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Abstract

While researching spatial movements in play-scripts,
we uncovered some movements that actors performed
that could not be explained by the annotations or ba-
sic theatre rules. Here, we look to learn implied motion
based on what the characters in the play are saying. Hu-
mans are able to do this with only being given the play-
script, so how do we get a computer to do it?

Several features, including n-grams, parts of speech
(POS) bag of words (BoW), length of speech, and other
contextual details were utilized with several machine
learning methods to help predict movement within the
play. Results reveal that is a difficult problem and basic
natural language processing (NLP) and machine learn-
ing (ML) techniques do not perform much better than a
random classifier.

Introduction
When actors perform on stage, they are provided with spe-
cific directions on where and how to perform their lines. The
director provides these directions via a play-script’s anno-
tations. Beyond these annotations, the actors are provided
some freedom in performing their lines, although certain
guidelines for theatre acting are always in play. Intuition and
characterization help the actor to identify other movements
that are in-character and appropriate in the different parts of
the play for their character.

We look to realistically capture the spatial movements of
actors on stage, so we started by translating the spatial move-
ments found within the annotations from the director, as can
be seen in our prior work (Talbot and Youngblood 2012).
Basic parts of speech (POS), sentence structure parsing, and
entity recognition provided us with key movements detailed
from the annotations in the play-script with about 75% ac-
curacy for character positions.

Next, we targeted the basic rules and guidelines that ac-
tors and directors use to control movement on the stage (Tal-
bot and Youngblood 2013). These included conversational
space, group space, theatre rules, and general common-sense
rules. This provided 89% accuracy for position and 53%
accuracy for gaze. After capturing these movements, there
were still some movements in the play which the actors
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performed, but were not captured by the annotations and
rules we encoded. One good example is in Act V in Ham-
let where the gravedigger walks towards the audience, then
turns around and walks back towards the grave. These are
the kinds of movements that the actor decides upon based
on their intuition.

Therefore, we thought about what might help a system to
learn these sort of movements by the actors. We came to the
hypothesis that perhaps what the actor is saying could im-
ply certain types of movement. Now, these are not the same
kinds of movements as one actor telling the other actor to do
something, but more of an implied movement, such as mov-
ing towards the audience for a monologue, gesturing to help
emphasize what they are saying, or even a movement to keep
the audience’s attention during a rather long scene that has
little to no movement involved with it. We are not focused
on what is explicitly stated in the language, but more on the
hidden movement that is likely to be performed by the actor
on stage.

The context of the speech and the characters were iden-
tified as two key components to interpreting the implied
movement, in addition to what the character is saying. We
pursued several existing natural language processing and
machine learning approaches to learn these implied move-
ments within one particular play, Hamlet, as produced by
Sir Gielgud in 1964 on Broadway (Colleran et al. 1964).
We utilized the script as written by Shakespeare (Shake-
speare 1905), as well as the Electronovision video (Colleran
et al. 1964) of Richard Burton in Sir Gielgud’s production of
Hamlet as our baseline. Each line’s related movement was
captured for the play and categorized into a standardized set
of motions, such as walking, jumping, fighting, and so forth.
We fed this information into machine learning algorithmsto
help learn about the implied movements within the play.

Naturally, while pursuing an appropriate approach for our
work, we started with the natural language processing that
is used for giving directions to robots. This incorporates
both natural language and spatial reasoning. However, the
key difference with what we were looking to do is that we
were not trying to give explicit directions for someone to do
something. We want to understand the hidden movement. So
looking at work like Wei et al.’s (2009), Brooks’ (2012), and
Kollar et al.’s (2010) only provided techniques that assumed
a set of predefined keywords, phrases, or corpus to be ex-
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tracted and utilized for further processing. These focused on
the meaning of different prepositions in order to interpret a
spatial location.

Next, we looked into text categorization and summariza-
tion. The main focus of most text categorization is around
known keywords or phrases to identify if the text contains
that concept. The more similar the strings or synonyms are,
the more similar they are considered to the entity being
matched. The summarization techniques, like those used in
Chuang and Yang’s (2000)paper, focus on segmentation of
the text and the extraction of important sentence segments
via machine learning on a feature vector. This is closer to
what we want to do, but still is based on keywords and
phrases, with little to no implied meaning involved.

