
Cluster Analysis for Optimal Indexing

Tim Wylie, Michael A. Schuh, John Sheppard, and Rafal A. Angryk
timothy.wylie@cs.montana.edu

Montana State University
Bozeman, MT 59717 USA

Abstract

High-dimensional indexing is an important area of current re-
search, especially for range and kNN queries. This work in-
troduces clustering for the sake of indexing. The goal is to de-
velop new clustering methods designed to optimize the data
partitioning for an indexing-specific tree structure instead of
finding data distribution-based clusters. We focus on iDis-
tance, a state-of-the-art high-dimensional indexing method,
and take a basic approach to solving this new problem. By uti-
lizing spherical clusters in an unsupervised Expectation Max-
imization algorithm dependent upon local density and cluster
overlap, we create a partitioning of the space providing bal-
anced segmentation for a B+-tree. We also look at the novel
idea of reclustering for a specific indexing method by taking
the output of one clustering method and reclustering it for
use in an index. The algorithms are then tested and evaluated
based on our error metric and iDistance query performance.

Introduction and Background
Most data mining applications are greatly dependent upon
the ability to query and retrieve information from databases
quickly and efficiently. To this end, there have been a vast
number of indexing schemes proposed for different domains
with numerous tunable parameters and their own way of
mapping data. Almost no research has focused on finding
optimal ways to use some of these indexing methods as well
as optimal settings for their parameters based on data di-
mensionality, the amount of data, etc. For these reasons we
seek new methods of optimizing indexing methods based on
machine learning techniques.

Efficiently indexing data, especially in higher dimensions,
usually involves dimensionality reduction to a well stud-
ied data structure such as the B+-tree (Bayer and Mc-
Creight 1972). The B+-tree is desirable due to its excel-
lent performance and universal adoption in traditional re-
lational databases. By utilizing the B+-tree for indexing
high-dimensional data, these querying methods can be in-
tegrated easily into an existing database management sys-
tem (DBMS). A few of the more successful methods are
the Pyramid Technique (Berchtold et al. 1998), iMinMax(θ)
(Ooi et al. 2000), and iDistance (Jagadish et al. 2005).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Several efficient high-dimensional indexing systems
make use of cluster analysis to partition the data for dimen-
sionality reduction into a B+-tree. For efficiency, the desire
is to partition the space or the data in a way that minimizes
average query costs (time and data accesses). These methods
generally use a well-known algorithm for clustering the data,
such as k-means (MacQueen 1967), which is a distribution-
based centroid clustering algorithm where spherical clus-
ters are assumed. There are also many variations using con-
strained or conditional clustering based on k-means (Gordon
1973; Lefkovitch 1980; Wagstaff et al. 2001).

Unlike most clustering techniques, breaking up traditional
clusters is often more beneficial for the resulting index due
to the lossy dimensionality reduction. Thus, the more uni-
form the data is, the more evenly distributed the clustering
will be, and therefore the tree will be more balanced. The
rationale for further splitting the data during indexing to en-
hance the querying time can be seen in methods like the
Extended Pyramid-Technique (Berchtold et al. 1998), the
tunable space-partitioning θ line of iMinMax(θ) (Ooi et al.
2000), and the partitioning and reference point placement
techniques in iDistance (Jagadish et al. 2005).

For this initial work, we focus on iDistance as the index-
ing technique to optimize. While iDistance is a state-of-the-
art indexing method, little work has been done to try and
optimize the method by which the indices are created. The
authors of iDistance suggest using k-means with 2d parti-
tions (clusters), where d is the number of dimensions, as a
general guideline for speed, simplicity, and general effec-
tiveness. While the B+-tree is always balanced, the number
of data points within partitions of the tree are usually not.

Cluster analysis is a well-studied field of grouping data by
some measure of similarity. However, the presupposition in
many algorithms is that there exists a distance measure that
implies similarity between instances and the most similar
should be grouped. This is often counter-productive to the
task of indexing. We desire to keep similar points near each
other in the tree, but only if it can be done such that the
overall spread of data within the tree is uniform. In a sense,
we want to break up standard clustering similarities unless
they are beneficial to the data set as a whole, based on our
indexing strategy. Given the lossy transformation of data to
a single dimension, most nearest neighbor or range queries
will generate many false positives because of similar one-

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

166

dimensional index values. A better indexing strategy should
be able to reduce the total number of candidates in order to
reduce the returned false positives and overall page accesses
by exploiting the index mapping and decrease the number of
candidates with similar index values.

