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Abstract
The success of the Case Based Reasoning (CBR) sys-
tem depends on the quality of the case data. This qual-
ity is dedicated to the study of the case base competence
which is measured by the range of problems that can be
satisfactorily solved. In fact, modeling case-base com-
petence is a clamorous issue in the discipline of CBR.
However, the existence of erroneous cases as noises and
the non uniform problem distributions has not been con-
sidered in the proposed computing competence.
In this paper, we propose a novel case base competence
model based on Mahalanobis distance and a clustering
technique named DBSCAN-GM. The advantage of this
newly proposed model is its high accuracy for predict-
ing competence. In addition, it is not sensitive to noisy
cases and it takes account the situation of the distributed
case-base. Withal, we contest that this model has a con-
spicuous role to play in future CBR research in fields
such as the development of new policies for maintain-
ing the case base.

Introduction
One of the great aspirations of Artificial Intelligence (AI) is
to create smart methods and systems able to understand and
emulate human reasoning. Among the various intelligent
system paradigms, Case Based Reasoning (CBR) (Kolodner
1992) (Aamodt and Plaza 1994) (Hahn and Chater 1998)
is a relatively recent technique that is attracting increasing
attention. It is a diversity of reasoning by analogy where it
is a technique to model the human way in reasoning and
thinking. CBR is able to find a solution to a problem by
employing its luggage of knowledge or experiences which
are presented in form of cases. To solve the problems,
CBR system calls the past cases, it reminds to the similar
situations already met. Then, it compares them with the
current situation to build a new solution which, in turn,
will be incorporated it into the existing case base (CB) (see
Fig. 1).
Literally, CBR has been used to concoct multitudinous
applications in a wide range of domains including financial
analysis, risk assessment, manufacturing, medicine, law,
technical maintenance, quality control, etc.
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Figure 1: Case based reasoning cycle

Figuratively, CBR system is built to work for long peri-
ods of time, it is developed to deal with large amounts of
information and cases, it adds cases to the case base through
the retain process. As a result, the case base can grow very
fast in the sense that it can affect negatively the CBR’s qual-
ity results and can slow the speed of the query execution
time concerning case-research phase. Resultantly, there has
been a significant increase in the research area of Case Base
Maintenance (CBM). Its objective is to guarantee a good op-
erating in time of an information processing system and to
facilitate future reasoning for a particular set of performance
objectives (Leake and Wilson 2001). Recently, the case base
maintenance issue has drawn more and more attention to a
major gauge which is case base competence or case base
coverage that supply to the evaluation of a case base. It is
a decisive determinant contributing to the performance of a
CBR system in the sense that a good quality case base must
have high competence. It can be defined as the range of prob-
lems that can be satisfactorily solved (McKenna and Smyth
1998).
Several previous approaches for case base coverage can be
sensitive to the presence of disagreeable cases such as noises
which are those whose descriptions are academic in nature
and if memorized in a case base, may cause the solutions
to be spurious. In addition, many cases have approximately
uniform coverage and others have very small coverage; thus,
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it is difficult to distinguish between these cases types.
In this paper, we present a novel case base competence
model based on Mahalanobis distance and a clustering tech-
nique named DBSCAN-GM. The advantage of this newly
proposed model is its high accuracy for predicting compe-
tence. In addition, it is not delicate to noisy cases, as well as,
it is virtuous for more general distributed case-bases.
The rest of the paper is organized as follows: In Section 2,
some of strategies for modeling the competence of the case
base will be approached. Section 3 describes in detail our
new approach for coverage case base. Section 4 details and
analyzes experimental results carried out on data sets from
the U.C.I. repository (Asuncion and Newman 2007). Finally,
Section 5 ends this work and presents future works.

Case-base Competence: Related work
The competence of case base which is the range of prob-
lems the CBR can solve, has been given much attention
in the literature. This measure is an essential tool for
use in all stages of system development. It particularly
important during system maintenance, where knowledge
is added, deleted and modified to effect system adaptation
and improvement. However, it is difficult to measure the
competence of the system, in addition the precise nature
of the relationship between the case base and competence
is complex and not well understood. So, we need a theo-
retical model that allows the competence of a case-base
to be evaluated and predicted. Many different approaches
to model the competence (Smyth and McKenna 1999b;
1999a; Reinartz, Iglezakis, and Roth-Berghofer 2000;
Smiti and Elouedi 2011) have shown how different cases
can make very different types of competence contribution:

(Smyth and Keane 1995) and (Smyth and McKenna
1999a) defined two key fundamental concepts which are
coverage and reachability.

