method for the nested workflows with extra 
constraints was proposed in (Barták and Rovensk  2013). 
This method formulates the problem of checking existence 
of a feasible process as a constraint satisfaction problem 
(CSP). Basically the set P of tasks in the process is 
described by Boolean variables indicating which tasks are 

included in the process and the constraints defining a 
feasible process (see the previous section) are reformulated 
using these variables. The verification algorithm repeatedly 
solves CSPs where each CSP describes a feasible process 
containing a given task (the Boolean variable for that task 
is set to true). If all CSPs have solutions then the workflow 
is sound, otherwise a flawed task is identified. 

Task Collapsing 
Barták and Rovensk  (2013) showed experimentally that 
collapsing some tasks and treating them as primitive tasks 
in the verification algorithm speeds up the core verification 
method. In this paper we will formalize the process of task 
collapsing and prove that the verification method based on 
task collapsing is sound. 
 It is easy to observe that if we take the set tasks(T) and 
all the constraints from the workflow W over the tasks 
from tasks(T) then we obtain a nested workflow with the 
root task T. Let us denote this workflow WT. Conversely, 
we can cut this workflow out of W and leave there only the 
task T (instead of WT), which is called task collapsing. 
Formally, workflow cWT obtained from the workflow W 
by collapsing its task T is defined by the set of tasks 
tasks(cWT) = (tasks(root) \ tasks(T)) {T}, where root is 
the root task of W. The task T has no subtasks in cWT so it 
is a primitive task there. We set its duration DT = 1 (any 
positive number can be used). All the constraints from W 
over the tasks from tasks(cWT) are preserved in cWT. 
Figure 3 shows how the workflow splits to workflows WT 
and cWT (a tree representation of the workflow is used). 
 The motivation behind the task collapsing is that under 
certain conditions we can verify the workflow W by 
verifying the smaller workflows WT and cWT. Notice that 
all the workflow constraints (1)-(6) from W are either in 
WT or in cWT. It may only happen that an extra constraint 
is defined between a task from tasks(T) and a task outside 
tasks(T) and hence this extra constraint is present neither in 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Decomposition of the workflow to the workflow defined 
by the task T and the workflow obtained by collapsing the task T. 

 
Figure 2. A tree representation of nested workflows with examples of 

possible locations of extra binary constraints. 

 

30



WT nor in cWT. Even if there are no such constraints 
between the workflows, it may happen that extra 
constraints in cWT restrict the duration of T that further 
influences the feasible processes that can be selected from 
WT. Assume the situation depicted in Figure 4, where the 
task T must have identical duration to the primitive task A3 
due to the start-start and end-end temporal synchronization 
constraints between these tasks. Obviously these 
constraints restrict which subtask A1 or A2 can be selected 
from the alternative decomposition of T (that one with the 
duration equal to A3). Hence, we should ensure that the 
duration of T is not restricted in cWT (recall that we use 
DT  = 1 in cWT, but the real duration of T may be different 
depending on the process selected for WT). In summary, to 
ensure that we can independently select feasible processes 
for workflows WT and cWT and combine them to obtain a 
feasible process for W, there cannot be any extra constraint 
between the tasks of these processes and the duration of 
task T cannot be restricted by other tasks in cWT (only the 
extra temporal constraints can restrict the task duration). 

Proposition 1: Let T be a task of the workflow W s.t. 
(a) there is no constraint in W between any pair of tasks 

T1 and T2 such that T1  tasks(T) \ {T} and 
T2  tasks(W) \ tasks(T), and 

(b) if there is a temporal synchronization or a 
precedence constraint C then T  tasks(parent(C)). 

Then for any feasible process P1 from cWT and for any 
non-empty feasible process P2 from WT the following 
claims hold: 

- if T  P1 then P1 is a feasible process in W, 
- if T  P1 then P1  P2 is a feasible process in W. 