Our approach is a clustering method that reduces overlap
and balances the number of points in each B+-tree subtree.
This motivation stems from R-trees (Guttman 1984) which
were introduced to help create balanced hierarchical trees
for indexing more than one dimension. This method of in-
dexing builds the tree while looking at the data. In a similar
fashion to our work, it was understood that minimizing over-
lap should decrease the query time by keeping trees balanced
and reducing the number of subtrees to look at for a given
query. This is the idea behind R∗-trees in optimizing R-trees
(Beckmann et al. 1990) when all the data is given initially.

We therefore apply the same idea as a form of unsuper-
vised cluster analysis to build the partitions of iDistance
using Expectation Maximization (EM). General EM algo-
rithms (Dempster et al. 1977) and extensions use data dis-
tributions to drive the clustering, and thus ignore cluster-
balance or spherical overlapping in the space.

We also look at the idea of reclustering by using the
converged k-means reference points as the initial seeds to
our EM algorithms. Preclustering techniques are common
in machine learning, and many have been developed specif-
ically for k-means by giving it seeds that will allow it to
converge in a more optimal solution space. Thus, we also
want to look at the possibility of adapting existing cluster-
ing algorithms to specific indexing problems by reclustering
their outputs. This would allow for an existing index to be
optimized from a known distribution for better performance
in a live system. Clustering for the sake of indexing provides
a unique machine learning and data mining problem.

The rest of the paper is structured as follows. Section
2 briefly overviews iDistance, and then Section 3 outlines
the problem, the intuition behind our approach, and our er-
ror metrics. Section 4 discusses our algorithms, models, pa-
rameters, and reclustering. We show the empirical results of
clustering and subsequent usage of our methods in Section
5. Finally, Section 6 concludes the paper with our contribu-
tions and identifies related future work and possibilities.

iDistance
Most high-dimensional indexing methods use a filter-and-
refine strategy. iDistance uses this method by having a lossy
transformation to a B+-tree as its index where a point is as-
signed to a partition. When processing a query, it uses the
mapping function to find the areas of the tree (partitions) to
search sequentially, and these results are the candidate set.
Then the algorithm refines the set by removing points that
are not actually within the query sphere in the original high-
dimensional space.

iDistance assumes a spherical partitioning of the data-
space. At the center of each sphere, or partition, is the ref-
erence point. The indexing method tracks these reference
points and the radius of each sphere. Points can be assigned
to partitions in a number of ways. The most common method

is point assignment to the nearest reference point, which cre-
ates a Voronoi tessellation of the space.

+

+

+

Figure 1: A basic example of iDistance indexing partitions
with a sample query q of radius r. Partitions Pi, Pj with
reference points and radii Oi,Oj and ri,rj , respectively.

The B+-tree mapping is straightforward. The index value
for point p in partition Pi with reference point Oi is yp =
i∗c+dist(Oi, p) where c is a constant for spacing partitions
in the tree to ensure that an index value for any point p in
partition Pi will not conflict with values in another partition
Pj s.t. i 6= j.

Figure 1 shows a two-dimensional example of two par-
titions, a query sphere, and the shaded areas that must be
searched due to the lossy mapping. We see the query sphere
is inside Pi and intersecting Pj . Due to the lossy transforma-
tion, the overlap of Pj requires that we search through every
point in partition Pj that is the same distance from the refer-
ence point Oj . Thus, the more the partition spheres overlap,
the more false positives the algorithm must look through that
are outside the query sphere. See (Jagadish et al. 2005) for a
thorough explanation of iDistance.

Index Clustering
High-dimensional data is commonly indexed in a lossy one-
dimensional transformation and stored in a B+-tree for effi-
ciency and quick retrieval. These indexing methods do this
by dividing up the high-dimensional space using some form
of space-based or data-based partitioning. However, due to
the unavoidable lossy transformation, often this results in
the partitions varying greatly in the amount of data in each
subtree, and many points being mapped to equivalent val-
ues that results in more candidates. Unbalanced trees result
in unpredictable performance when querying the data, and
overlap often leads to more false positive candidates. Given
we have all of our data before indexing, we need an efficient
and fast method of partitioning the data into clusters to op-
timize the tree structure for query processing and reduce the
number of points mapped to the same index values.