• Coverage is an important competence property. Coverage
of a case is the set of target problems that it can be used
to solve. The overall coverage of a case base in relation
to a set of queries is the total number of covered queries
divided by the total number of queries in the query set.

• Reachability is an important competence property. Reach-
ability of a target problem is the set of cases that can be
used to provide a solution for the target.

In order to have a CB with good competence, its coverage
ratio must be high.
(Grachten, Garcı́a, and Arcos 2005) consider a case is sig-
nificant in the CB if it covers many similar cases: its similar-
ity value (sim) should be greater than a verge Ψ. Hence, the
concept of coverage can be extended in the following way:

Cov(ci ∈ CB) = {cj ∈ CB|sim(ci, cj) > Ψ} (1)

Where Ψ is the quality criterion, it can take values in
the interval [0, 1]. Based on many tests, the verge Ψ can be
defined using an hierarchical competence model.

The competence model proposed by (M&S) (Smyth and
McKenna 2001) is a copacetic contribution of the analysis of
case base structure by assessing the local competence con-
tributions of cases and their interactions. It is assuming that
the competence is based on a number of factors including
the size and the density of cases. The number and density of
cases can be readily measured. In fact, The individual com-
petence contribution of a single case within a dense collec-
tion will be lower than the contribution of the same case
within a sparse group; dense groups contain greater redun-
dancy than sparse groups (Smyth and McKenna 1999a). The
density of an individual case, that we named Dens, can be
defined as the average similarity (Sim) between this case and
other clusters of cases called competence groups (Equation
2). Hence, the density of a cluster of cases is measured as a
whole as the average local density over all cases in the group
(Equation 3).

The coverage of each competence group is an estimate of
the problem space area that the group covers. As indicated
above group coverage must be directly proportional to the
size of the group but inversely proportional to its density
(Smyth and McKenna 1999a). This leads to the definition of
group coverage shown in Equation 4.

Dens(c,G) =

∑
c′εG−c Sim(c, c′)

|G− 1|
(2)

Dens(G) =

∑
cεGDens(c,G)

|G|
(3)

Cov(G) = 1 + ||G| × (1−Dens(G))| (4)

Where |G| is the number of cases in the group G.
In the final step, the overall competence of a case-base

can be defined as the sum of the coverage of all competence
groups. As a result, for a given case-base, with competence
groups G = G1, ..., Gn, the total coverage is defined as fol-
lowing:

TotalCoverage(G) =
∑
Gi∈G

Cov(Gi) (5)

(Yang and Zhu 2001; Salamó and Golobardes 2003)
described case coverage based on a rather rough concept of
case neighborhood.

These works have highlighted the importance of mod-
eling CBR competence. However they suffer from some
shortcomings such as they are not always meticulous,
especially in the situation of non-uniform distributed
case-bases, as shown in (Shiu, Yan, and Wang 2001;
Massie, Craw, and Wiratunga 2007). Besides, they scan
the entire case base for the categorization which is not
evident and they are hypersensitive to erroneous cases as
noises (Pan, Yang, and Pan 2005).

To alleviate this potential problem, we propose, in this
paper, a novel approach for computing case base coverage,
named CMDC- Coverage model based on Mahalanobis dis-
tance and Clustering. We hold a different point of view for
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modelling the competence. The innovation of our work con-
sists of proposing efficient techniques of machine learning to
distinguish the important cases, which invoke the quality of
the system, whether noisy cases or isolated cases or similar
cases.

CMDC- Coverage model based on
Mahalanobis distance and Clustering

Coverage of a case is the set of target problems that it can be
used to solve. Computing this set for every case and target
problem is not a feasible option. Sharply, the best way is to
find some approximations to this set.
Hypothetically, we consider that the case base is a represen-
tative sample of the problem space. Under this circumstance
and in order to facilitate the competence computing, a given
case base can be decomposed into groups of closely related
cases. The competence of the case base as a whole is com-
puted as the sum of these group coverage values. This is
valid because we suppose, that each group of cases is con-
sidered as an autonomous set makes an independent cover-
age contribution.
As was seen in previous efforts, the competence of the case
base is proportional to the individual coverage contribution
of a single case within a determined groups distribution.
which is related to the size of the case base.