Proof: Thanks to the condition (a) any constraint from W 
is either in cWT or in WT. This is because any constraint 
from W connects the tasks that are either in cWT or in WT. 
 Let us assume first that T  P1. Then P1 is a feasible 
process in W because it satisfies all the constraints W. The 
constraints from cWT are satisfied, because P1 is a feasible 
process in cWT. As the task T is not included in P1 then no 
task from tasks(T) is included in this process so all the 
constraints from WT are trivially satisfied (an empty 
process is always feasible). 
 Let us now assume the remaining case, that is T  P1. 
P = P1  P2 satisfies all the workflow structural 
constraints (1)-(3) defining the valid decompositions of 
compound tasks so P is a process in W. In particular, 
notice that T  P2 because P2 is a non-empty process (a 
non-empty process always contains the root task of the 
workflow). The process P also satisfies all the extra logical 
constraints (mutex, implication, equivalence). These 
constraints are defined either between the tasks of cWT or 
between the tasks of WT and they allow the task T to be 
included in P1 and P2 and hence also in P. It remains to 
show that the temporal constraints (4)-(6), precedences, 

and synchronizations are satisfied. We know that these 
constraints are satisfied in P2 and they define the duration 
T. However, in P1 we assumed the duration of T to be 1 
that may be different from the duration of T defined by P2. 
We shall show that the temporal constraints in P1 are 
satisfied independently of the particular duration of T 
(there are no constraints connecting tasks in P1 and P2). In 
particular we will focus on the path from T to the root task 
in cWT and we will show that it is possible to modify the 
durations of tasks on this path while keeping all the 
temporal constraints satisfied. From the condition (b) we 
know that no task TP on the path from T to the root task 
participates in a temporal synchronization or a precedence 
constraint (otherwise parent(C) would also be on that path 
and then T  tasks(parent(C))). Hence the duration of TP 
is computed from the durations of its subtasks using the 
constraint (5). Moreover, the only temporal relation 
between the subtasks of TP is (6), in case of a serial 
decomposition – the condition (b) forbids any other 
temporal relation, direct or indirect, between the subtasks 
of TP. It means that the subtasks of TP are completely 
temporally independent (they do not share any start time or 
end time variables). If we change the duration of any 
subtask of TP then only the duration of the parent task TP 
is influenced to satisfy the constraint (5). The consequence 
is that if we satisfy all the temporal constraints in subtasks 
independently then by propagating the temporal 
information through constraints (5)-(6) we satisfy all the 
temporal constraints in the workflow rooted in TP. Hence 
for any duration of T, we can compute the durations of 
tasks in the path from T to the root of W in such way that 
all the constraints (5)-(6) are satisfied and all other 
temporal constraints in cWT remain satisfied. Hence the 
process P1 where the duration of T is modified to be equal 
the duration of T in P2 is a feasible process and so P1 and 
P2 can be combined together and P1  P2 is a feasible 
process in W (it satisfies all the constraints in W). In 
summary, we showed that a feasible process for W can be 
composed from the feasible processes for cWT and WT.  

 
Figure 4. Example of restricting the duration of task via extra 

synchronization start-start and end-end constraints. 

31



Corollary: If a task T from the workflow W satisfies the 
conditions of Proposition 1 then the workflow W is sound 
if and only if the workflows cWT and WT are sound. 

Proof: Obviously any feasible process P from W can be 
split to feasible processes P1 for cWT and P2 for WT,where 
P = P1  P2, P1  tasks(cWT), and P2  tasks(WT). Let 
T’  tasks(cWT). There is a feasible process P for W such 
that T’  P and also a process P1 containing T’ for cWT. 
Hence cWT is sound. Let T’  tasks(WT). There is a 
feasible process P for W such that T’  P and also a 
process P2 containing T’ for WT. Hence WT is sound. 
 There exists a feasible process P1 containing T in cWT 
and a feasible process P2 containing T in WT (both cWT 
and WT are sound). According to Proposition 1 the process 
P = P1  P2 is a feasible process in W containing T. 
 Let T’  T be a task in W such that T’  tasks(cWT). 
There exists a feasible process P1 for cWT containing T’ 
(cWT is sound). If T  P1 then we find a feasible process 
P2 in WT containing T (it must exist because WT is sound), 
otherwise P2 = {}. According to Proposition 1 the process 
P = P1  P2 is a feasible process in W containing T’. 
 Let T’  T be a task in W such that T’  tasks(WT). 
There exists a feasible process P2 for WT containing T’ 
(WT is sound). There also exists a feasible process P1 for 
cWT containing T. According to Proposition 1 the process 
P = P1  P2 is a feasible process in W containing T’. 
 We have shown that if cWT and WT are sound then for 
any task T’ there exists a feasible process in W containing 
T’. Hence W is sound.   

