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Abstract
One scenario that commonly arises in computer games and
military training simulations is predator-prey pursuit in which
the goal of the non-player character agent is to successfully
intercept a fleeing player. In this paper, we focus on a vari-
ant of the problem in which the agent does not have perfect
information about the player’s location but has prior expe-
rience in combating the player. Effectively addressing this
problem requires a combination of learning the opponent’s
tactics while planning an interception strategy. Although for
small maps, solving the problem with standard POMDP (Par-
tially Observable Markov Decision Process) solvers is feasi-
ble, increasing the search area renders many standard tech-
niques intractable due to the increase in the belief state size
and required plan length. Here we introduce a new approach
for solving the problem on large maps that exploits key events,
high reward regions in the belief state discovered at the higher
level of abstraction, to plan efficiently over the low-level map.
We demonstrate that our hierarchical key-events planner can
learn intercept policies from traces of previous pursuits sig-
nificantly faster than a standard point-based POMDP solver,
particularly as the maps scale in size.

Introduction
Designing non-player characters with good interception
skills is an important aspect of creating intelligent automated
non-player characters that serve as effective and interesting
adversaries. This is particularly relevant for military train-
ing simulations where the trainees must apply skills learned
from combats with virtual adversaries to real-world com-
bat situations. Many different game genres, including first-
person shooters, squad games, and sports games, include
segments in which the game AI has to chase the player, al-
though the emphasis is on creating adversaries that are un-
predictable and fun to play. Interception can be formulated
as a classic multi-agent pursuit problem in which a group of
predators has to apprehend the fleeing prey. However, unlike
completely simulated prey that are often modeled as moving
randomly or merely maximizing distance from the pursuit,
actual human users can employ diverse and sophisticated
evasion strategies. Yet one weakness that humans have is re-
peatability, often preferring familiar map regions and repeat-
ing favorite tactics (Tastan, Chang, and Sukthankar 2012). In
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this case, a learning predator holds a decisive advantage over
a non-learning system.

In this paper, we demonstrate a model for rapidly learn-
ing effective interception strategies based on previous game
data. Our method uses data from previous pursuits to build
a probability map of the prey’s movement patterns. Using
this map, we frame the problem as a Partially Observable
Markov Decision Process (POMDP) in which the prey’s po-
sition is unknown until the predator is within a certain ra-
dius and the predator is rewarded for successfully intercept-
ing the prey before it achieves its goal and exits the map. To
achieve good interception rates in complex scenarios, cou-
pling learning with effective planning over a longer time
horizon is important. Without both elements, the predator
can succeed at learning and predicting the prey’s future po-
sition yet ultimately fail at the interception task by selecting
a non-optimal route. Interception is achieved by moving to
where the prey will be in the future, rather than continuing
to trail the prey, assuming that the predator and prey have
comparable speeds.

This is very similar in spirit to the classic robotic tag
problem used as a benchmark for POMDP solvers; how-
ever in this case the predator relies more on previously
learned game experience and less on incoming observations
to catch the prey. Although the POMDP is an expressive
model and can also be simplified to represent a dynamic
domain with mixed observable and unobservable state ele-
ments, it is greatly hampered by enlargements in state space
which lead to exponential increases in the size of belief state,
“the curse of dimensionality”.

Hierarchical representations, such as the one proposed in
this paper, can substantially reduce the state size, but there
is always the risk that the abstract solution will not translate
effectively to the original domain. To overcome this, we pro-
pose using the hierarchical abstraction to identify key events,
points in the spatio-temporal trajectory with higher reward,
and a low-level planner to identify the best path to intersect
the key events. In this paper, we demonstrate that our method
achieves comparable results to a point-based solver with sig-
nificantly reduced computation time. Moreover, it represents
a significant improvement over the greedy approach of hav-
ing the low-level planner create macro actions to directly
execute the POMDP policy generated at the higher level of
abstraction. The next section describes related work in the
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area of learning interception strategies.