Error Metrics
Given N is the number of data points and k is the number
of desired clusters. A spherical cluster Pi, where 1 ≤ i ≤ k,

167

has a centroid Oi, a radius ri, and a population pi, which is
simply the number of elements assigned to that cluster. We
look at two different error metrics.

Cluster Overlap We want to minimize the amount of
overlap between spheres. Rather than use volume, we can
calculate the amount they overlap along a vector as shown
in Equation 1. Further, we set the function to zero if they do
not overlap in order to avoid negative values.

Oi,j =

{
(ri + rj)− dist(Oi, Oj), if Pi, Pj overlap
0, otherwise

(1)

Equation 2 calculates the average percentage of overlap
for all clusters. Given k clusters there are

(
k
2

)
unique pair-

wise combinations which simplifies to C = k(k − 1) in our
equation, and we multiply by two in order to compare over-
lap based on the diameter and not the radius. Unfortunately,
when averaging for all possible combinations, EO results
in values that are often too small to be useful. Therefore, we
calculate only the average overlap of the diameter of spheres
that are overlapping. Let Vo = {

−−−→
OiOj |Oi,j > 0} which are

the vectors between all centroids of overlapping spheres, and
then C = |Vo|.

EO =
1

2C

k∑
i=1

k∑
j=1
j 6=i

Oi,j

ri
(2)

Using all combinations has one drawback: the error could
increase after an update separates two spheres that were pre-
viously overlapping. If the overlap was small such that divid-
ing by |V t

o |, at time t, with the extra term was causing the er-
ror to be small, and then after the update |V t

o | = |V t−1
o | − 1,

and the error could actually go up. This is likely to be rare
since the overlap would be extremely small, but it should be
further investigated in the future.

Partition Balance (Population) The second measure we
look at is the population difference. We want this to be zero
between all clusters, but this may be impossible in some
instances without severe overlap as a trade-off. Equation 3
shows the normalized population difference, which is the
percentage of population imbalance to the desired amount
in the cluster: N/k should be the approximate number of
points per cluster for an even distribution. Thus, we need to
minimize the average relative population error per cluster,
shown in Equation 4.

Pi,j =
|pi − pj |
N/k

(3) EP =
1

k

k∑
i=1

|pi −N/k|
N/k

(4)

We view these errors as part of the same clustering system
and combine them as a vector in two dimensions. The total
error vector is

−→
E = EO + EP , and thus the value we mini-

mize for our system is the magnitude of the combined error
vector. This means the error is between 0 and

√
2 ≈ 1.4.

Error = ||
−→
E || =

√
E2
O + E2

P (5)

EM Algorithm
An Expectation Maximization (EM) algorithm usually has
an assignment and an update step. The assignment phase as-
signs each point to a cluster based on a defined measure or
method. The update step then uses the associations of points
and clusters to update the cluster positions. The two steps
iterate until some stopping condition has been met. Based
on the error metrics defined, we create three variations of
the EM algorithm designed to minimize the overlap of the
cluster spheres and simultaneously minimize the population
imbalance. All three algorithms have the same update func-
tion, but the assignments are different.

Assignment
One way to ensure cluster balance is to enforce it during the
assignment phase of the EM algorithm. The first two meth-
ods attempt this and the third assigns points greedily by clus-
ter coverage.

Algorithm 1 (A1) Look at each point and assign it to the
nearest cluster centroid as long as the cluster has less than
N/k points in it. If it is full, attempt to assign to the next
closest, and so on, until it is assigned. If all clusters are full,
ignore the population constraint and assign it to the closest.
This algorithm is dependent on the ordering of the points
used for assignment, but also makes the reference points
move more to decrease this dependency, i.e. the arbitrary
point arrangement is used to help partition the space.

Algorithm 2 (A2) For each cluster centroid, rank the N/k
nearest neighbors. Greedily assign each point to the cluster
where it has the highest rank. Points that are not in any of
the rankings are assigned to the nearest cluster by default.
This method of assignment is designed to give each refer-
ence point the optimal nearest neighbors, but gives a bias to
the ordering of reference points.

Algorithm 3 (A3) First, assign all points that are only in
one cluster sphere. Next, assign points that are no longer
covered by a sphere after the update; assign point p to the
nearest partition Pi and set ri = dist(Oi, p). Finally, assign
all points that are in the overlap of multiple spheres. Greed-
ily assign each point to the encompassing sphere with the
smallest population. Here, we have an algorithm that must
adjust the size of the cluster spheres as well as move them to
fix the population imbalance.