Comp%(CB) = |1−
∑k
j=1

∑n
i=1 Cov(xij)

SizeCB
| (6)

where k is the number of groups and Cov is the coverage
contribution of each case in one cluster j with given distri-
bution. This value depends on the type of the case and its
role in the CB. Authentically, to obtain a good approxima-
tion of the coverage computing, we have to consider these
notes where we define three types of cases:
• CNi: Noisy cases are a distortion of a value or the addi-

tion of the spurious object. They are disagreeable cases,
they can dramatically slow the classification accuracy. As
a result, the CBR’s quality will be reduced. They mislead
the computation of the CB’s coverage because there is no
other case that can solve them and they can not cover other
cases. In analytical tasks, CNi are cases that do not be-
long to any set of similar cases. The best choice in this
situation, is to detect cases expected to be noisy and af-
fect them an empty set as a coverage value.

Cov(CNi) = ∅ (7)

• CSi: Each case from a group of similar cases and which
is near to the group centroid, provides similar coverage
values, because they are close to each other, they cover
the same set of cases. Hence, the coverage value of each
case equals to the number of cases in this group (n).

Cov(CSi) = n (8)

• CIi: In a set of similar cases, there are cases that are much
distant to the other members in this group. We can con-
sider them as isolated cases. They belong to one set of

similar cases not like those of type CNi but they are far-
ther to the set’s centroid than the cases of type CS. They
cover only themselves. As a result, the coverage of each
case of this type equals to one.

Cov(CIi) = 1 (9)

Based on these definitions, we create a new coverage
model named CMDC- Coverage model based on Maha-
lanobis distance and Clustering, our model distinguishes
these three types of cases and affects the appropriate
coverage value to each type.

To apply this idea, we need first to create multiple, small
groups from the case base that are located on different sites.
Each small group contains cases that are closely related to
each other. This can be done only by a clustering technique
because it ensures that each group is small, independent and
contain similar cases, so it is easier to detect the different
types of cases.
After that, for each small cluster: the cases, which are near
to the cluster’s center and close to each other, are considered
as cases of the type of CSi. The cases, which are far away
from the center, are considered as cases of the type of CIi.
Finally, the cases, which are outside the clusters and have
not affected to a determined cluster, are considered as cases
of the type of CNi (See Fig. 2).

Figure 2: Different types of cases for CMDC model

Among the proposed clustering approaches, we should,
ideally, use a method that while clustering and creating
groups of similar cases, can smooth the discover of the dif-
ferent types of cases in such data sets. So, it should have the
maximum of the following main properties:
• It is totally automatic; in particular, a principled and in-

tuitive problem formulation, such that the user does not
need to set parameters, especially the number of clusters
K. In fact, if the user is not a domain expert, it is diffi-
cult to choose the best value for K and in our method of
coverage, we need to have the best number of clusters to
determinate the groups of similar cases.

• It has the capability of handling noisy cases like that we
detect the cases of type CNi
• It supports arbitrary shape of clusters and it can handle

non-uniform distributed case-bases.
• It scales up for large case base.

To overcome all these conditions, we use a new clus-
tering method called “DBSCAN-GM” (Smiti and Elouedi
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2012). It combines Gaussian Means (Hamerly and Elkan
2003) and density-based clustering method (DBSCAN) (Es-
ter et al. 1996) methods. DBSCAN-GM clustering method
benefits from the advantages of both algorithms to cover the
conditions cited above: The first stage, DBSCAN-GM runs
Gaussian-Means to generate automatically a set of clusters
with their centers, in purpose to estimate the parameters of
DBSCAN. In this manner, the parameter identification prob-
lem of DBSCAN is solved. The second stage, it runs DB-
SCAN with their determined parameters to handle noises
and discover arbitrary size and shaped clusters. In this fash-
ion, the noisy data shortcoming of Gaussian-Means is unrav-
eled. In briefly, the steps of the DBSCAN-GM is described
as follows:

Algorithm 1 Basic DBSCAN-GM Algorithm
1: Begin
2: Run GMeans and find the center of all sets Mj

3: /* Estimate the parameters EPS and Minpts of
DBSCAN-GM:*/

4: For each cluster j with center Mj do:
/* The radius rj of the cluster j*/

Calculate rj =

√∑|G|
i=1

distance2(Mj ,xij)

Nj

/* The Minptsj of the cluster j*/

Calculate Minptsj =
Π×r2j

TotalV olumej
×Nj

Where TotalV olumej = 4
3 ×Π× r3

j

5: The EPS value is: Eps = Min(rj)
6: The Minpts value is: Minpts = Min(Minptsj)
7: Run DBSCAN(Eps, Minpts)
8: End

The DBSCAN-GM is an appropriate clustering method
for our CMDC coverage technique. This occurs because
this clustering method shows good performance on large
databases, it relieves the problem of the global parameters;
it automatically generates a set of clusters. Besides, it has
the possibility of detecting noisy instances which we will
affect them an empty set as coverage value. In addition, it
generates non-uniform distribution and different shapes for
the clusters, comparing to other clustering algorithms.