Related Work
Two general approaches to improving the computation time
of POMDP planners are the use of hierarchical abstractions
and macro actions. Pineau et al. introduced a hierarchical
POMDP framework in which the original POMDP is manu-
ally decomposed into a collection of POMDPs that are indi-
vidually smaller than the original POMDP, yet collectively
define a complete policy (Pineau, Roy, and Thrun 2001).
This greatly reduces the state space and computational com-
plexity but requires solving multiple POMDPs. In our plan-
ner, we only use a POMDP solver at the highest level of
abstraction and a breadth-first search planner for the lower
level of abstraction. Charlin et al. demonstrate how a hier-
archy can be found automatically by formulating the plan-
ning problem as a non-convex optimization problem with
constraints from parameters of the policy (Charlin, Poupart,
and Shioda 2007). Although in many cases, the POMDP
mainly offers computational time reductions and not neces-
sarily performance improvements, Toussiant et al. developed
a maximum likelihood approach for solving a hierarchi-
cal POMDP that yields better performance than a standard
POMDP solver when the hierarchical solution exists. (Tous-
saint, Charlin, and Poupart 2008)

An alternative method is to reduce the plan depth by hav-
ing the planner combine longer sequences of actions, also
known as macros. Theocharous et al. proposed an approxi-
mate planning method using this strategy (Theocharous and
Kaelbling 2003). In their system, a macro action is a se-
quence of hand coded actions that can be taken at each state.
A fast interpolation procedure is employed to compute the
value of a belief point using neighboring states. He et al. pro-
posed an online technique, the planning under uncertainty
algorithm (PUMA), which first samples subgoals and then
searches these subgoals using a MDP (He, Brunskill, and
Roy 2010). This method automatically constructs macro ac-
tions without human labor; based on the reachability of each
subgoal, a macro action is encoded. Forward search is used
to decide which macro action to take. This type of approach
was used in a target-tracking vehicle simulation with good
results (He, Bachrach, and Roy 2010). In our approach, a lo-
cal planner is used to automatically create action sequences
for moving around the actual map. Rather than using the
planner to create macro actions which are directly associ-
ated with the abstracted states, the local planner creates a
trajectory that intersects the key events, high reward points
in the spatio-temporal trajectory identified by the abstract
POMDP. The next section covers the details of our proposed
approach.

Method
The pursuit scenario transpires in a N ×N grid world with
entry gates and obstacles. The layout is designed to corre-
spond to the types of maps commonly seen in first-person
shooter games such as Unreal Tournament. The “prey”
(meant to represent the human player) enters the map from
one gate and leaves through another. The “predator” follows

Figure 1: Example 11 × 11 map of predator-prey pursuit
problem. Blue cells denote walls and obstacles; cyan denotes
entry gates for prey; the green and red cells mark the preda-
tor and prey, respectively. The predator’s limited visibility is
shown in yellow. A coarser version of the map (orange) is
used to create the abstract POMDP. The predator must inter-
cept the prey before the latter leaves the map, using a policy
computed offline by our planners.

the interception policy extracted from the POMDP solver
and attempts to catch the prey before it exits the map; this
is analogous to the task that game AI non player characters
face when they are chasing human players while guarding
an area. The final interception policies are rated on intercep-
tion rate, time to interception, average reward earned, and
computation time based on map size, N . Figure 1 shows an
example map.

Our proposed approach can be outlined as follows:
1. previous pursuit sequences are used to learn a probability

map based on the prey’s action distribution;
2. the map is re-represented as a 3 × 3 region and a valid

POMDP model is created for the abstract map;
3. the hierarchical POMDP is solved using finite-time value

iteration;
4. the pursuit sequence data is then used to estimate the

spatio-temporal points that result in peak rewards (key
events);

5. a detailed path on the original map that intersects the key
events is calculated using a local planner.

Partially Observable Markov Decision Process
Although the Partially Observable Markov Decision Process
is a highly expressive model capable of representing many
types of planning problems, increases in state space size
cause exponential increases in the belief state size. Hence,
although it is possible to represent the original problem di-
rectly as a POMDP, we create a hierarchical model to calcu-
late an intercept policy at a coarser level and solve it using
finite-time value iteration.