The Proposition 1 gives a method how to simplify 
workflow verification. The workflow W can be verified by 
verifying smaller workflows cWT and WT independently. 
The proposition also gives a method how to split W to 
workflows cWT and WT. It is enough to find a task T 
satisfying the conditions (a) and (b) from the proposition. 
This proposition provides a theoretical justification of the 
task collapsing method from (Barták and Rovensk  2013) 
where no extra constraints in WT were allowed. Obviously, 
if no extra constraints are present in WT then WT is sound. 
Because the presented proposition allows extra constraints 
in WT, it generalizes the original collapsing method.  

Easily Verifiable Constraints 
While the general verification of nested workflows with 
extra constraints is hard, it is possible to identify certain 
constraints that are easy to verify. In particular, based on 
the location and the type of the constraint it is possible to 
show that certain constraints are always satisfied and hence 
redundant and that certain constraints forbid inclusion of 
some tasks in any process and hence make the workflow 
flawed. Identifying such constraints is practically 

important as they can be reported to the user immediately 
with complete information why the constraint is 
problematic. These constraints can be omitted when the 
user attempts to add them. The benefit of omitting such 
constraints is that it may allow collapsing more tasks based 
on the Proposition 1. 
 Let us start with the constraints along the path to the root 
(the parent of the constraint is one of the constrained tasks 
– Figure 5). If this constraint is a precedence constraint or 
start-end synchronization or end-start synchronization then 
the constraint is invalid because it is in conflict with the 
constraints (5) – the parent task cannot start at or after the 
child task finishes and the child task cannot start at or after 
the parent task finishes. Hence the parent of the constraint 
cannot be used in any process. The mutual exclusion 
constraint is also invalid because it is in conflict with 
constraints (1) – the child task requires the parent task to 
be a part of the same process so the child task can never be 
used in any process if the mutex constraint is present. If 
there is no alternative decomposition on the path between 
the tasks then the equivalence constraint is redundant – 
constraints (1) and (2) ensure the equivalence of tasks. 
Assume now that there is an alternative decomposition of 
some task T in the path between the tasks A and B 
connected via an equivalence constraint. Because A and B 
must always be in the same process, the equivalence 
constraint causes the workflow to be flawed – only one 
alternative in the task T can be used due to the constraint 
(3). Similarly, the implication constraint in the direction to 
the parent task is redundant due to constraints (1). The 
implication constraint in the opposite direction (starting 
from the parent task) is invalid, if there is a task with 
alternative decomposition on the path between the tasks, 
otherwise the constraint is redundant. The reason is 
identical to the equivalence constraint. The status of the 
start-start and end-end synchronizations can be derived 
only if all the decompositions between A and B are serial. 
If B is in the first tasks of all the decompositions then the 
start-start constraint is redundant, otherwise it is invalid 
due to the constraints (5)-(6). Similarly, if B is in the last 
tasks of all the decompositions then the end-end constraint 
is redundant, otherwise it is invalid due to the constraints 
(5)-(6). Table 1 summarizes the status of all possible extra 
constraints along the path to the root task. 

 
 
 
 
 
 
 
 
 

Figure 5. A typical location of an easy-to-verify constraint. 
 

32



Table 1: The statuses of constraints between tasks A and B, where A is an 
ancestor of B (see Figure 5). 
 