Once we have partitioned the original case memory by
DBSCAN-GM and we have detected cases expected to be
noisy (CNi) and accorded them an empty set as a coverage
value, CMDC directs attention to finding the other types:
Based an intrinsic assumption, the CSi are in the center of
the cluster space and follow a normal distribution and occur
in a high probability region of this cluster. However, the iso-
lated cases CIi are located at the border of the cluster space
and deviate strongly from the cluster distribution. They have
a low probability to be generated by the overall distribution
and they deviate more than the standard deviation from the
mean.

For each cluster, the cases which are distant from the clus-
ters center are considered as cases of type CI. The best tech-

nique to detect them, is Mahalanobis distance (Filzmoser,
Garrett, and Reimann 2005) because it takes into account
the covariance among the variables in calculating distances.
With this measure, the problems of scale and correlation in-
herent in the other distance such as Euclidean one are no
longer an issue. In addition, Mahalanobis distance is an effi-
cient for the non uniform distribution and arbitrarily shaped
clusters because it deals with clusters of different densities
and shapes.
Given p-dimensional multivariate sample (cases) xi (i =
1; 2...;n), the Mahalanobis distance is defined as:

MDi = ((xi − t)TC−1
n (xi − t)1/2 (10)

Where t is the estimated multivariate location and Cn the
estimated covariance matrix:

Cn =
1

n− 1

n∑
i=1

(xi −Xn)(xi −Xn)T (11)

Where Xn is the mean of the cluster and n is the number
of cases in this cluster.
Accordingly, those observations with a large Mahalanobis
distance in a cluster are selected as CI type. The threshold
of large distance depends on when the similarity between
cases and the center starts raising.
For that, we need to measure how closely the cases cluster
around the mean and how are spread out in a distribution of
the cluster. Hence, the case whose Mahalanobis distance is
superior to this threshold, will be consider as CI case, else
it will be CS type.
This measure is substantiated by the standard deviation that
is able to know how tightly cases are clustered around the
center. It indicates how much, on average, each of the cases
in the distribution deviates from the center of the distribu-
tion because it depends on the average of the squared devi-
ations from the mean of the cluster. The standard deviation
is therefore a good measure of the categorization of CI and
CS cases. The formula is as follows:

σ =

√∑n
i=1(xi −Xn)2

n
(12)

Analogously, we can define the similar cases as a cases
with a tiny Mahalanobis distance and close to the center.
{xi, zj} ε Clusterj with center(zj) :

Cov(xi) =

{
1 if MD(xi, zj) > σ

|CS| otherwise

As a result, we have affected for each case the appropriate
coverage value depending on its type.

Experimental Analysis
In previous sections, a new model using clustering and
Mahalanobis distance for modeling the coverage of case
bases has been presented. In this section, empirical evi-
dence is needed to support this model. In short, we men-
tion that the propose model in this paper carefully matches
the actual competence and we think that our CMDC ben-
efits from superior effectiveness and performance in terms

402



of competence. We test our algorithm on a number of case
bases. Our experiments are performed on several publicly
available datasets. Actually, in this paper, we use public
datasets obtained from the U.C.I. repository of Machine
Learning databases (Asuncion and Newman 2007). In fact,
our competence model was implemented on three classifi-
cation datasets: Iris with size of 150 cases, Ionosphere with
351 cases and Mammographic with the number of 961 cases.

Experiments have been carried out using it applied to
classification issues. In this case, we use the nearest neigh-
bors (K-NN) for the classification. In general, the retrieval
technique, which is used by the major CBR applications, is
(K-NN) algorithm. It is a simple approach that computes the
similarity between stored cases and new input case. Hence,
we choose to select the (1-NN) to compute the percentage
of correct classification. We apply the 1-NN algorithm to
the same datasets and the same task to obtain the average
accuracy rate.