The original discrete-time POMDP model is a 6-tuple
(S,A,O,P,Ω,R).
• S is the set of states, which is simply defined by the preda-

tor and prey’s locations on the complete map;
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• A is the set of actions available to the predator, including
moving up, down, left and right;

• O is the set of observations made by the predator. The
predator’s own location is completely observable, but the
location of the prey is observed only if it lies within the
predator’s visibility region;

• P is the set of transition probabilities between states, in-
dexed by action. The predator’s movement is completely
deterministic, but the prey’s transitions are governed by a
learned transition model extracted from previous pursuit
sequences;

• Ω is the set of conditional observations;
• R, reward, depends on both the system state and preda-

tor’s action selection, A × S ⇒ R. If the predator inter-
cepts the prey, it collects a reward of 100;

• B is a set of beliefs, a probability distribution of the prey’s
current location;

• γ is a discount factor, used to force the predator to inter-
cept the prey early;

• τ is the operator denoting the belief update process.
The system dynamics are as follows. When the system is
in a state s ∈ S and the predator takes an action a ∈ A, it
will cause the system to transition to state s′ with probability
P (s′|s, a). The predator will then gain a reward r ∈ R.

At each time period t, the predator updates its belief af-
ter taking an action a and observing o. The new belief will
solely depends on the previous belief at time t−1, the action
taken at current time t− 1 and the observation made at time
t after taking the action. The belief update is denoted as:

bt = τ(ot, bt−1, at−1); (1)

After taking action at−1 resulting in state st, the predator
observes ot ∈ O with probability Ω(ot|st, at−1). Here in the
predator-prey pursuit problem, observations are only related
to system state. Therefore the probability is conditioned only
on state Ω(ot|st)

bt(st) = ηΩ(ot|st)
∑

st−1∈S
P (st|st−1, at−1)bt−1(st−1)

(2)
where η = 1/Pr(ot|bt−1, at−1) is a normalizing factor that
ensures the probabilities sum to 1.

Pr(ot|bt−1, at−1) =
∑
st∈S

Ω(ot|st) (3)

∑
st−1∈S

(st|st−1, at−1)bt−1(st−1)

We define the expected reward for policy π from belief b0:

V π(b0) =
T∑
t=0

(γtr(bt, at)) (4)

π∗ = arg max
π

T∑
t=0

(γtr(bt, at)) (5)

where
r(bt, at) =

∑
st∈S

bt(st)r(st, at) (6)

Figure 2: Probability map of prey evasion habits (red cells
denote higher probability). This map was learned with a set
of sequences in which the prey enters from the upper left
and leaves the map at the lower right. Three paths are clearly
visible, of which the middle is most likely.

The optimal policy π∗ yields the highest reward value, V ∗,
and can be calculated through a series of Bellman updates:

V ∗(bt−1) = max
at−1∈A

[
r(bt−1, at−1) + γV ∗at−1

(bt)
]

(7)

Learning the Prey Action Distribution Model
The main advantage a learning predator has over a non-
learning one is the ability to anticipate that the prey is highly
likely to repeat its favorite tactics. In this scenario, the goal
of the prey is to exit the map quickly from a different en-
trance. The predator, who is tasked with guarding the area,
has to intercept the prey before it departs the area. To learn
the prey’s habits, the predator uses the previously viewed
pursuit sequences to construct a probability map showing
which areas the prey frequents (Figure 2).

In the baseline condition, we use the pursuit data simply
to learn the transition model used by a point-based POMDP
solver on the original map. In our proposed method, we ad-
ditionally use the data to evaluate the policy identified by
the hierarchical POMDP and extract peaks in the expected
reward, the key events.

Constructing the Hierarchical Representation
Separating planning into a two-level hierarchy with an ab-
stract representation of the world allows us to tackle larger
maps than are possible with the point-based solver. One state
in the high level representation represents a collection of
states in the original state space. The intuition is that solving
the abstract POMDP guides the predator toward the promis-
ing region of the map, and the low-level planner handles the
problem of obstacle avoidance.