 Assume now the second case when the parent task of the 
constraint is different from both constrained tasks. For 
these constraints we can derive their status only in some 
very specific situations. If there is no task with alternative 
decomposition on the path between the tasks then the 
equivalence and implication constraints are redundant 
while the mutual exclusion constraint is inconsistent due to 
the constraints (1) and (2). If the parent task of the 
constraint is a task with an alternative decomposition then 
the synchronization and precedence constraints are 
redundant (the constrained tasks will never be together in 
the same process due to the constraint (3)). If the parent 
task is a task with the serial decomposition then a 
precedence constraint is redundant if it follows the 
direction of the serial decomposition – due to the constraint 
(6). It is possible to identify other special cases where the 
validity of the constraint can be immediately checked, but 
the conditions become more complex. The key message of 
this section is that there are certain extra constraints that 
can be verified during pre-processing of the workflow and 
immediately and precisely reported to the user. 

Conclusions 
This paper deals with the theoretical foundations of 
simplifying verification of nested workflows with extra 

constraints. It formally defines the method of task 
collapsing and gives the condition when the workflow can 
be split to independently verifiable workflows. This 
theoretically justifies and also generalizes the method from 
(Barták and Rovensk  2013) that requires the workflow 
WT to be without extra constraints. From the formal proof 
it seems that the condition for task collapsing can be 
weakened further, which is a topic of future research. 
 As the second contribution, the paper gives a list of extra 
constraints that can be easily verified by fast ad-hoc 
methods. While the general constraint-based verification 
method from (Barták and Rovensk  2013) can only report 
a flawed task; these easy-to-verify constraints can be 
directly reported to the user as the source of problems (if 
they are invalid). The future research may look at other 
general methods for finding reasons for flaws, for example 
similar to identifying nogoods. 

Acknowledgements: The research is supported by the Czech 
Science Foundation under the contract P202/10/1188. 

References 
Bae, J, Bae, H., Kang, S.-H., Kim, Z., 2004. Automatic Control of 
Workflow Processes Using ECA Rules. IEEE Transactions on 
Knowledge and Data Engineering, 16(8), 1010-1023. 
Barták, R., and epek, O. 2008. Nested Temporal Networks with 
Alternatives: Recognition, Tractability, and Models. In Artificial 
Intelligence: Methodology, Systems, and Applications (AIMSA 
2008), LNAI 5253, Springer Verlag, pp. 235-246. 
Barták, R., Cully, M., Ja ka, M., Novák, L., Rovensk , V., 
Sheahan, C., Skalick , T., Thanh-Tung, D. 2011. Workflow 
Optimization with FlowOpt, On Modelling, Optimizing, 
Visualizing, and Analysing Production Workflows. In 
Proceedings of Conference on Technologies and Applications of 
Artificial Intelligence (TAAI 2011), IEEE Conference Publishing 
Services, pp. 167-172. 
Barták, R. 2012. On Complexity of Verifying Nested Workflows 
with Extra Constraints, Proceedings of 4th International 
Conference on Agents and Artificial Intelligence (ICAART 2012), 
Volume 1, pp. 346-354, SciTePress. 
Barták, R., and Rovensk , V. 2013. Verifying Nested Workflows 
with Extra Constraints. In MICAI 2012, Part I, LNAI 7629, p. 
359-370, Springer Verlag. 
Giro, S. 2007. Workflow Verification: A New Tower of Babel. In 
AIS-CMS International Modeling and Simulation 
Multiconference, Buenos Aires, Argentina. 
Kim, P., Williams, B., Abramson, M. 2001. Executing Reactive, 
Model-based Programs through Graph-based Temporal Planning. 
In Proceedings of International Joint Conference on Artificial 
Intelligence (IJCAI), pp. 487-493, (2001). 
van der Aalst, W. M. P., and ter Hofstede, A. H. M. 2000. 
Verification of Workflow Task Structures: A Petri-Net-Based 
Approach. Information Systems, 25(1), 43-69, (2000). 
van der Aalst, W. M. P., vanHee, K. M., ter Hofstede, A. H. M., 
Sidorova, N., Verbeek, H. M. W., Voorhoeve, M., and Wynn, M. 
T.  2011. Soundness of workflow nets: classification, decidability, 
and analysis. Formal Aspects of Computing, 23: 333–363. 

33