A main exception to the patterns of text classification
was with the data-less categorization done by Chang et al.
(2008). They focused on the semantic meaning of the cate-
gory to determine how to classify text without labeling and
training the system. Also, classifying text into multiple cat-
egories is still not completely solved, as discussed in Platt,
Cristianini, and Shawe-Taylor’s (2000) paper. This is key as
we look at our data where one line can imply more than
one motion. Some researchers, such as Schapire and Singer
(2000), have pursued multiple class classifications by using
Boosting and text classification where the problem is not
turned into multiple binary classification problems, as is typ-
ical for this problem.

Other work with ConceptNet (Liu and Singh 2004) also
is closer extracting the meaning of words, however is still
very similar to a synonym retriever. Similarly, relation ex-
traction utilizes phrases and parse-trees for determining rela-
tionships between entities (again pre-defined entities and re-
lationships), such as Culotta and Sorensen’s (2004), Zhang,
Zhou, and Aw’s (2008), and Sun, Zhang, and Tan’s (2011)
papers. Here we start to get to the capturing of features, espe-
cially contextual or sequential types of features. Others have
pursued the use of tree kernels to help with machine learn-
ing on text, such as Collins and Duffy’s (2001) and Shen,
Kruijff, and Klakow’s (2005) papers. Each of these papers
discuss the use of tree kernels to try to better capture a parse-
tree and its dependencies for use in machine learning. This
is important with the type of natural language classification
we are planning to do, since we hypothesize that the context
of the words is just as important, if not more so, than the
words themselves.

Since most traditional learning machine learning algo-
rithms rely on feature-based representations of objects, we
explored the different types of features that could be used
to learn classifications within natural language. Liao (Liao,
Alpha, and Dixon 2002) describes features as being local or
global. They can be as simple as a single token, a phrase,
or something much more complex. Selecting useful and rel-
evant features, as well as deciding how to encode them,
can greatly impact the machine learning algorithm’s ability
to learn good models (Loper and Bird 2002). Therefore, a
lot of time is spent on identifying appropriate features, and
many people start with everything they can think of. How-
ever most of these end up being local representations of the
objects (Zelenko, Aone, and Richardella 2003), such as just

the words themselves.
Ultimately, we are transforming a document from one set

of tokens to another, which is prone to loss of information,
such as word sequence. Collobert et al. (2011) discusses
common feature categories, such as parts of speech (POS),
voice of the sentence, and stemmed root words, while Cu-
lotta and Sorensen mention word n-grams, capitalization,
and conjunctions (or merging) of many features. Furnkranz
(2007) found that using n-grams of length 2 or 3 improved
classification over longer n-grams. Forman (2003) suggests
the removal of common words (stop words), removal of rare
words, and the use of booleans instead of counts for bag of
words features. Kernels have also been utilized in place of
traditional feature vectors, but were not pursued in our work
at this time.

Approach
In order to have a baseline to train against, we took the Elec-
tronovision video (Colleran et al. 1964) of the production
of Hamlet on Broadway in 1964 and mapped all the move-
ment of the characters for each line of the play-script (Shake-
speare 1905). We kept the “sentences” as the way Shake-
speare originally divided up his lines of text. Shakespeare
nearly always wrote in iambic pentameter (ten syllables per
line, with alternating unstressed and stressed syllables) (Ma-
billard 2012). This meant that a speech like:

Last night of all,
When yond same star that’s westward from the pole
Had made his course to illume that part of heaven
Where now it burns, Marcellus and myself,
The bell then beating one,– (Shakespeare 1905)

was broken up into five sentences. An alternate approach
could have been used where each real sentence was used to
determine implied movement or not. This may have helped
with the training ratio for movement versus no movement,
which will be discussed further in the Experimentation sec-
tion. However, we chose the phrase-approach because of the
frequency of the change in actions being performed within
the play. By splitting the sentences to this size, we had a
more consistent line-length, were able to more precisely cap-
ture a single phrase that might imply movements, and could
capture more movements than we could with full sentences.

The main two challenges with mapping this three hour
play were in carefully identifying only one movement per
line, as well as accurately capturing all the desired move-
ments throughout such a long play, with standardized move-
ment names as seen in Figure 1. Many lines involved mul-
tiple movements. To keep things simple, we decided to cap-
ture the biggest movement performed by the speaker when-
ever there were more than one movement for the line.