Asynchrony problems can occur when we try to use a
small state space to describe a large state space. To reduce
asynchrony problems, the transition probability, reward and
actions of the abstract model need to be recalculated to ap-
proximate the system dynamics of the original POMDP. In
the pursuit problem, a reduced grid world can be used to ap-
proximate the original grid world. The width and the height
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of the reduced grid world are factors of the original grid
world.

Each state in the small grid world is a macro state repre-
senting several states in the original grid world. Each macro
action represents an as yet undetermined sequence of actions
leading from one macro state to another macro state. The
transition probability between macro states is determined by
1) verifying the existence of direct path on the original map
and 2) calculating the time required to transition between
the two states by following the minimum length path. The
optimal policy for the abstract POMDP is then solved using
value iteration over a finite horizon dictated by the size of
the map as described in Section .

Extracting Key Events
After generating the policy in the abstract representation,
a low-level planner is required to convert the abstract pol-
icy into an actionable pursuit sequence for the predator.
One simple way to do this is simply to use a breadth-first
search path planner to calculate the minimum length path
that avoids obstacles in the detailed map while achieving the
action recommended by the abstract policy.

However, the interception problem has a relatively sparse
reward function since the predator spends a long time
traversing relatively unproductive sections of the map to
reach the more promising areas. These promising areas can
be identified using the probability map learned from the
prior pursuit data. Using this probability map, we can cal-
culate the expected undiscounted reward yielded by differ-
ent macro states while following the policy calculated by
the hierarchical POMDP. Our aim is to identify the macro
states that frequently yield interceptions and to determine
what time the interception is likely to occur. These states
along with the time information and undiscounted reward
are recorded as key events, ei(si, ti, ri), ei ∈ E.

In the predator-prey problem, reward is sparse (only oc-
curring when the prey is captured), so the number of events
with non-zero reward is relatively small. In more general
cases, where an agent may be constantly receiving positive
reward, a threshold can be introduced to limit the number
of key events. Figure 3 shows the macro states, actions, and
one possible sequence of key events.

Results
We benchmarked our algorithm against a general solver,
SARSOP (Kurniawati, Hsu, and Lee 2008), a point-based
POMDP planner that calculates an optimal sampling based
on the reachability of belief space. SARSOP can be run at
a variable precision level so we evaluated both a high and
low precision setting. The high precision setting is more
computationally intensive but has the potential to find a bet-
ter policy. All tests were run on a quad core 3.2 GHz Intel
Xeon machine with 18 GB memory; computational time is
reported in wall clock seconds. The experiments consisted
of evaluating the interception outcomes of 10,000 pursuit se-
quences from three different predator starting locations (A,
B, and C shown in Figure 4)). Location B is farthest away
from the prey’s starting location and thus has the potential

Figure 4: Starting locations for prey (red) and predator (A,
B, C).

to require longer paths for interception. In the case where
the predator fails to intercept the prey, the simulation stops
after 100 time steps and the interception time is noted as the
maximum possible (100).

Tables 1, 2, 3, 4 summarize our experimental results. We
make the following observations:
• the proposed method consistently obtains interception

time (Fig. 5) and rewards (Fig. 6) that compare favorably
to high-precision SARSOP;

• the hierarchical method significantly reduces the running
time required to calculate the policy in all cases;

• the hierarchical key events planner continues working on
the larger maps (23 × 23 and 53 × 53) where SARSOP
fails with out of memory errors and problems loading the
policy file;

• the key event method significantly outperforms a greedy
local search baseline (Fig. 7) in which the low-level plan-
ner simply calculates action sequences to directly execute
the policy identified by the abstract POMDP.

Conclusion and Future Work
The ability to learn interception policies in an important as-
pect of creating an effective adaptive opponent in games and
simulations. In this paper we present a method for learn-
ing interception policies that can scale to large maps that
are problematic for general POMDP solvers. Our proposed
method has a significantly lower computation time while
yielding interception results comparable to a state of the art
planner.