In the first part of our experimentation, our competence
model was applied to each case-base and its predicted com-
petence compared to the test set accuracy, as following:
This experiment uses different size of cases bases. Each of
these datasets was split into training set and test set approx-
imately. The training set contains 80% of case base and the
test set contains 20% of cases. Initially, the training set was
partitioned into five independent sets. Each case is chosen
randomly such that the case base satisfies non-uniform dis-
tribution. Every case is a two-dimension vector. The smallest
case-base was created using one of these sets, and a growing
case-base was created by successively adding one of these
sets. For each of the five case-bases two measurements are
taken: the case-base accuracy yielding a real competence
value for each case-base. Second, our competence model is
built for each case-base and case-base coverage is measured,
yielding a predicted competence value for each case-base.
We use, in this situation, the correlation coefficient, to mea-
sure the relationship between the CB accuracy and the pre-
dicted competence model. Actually, this coefficient is a
number between 0 and 1. If there is no relationship between
the predicted values (our CMDC competence) and the actual
values (PCC), the correlation coefficient is 0 or very low. As
the strength of the relationship between the predicted values
and actual values increases so does the correlation coeffi-
cient. Thus the higher the correlation coefficient the better.
Figs. 3 shows the experimental corollaries of three differ-
ent datasets which have been presented in different five case
bases. They present the accuracy and case base competence
plotted against case base size:

The results afford meritorious support in favour of our
competence model. There appears to be a very abutting con-
nection between the two curves and hence a strong correla-
tion between predicted competence provided by our CMDC
model and the test set accuracy. It can be seen from these
graphs that there is a strong correlation between the model’s
predictions and test set accuracy. For instance, the correla-
tion coefficient between the two curves, in Iris example, is
0.94, which is statistically powerful. Moreover, for Mam-
mograph dataset, the correlation is greater than 0.92, and for

Ionosphere, its is equal to 0.88.

Figure 3: Comparing predicted competence (CMDC comp)
to the case-base accuracy (PCC) for different Case-base
Sizes of the Iris, Ionosphere and Mamograph datasets

Looking at the plots in more detail, we find that the
plot of the model’s prediction and the one of the accuracy
express a direct relationship, if one increases the other
increases, one decreases the other decreases. Likewise, We
can observe that the plot of the true competence (PCC)
is matched by model’s prediction in some sizes. That’s
prove that the evaluation results exhibit a quintessential
correlation between the predictions of the model and true
competence for a spacious case-base sizes.

In the second part of our experimentation, we realized
that our CMDC model can be appreciated when compared
with the well-known competence model (M&S) (Smyth and
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McKenna 2001), using the same benchmark data sets as de-
scribed above. For this comparison, we use Percentage error
as evaluated index (Equation 13), which represents the rela-
tive error of coverage computed by using the (M&S) model
and our new CDCM model respectively.

Error(%) =
|EstimateComp− PCC|

PCC
∗ 100 (13)

The experiment results are computed and are shown in
Table 1. The results positively support our model.

Table 1: Comparing CMDC model to (M&S) technique
Dataset (M&S) CMDC

IRIS 4.010 0.927
Ionosphere 3.544 0.287

Mammograph 21.10 13.820

Conspicuously, the results are very encouraging. The Per-
centage error of our CMDC model is rather lower than us-
ing the (M&S) model. This is due to the fact that the (M&S)
model suffers from two lacks: The group case density does
not give a good measure of competence and problem com-
plexity is not adequately reflected by the model. However,
our model alleviates these problems. Its point of strength is
that it takes into account the type of cases and is not sensitive
to noise or the nature of the group’s distribution.

Conclusions
The research in case base reasoning has spotlighted the mo-
mentous of modeling CBR competence in order to reduce
the compulsion of case base evaluation experiments and to
pamper case base maintenance research.
In this paper, a novel competence model of case-bases is
proposed. It is based on Mahalanobis distance and a clus-
tering technique named DBSCAN-GM. The advantage of
this newly proposed model is its high accuracy for predict-
ing competence. In addition, it takes account the nature of
the distribution and the different types of cases such as the
noises, isolated cases and similar cases.
The results of experiments escorted are very forceful and
positive for our model. It shows that the new model pro-
posed in this paper has extended the scope of modeling case-
base competence. Future tasks include applying the model in
other CBR domains. In particular we will begin to focus on
maintaining the CBR systems that will apply this model.
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