The key movement types we captured within the Hamlet
play can be seen in the list in Figure 2. These movements are
for both the speaker and the other characters onstage, and in-
cludes how we grouped them for better training capabilities
(as will be discussed further in the Experimentation section).
As you can see, the majority of movements were captured
very few times within the dataset, with the majority being
less than 100 instances out of 3477 instances possible.
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Figure 1: Counts of Distinct Movements Within Hamlet
with at Least 40 Instances out of 3477 Lines of Script

The Asterisk (∗) Indicates Grouped Categories

Each line of the play’s speech was then used to create fea-
tures for training. We utilized the openNLP package, tied
to the Java openNLP implementation, within R to tag each
word with its part of speech, along with the RTextTools
package (Jurka et al. 2011) for creating our n-grams and bag
of words for our text. This information was then chunked
into a bag of words approach which used counts of each type
of part of speech as a feature. Other features we incorporated
into the training included:

• Number of lines for the speaker before this line
• Number of lines for the speaker after this line
• Number of annotations before this line
• Number of annotations after this line
• Number of speech lines since the last movement
• Maximum number of times a word is repeated
• Number of uppercase words in this line of speech
• Count of each punctuation mark within this line

Our hypothesis was that the length of the speech could
trigger a movement for the character, such as moving to-
wards the audience due to the start of a monologue. Another
assumption was that movements might not occur really close
together, to prevent excessive attention and confusion from
the audience. Therefore, understanding how long it had been
since the last movement was deemed important and a po-
tential aide for learning implied movements. Knowing that
there is an annotation coming up (which usually means an

Fighting
• Fighting∗
• Pushing∗

Handle Object
• Hand Object∗
• Pickup Object∗
• Throw Object∗

Change Posture
• Jump∗
• Lie Down∗
• Sit∗
• Stand∗
• Kneel∗

Gaze

Gestures
• Point∗
• Gesture∗
• Nod∗
• Raise Arm∗
• Wave∗

Locomotion
• Walk∗
• Run∗

Other
• Dig∗
• Turn∗
• Climb∗
• Kick∗

Figure 2: Bundled List of Actions Captured within Hamlet
The Asterisk (∗) Indicates Items Considered as Big Actions

actor will perform some sort of movement), seemed to be
useful for determining if a movement should occur now, or
would be explicitly provided in the annotation later. Adding
the features for punctuation, repeated words, and uppercase
words was thought to help with identifying movement that
might cause an actor to emphasize what they were saying,
such as pointing or gesturing.

We pursued both a part of speech “sentence” and an n-
gram bag of words approach for the speech due to Shake-
speare’s known inclination to make up words and not repeat
phrases a lot. We hoped this would help to find patterns in
the sequence and frequency of “words,” despite being un-
able to properly turn a parse-tree into a feature vector for
training. We are confident that the sequence and dependency
tree of the words in conjunction with the words themselves
are key in being able to identify implied movement, except
with Shakespeare’s work due to his jumbling of phrases to
fit iambic pentameter. Ideally, also including the number of
characters and their positions onstage for each line would
be used to help capture the movements related to being up-
staged, along with other theatre rule-guided movements.

Experimentation
Once we generated our features for all the lines in the play-
script, we fed them into several machine learning algo-
rithms: Maximum Entropy (MaxEnt), Support Vector Ma-
chine (SVM), Boosting, and Random Forests (RF). We fo-
cused only on the actions the speaker performed during their
speech lines, and learning a specific movement or movement
type one at a time. Initially, we took a random half of the
lines (1739 lines) from the play-script for training the clas-
sifiers, and tested on the other half (1738 lines).

However, we found very poor results (same as a random
classifier), as can be seen in the Table 1. This was due to
having such a large portion of the training set being clas-
sified as “no movement,” due to often having much worse
than a 10:1 ratio of movement to no movement (as can be
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Any 1.8:1 0.017 0.455 0.033 0.075 0.029 1806 0.917 0.338 0.493 0.386 0.038
Big 2.4:1 0.000 0.000 0.000 0.000 0.000 825 0.000 0.000 0.000 0.000 0.000
Gestures 21.4:1 0.000 0.000 0.000 0.000 0.000 153 0.000 0.000 0.000 0.000 0.000
Object 25.1:1 0.000 0.000 0.000 0.000 0.000 134 0.907 0.013 0.026 0.016 0.007
Locomot. 5.1:1 0.000 0.000 0.000 0.000 0.000 639 0.953 0.079 0.146 0.097 0.048
Gaze 7.3:1 0.000 0.000 0.000 0.000 0.000 447 0.027 0.125 0.044 0.072 0.037
Pointing 50.7:1 0.000 0.000 0.000 0.000 0.000 66 0.048 0.026 0.034 0.029 0.027
Posture 8.5:1 0.000 0.000 0.000 0.000 0.000 384 0.000 0.000 0.000 0.000 0.000
Fighting 198.1:1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 1: Best Results Per Movement Type While Training on Half of the Data-Set vs a 2:1 Negative:Positive Ratio Data-Set,
With All Features, Best Machine Learning Algorithms, and Unigrams. Fighting Did Not Have Enough Instances to Train On.