By gathering data from prior pursuit sequences, we can
accurately estimate the expected reward of macro states and
actions from the abstract policy, facilitating the identifica-
tion of key events, spatio-temporal points where the preda-
tor is highly likely to apprehend the prey. Having the low
level planner create a trajectory that simply attempts to in-
tersect these key events rather than directly executing the
abstract policy makes the predator significantly more effec-
tive at catching the prey. In future work, we plan to extend
our approach to handle larger multi-agent pursuit problems
and deeper state and action hierarchies.
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Figure 3: Optimal abstract policy found by proposed model. T and t denote time in the abstract representation and real world,
respectively. E1, E2, E3 are the key events in the policy. The top row shows the policy generated for macro states, with arrows
denoting the predator’s movement actions. The STOP signs indicate that the predator should wait in the current location. The
green grid cells mark macro states without immediate reward and orange mark those with a positive reward. Bottom row (left)
shows locations of the key events in green at the noted times. Bottom row (right) shows execution samples of the chase with
predator in green and prey in red. The bright cells show their current locations while darker ones are traces showing visited
cells. The predator successfully intercepts at t=14.

Table 1: Comparison of rewards, intercept and run times on 11× 11 map.
Policy Steps to Intercept Actual Reward Running Time

Loc A Loc B Loc C Loc A Loc B Loc C Loc A Loc B Loc C

Hierarchical 6.29±1.94 13.43±0.34 5.34±1.18 90.19±3.34 77.83±0.54 91.75±2.07 0.22 0.21 0.21
SARSOP (low) 15.53±0.13 15.04±0.27 14.42±0.01 74.56±0.22 75.31±0.04 76.26±0.23 5.38 5.53 5.43
SARSOP (high) 8.98±1.66 14.33±0.30 5.35±1.19 85.45±2.75 76.36±0.47 91.74±2.10 8.15 15.36 8.78

Table 2: Comparison of rewards, intercept and run times on 17× 17 map.
Policy Steps to Intercept Actual Reward Running Time

Loc A Loc B Loc C Loc A Loc B Loc C Loc A Loc B Loc C

Hierarchical 10.85±2.21 14.693±3.12 15.99±2.16 82.46±3.18 76.20±4.86 74.2±2.92 0.54 0.53 0.53
SARSOP (low) 15.53±0.13 15.04±0.27 14.42±0.01 74.56±0.22 75.31±0.04 76.26±0.23 136.43 108.11 112.81
SARSOP (high) 10.46±1.78 11.65±1.92 15.51±1.50 82.88±2.70 76.36±0.47 91.74±2.10 283.67 303.49 449.15

Table 3: Comparison of rewards, intercept and run times on 23× 23 map. The map is too large for SARSOP (high).
Policy Steps to Intercept Actual Reward Running Time

Loc A Loc B Loc C Loc A Loc B Loc C Loc A Loc B Loc C

Hierarchical 12.82±2.24 26.66±3.22 29.916±3.24 79.42±3.13 56.73±4 56.61±4.08 0.92 0.91 0.89
SARSOP (low) 15.03±2.30 – 18.8±1.67 75.96±3.12 – 70.50±2.41 2616 11341 2625
SARSOP (high) – – – – – – – – –

Table 4: Comparison of rewards, intercept and run times on 53× 53 map. The maps are too large for SARSOP.
Policy Steps to Intercept Actual Reward Running Time

Loc A Loc B Loc C Loc A Loc B Loc C Loc A Loc B Loc C

Hierarchical 36.08±1.01 60.75±0.69 48.65±1.10 51.37±0.89 30.73±0.40 40.59±0.76 27.00 25.10 28.22
SARSOP (low) – – – – – – – – –
SARSOP (high) – – – – – – – – –
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(a) 11× 11 (b) 17× 17 (c) 23× 23

Figure 5: Interception times comparing proposed method (key events) to SARSOP low and SARSOP high precision. Our
interception rates are comparable to those of high-precision SARSOP but we can continue to perform well even when maps are
too large for SARSOP.

(a) 11× 11 (b) 17× 17 (c) 23× 23

Figure 6: Comparison of reward metrics obtained by key events against SARSOP under both low- and high-precision. The
proposed method continues to perform well even when maps are too large for SARSOP.

(a) intercept time (b) reward

Figure 7: Proposed method yields significant improvement
over the greedy baseline both in intercept time and reward.
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