Bolded Ones Performed Better Than Random.

seen in Figure 1). Forman (Forman 2003) discusses the is-
sue of having a substantial class distribution skew (like we
see with our Hamlet movement dataset), which worsens as
the problem size scales upwards. Most machine learning re-
search does not consider such extreme skews as Forman saw
(1:31 on average). Just as we saw with our dataset, we found
it very difficult to beat the high accuracy that can be achieved
by classifying everything negatively. Forman also mentions
that feature selection becomes much more important in these
types of situations where the training data is highly skewed.

We first attempted to address this by shrinking down our
training set to a more specific set of lines where the ratio
of “movement” to “no movement” was closer to a 2:1 ratio,
while ensuring we did not use more than half of the anno-
tated movement lines we were trying to classify. This per-
formed marginally better, but still really did not get us past
the performance of guessing “no movement” for everything
or even a random classification, as can be seen in Table 1.

We also found that we do not have enough examples
of detailed movements in Hamlet to be able to classify all
movements at a detailed level, such as hand fighting or ly-
ing down. Therefore, we were forced to look at the problem
more generically than would be useful for actually predict-
ing specific movements. We tried grouping the movements
into buckets, as described in the Approach section; however
only the posture, gaze, and locomotion came close to a 10:1
ratio, and even learning on those datasets ended up classi-
fying almost everything as “no movement”. The main two
buckets that could give us almost reasonable results were
the ones for any movement and any big movement.

We then looked at the different n-gram approaches to see
what would work best to incorporate more of the relation-
ships of the words in the phrases as seen in Table 2. Bi-
grams appear to have done better than just a plain bag of
words (BoW), with trigrams doing slightly worse than the
bigrams, but still performing pretty well. 4-grams and 5-
grams dropped performance to be closer to unigram per-
formance in most instances. This correlates well with what

Furnkranz (2007) mentioned in their work with different n-
grams for classifications.

As Forman (2003) discussed, having such skewed training
datasets puts more emphasis on the feature sets. Therefore,
we pursued several different feature sets and combinations.
We began initially with the sentences themselves turned into
a BoW of different ngram lengths, along with the other fea-
tures mentioned in the Approach section.

We then decided to take advantage of Shakespeare’s
iambic pentameter, which produced the majority of the lines
as ten syllables, and a maximum of fifteen words per line.
We decided to break these sentences into just the parts of
speech (POS) tags as a sentence. This was intended to help
with the issue of Shakespeare’s writing not including much
repetition. With the real sentences broken into BoWs, if we
removed sparse words or stop words, we ended up with no
words left. However, using the POS tags as sentences, we
could get a similar concept, but were able to trim out sparse
n-grams.

Finally, we combined the best feature sets described
above (in different combinations) to see how it would per-
form. We chose to use the smaller training set, geared to-
wards a 2:1 ratio of “no movement” to “movement,” and
focused primarily on classifying any movement within the
play. The best classifications were obtained on just the un-
igrams of the actual speech text, although on average, the
part of speech (POS) sentences with the speech sentences as
bigrams and the other features did better.

To analyze these statistics, we used the ROCR package
within R (Sing et al. 2005) to generate the ROC Curves for
the better techniques. We also looked at the overall accuracy,
precision, recall, F1-score, F0.5-score, and the Matthews cor-
relation coefficient for each method. We were able to achieve
high accuracy, but this was shown to be achievable with just
a blind guess of everything to be “no movement”. There-
fore, the accuracy scores were not useful in determining the
goodness of any of our methods.

Looking at precision and recall, we often found we could
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Any Mvmt 1 MaxEnt 508 46 997 120 0.376 0.917 0.338 0.493 0.386 0.038
Any Mvmt 2 MaxEnt 505 49 988 129 0.379 0.912 0.338 0.493 0.387 0.041 ⇑
Any Mvmt 3 MaxEnt 502 52 987 130 0.378 0.906 0.337 0.491 0.386 0.034 ⇓
Any Mvmt 4 MaxEnt 503 51 987 130 0.379 0.908 0.338 0.492 0.386 0.037 ⇑
Any Mvmt 5 MaxEnt 501 53 984 133 0.379 0.904 0.337 0.491 0.386 0.035 ⇓
Locomotion 1 MaxEnt 202 10 2359 267 0.165 0.953 0.079 0.146 0.097 0.048
Locomotion 2 MaxEnt 202 10 2351 275 0.168 0.953 0.079 0.146 0.097 0.050 ⇑
Locomotion 3 MaxEnt 202 10 2379 247 0.158 0.953 0.078 0.145 0.096 0.043 ⇓
Locomotion 4 MaxEnt 201 11 2347 279 0.169 0.948 0.079 0.146 0.097 0.047 ⇑
Locomotion 5 MaxEnt 201 11 2346 280 0.169 0.948 0.079 0.146 0.097 0.047

Table 2: Highlights the Performance of Different N-Grams on Classifying the Different Movement Types on a 2:1
Negative:Positive Ratio Data-Set. Bolded Performed Better Than Random.
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Text Only 1 RF 178 376 120 997 0.703 0.321 0.597 0.418 0.510 0.263
POS BoW Only 1 RF 158 396 137 980 0.681 0.285 0.536 0.372 0.456 0.201
All Features 3 RF 4 550 5 1112 0.668 0.007 0.444 0.014 0.034 0.018
POS BoW & Text 3 RF 4 550 5 1112 0.668 0.007 0.444 0.014 0.034 0.018
POS BoW & Other 2 Boost 0 554 0 1117 0.668 0 0 0 0 0
POS BoW, Text, Other 1 SVM 0 554 0 1117 0.668 0 0 0 0 0

Table 3: Best Results Per Feature Set, Training on a 2:1 Negative:Positive Ratio Data-Set and Any Movement.
Bolded Performed Better Than Random.

do reasonably well with one, but very poorly with the other.
Recall is focused on being able to classify as many positive
examples as possible, whereas precision focuses on being
more certain of classifying positive examples that really are
positive classes. In our case, we are more concerned with
making sure that if we identify a line as an implied move-
ment, then there really should be an implied movement with
that line. Therefore, precision was more important to us.

Trying to balance these two measures, we looked at the
F1-scores, however this put equal emphasis on both preci-
sion and recall. The F0.5-score was better since it put more
emphasis on the precision than the recall. However, those
approaches still left us uncertain to what degree we were
able to outperform the random classifier and the guess “no
movement” classifier. Therefore, we focused primarily on
the Matthews Correlation Coefficient (MCC) measurement,
as this takes into account true and false positives and nega-
tives, and is generally regarded as a balanced measure which
can be used even if the classes are very skewed like ours.
This measure returns a value between -1 and +1. A result
of +1 represents a perfect prediction; 0 represents the same
as a random classifier; -1 represents 100% incorrect classifi-
cations. Using this measure, we found that we were able to

do better than the random classifier in many of our tests, as
can be seen in the previous tables and in the ROC Curves in
Figure 3.

Conclusions
Ultimately, Shakespeare is a more difficult context to use
than typical play-scripts due to his tendency to make up
words and rephrase things to fit into iambic pentameter. We
were able to reasonably tell when some movement should
occur, which should at least give us a sanity check for use
with our previous work to ensure the characters are moving
enough or not. However, the more specific movement types
were more difficult to classify due to the limited number of
test cases available in Hamlet.

Humans are able to do this with no prior examples, so
there must be a way to learn these implied movements.
Therefore, future work should include further analysis into
tree kernels for machine learning, classifying more detailed
movements using additional datasets, and an ability to clas-
sify more than one type of movement for a single line. Fi-
nally, incorporation of other features may be useful, such as
number of characters onstage, locations of all the characters
onstage, and other contextual features not included here.
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(a) No Text Features
Any Movement

1807 Training Cases
Unigrams

(b) POS BoW Features Only
Any Movements

1807 Training Cases
Unigrams

(c) Text Features Only
Any Movements

1807 Training Cases
Unigrams

(d) All Features
Gesture Movements Only

154 Training Cases
4-grams

Figure 3: ROC Curves Samples for Techniques Utilized;
Red=SVM; Green=Maximum Entropy; Blue=Boosting; Magenta=Random Forests
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