Update
The update step is the same for all three algorithms, and is
shown in Equation 6. The basic premise of the first term is
to calculate the overlap of the two spheres and move them
apart to eliminate the overlap. However, since we also want
equal populations, the second term moves the spheres closer
if the population imbalance is too great.

−→
Oi =

−→
Oi −

k∑
j=1
j 6=i

−−−→
OiOj(ωOi,j − λPi,j) (6)

Equation 6 updates cluster centroid Oi based on another
cluster (partition) Pj . There are two hyperparameters, ω and

168

λ, which weight the amount of influence the overlap and
population components have on the update. Extensive test-
ing has shown that, for our error metric and application, set-
ting each hyperparameter equal to one is optimal, but other
applications may yield better results with different weights.

Model Parameters
There are many hyperparameters in the model. These addi-
tional hyperparameters were set based on empirical perfor-
mance and ensuring appropriate convergence.

k-clusters The number of clusters is set to d (the number
of dimensions) based on balancing the number of clusters
in a given dimension for indexing. There are justifications
for basing the number of partitions on the dimensionality
in iDistance (Jagadish et al. 2005), but there are also good
arguments to base k on the number of data points. Looking
at the balance between dimensions, the number of points,
and the number of clusters is left for future work.

Max radius A maximum radius restriction of 0.5 was im-
posed during the update step to keep clusters from cover-
ing the entire data space. It may be more appropriate for the
restriction to be based on the dimension because in higher
dimensions it creates smaller clusters and could impose an
unintended limit on the flexibility of the algorithm.

Convergence window The model converges based on
when the error stops decreasing on average in a sliding “win-
dow”, where a set number of iterations of the model are
saved, and the best iteration within the window is returned.
The size of the sliding window was set to five iterations.

Max distance Occasionally during the update step, a cen-
troid can be moved too far outside the data space. Thus, a
maximum distance of 2

√
d from the center of the data space

is imposed, which must be less than the spacing constant c
in iDistance.

Radius normalization Along with the max distance, or-
phaned centroids pushed outside the data space might not
be assigned any points. Thus, to encourage clusters with
fewer points to get more, and to discourage too many points,
the radius is normalized based on population, ri = ri ∗
(N/k)/(pi + 1). One is added to the population to ensure
it is defined, and the maximum radius restriction is also en-
forced if this value is too large.

Reclustering
Along with the standard iDistance k-means-based partitions
and our three algorithms, we also look at using the output
of k-means as the seed for A1, A2, and A3, which are listed
as KMA1, KMA2, and KMA3 in the results. This demon-
strates how k-means could work with our methods for cre-
ating balanced space partitioning. Thus, in this context our
algorithms can be thought of as a post-processing proce-
dure for k-means that try to optimize it for iDistance.We are
reclustering by taking existing clusters and tuning them for
better performance within a specific application.

Experimental Results
Setup
For the evaluation of our algorithms we take a slightly dif-
ferent approach to the general clustering literature since our
goals are different. We look at the clustering results based
on our error metrics of what should make balanced, well-
performing B+-trees, and then we load the clustered results
into iDistance, run extensive kNN queries, and report the
total candidates and nodes accessed on average. The tree
statistics are similar for B+-trees generated from k-means or
our method due to them having the same number of points,
however, the subtrees for partitions are vastly different. iDis-
tance generally uses k-means based partitions, thus all re-
sults for the standard iDistance algorithm are denoted as
‘KM’ in the results.

Data Sets
Given the purpose and application of this investigation, the
data sets used are all synthetic in order to explore specific as-
pects of the algorithms as they compare to k-means and each
other. We use both clustered and uniform data sets. The clus-
tered sets each consist of 12 Gaussian clusters. The first has
tight clusters with a standard deviation (std dev) of 0.1 and
the second has looser clusters of 0.2 std dev within the unit
space. Each data set contains 10,000 points, and these were
created in 4, 8, 16, and 32 dimensions. However, results are
only shown in 16 and 32 as the other results are less inter-
esting. In lower dimensions we do much better, but since
iDistance was designed for higher dimensions, we focus on
the highest ones we evaluate.

Model Error Results
We first look at how the algorithms performed on average
using our error metric. We look at an average of 10 runs for
all algorithms and in all dimensions for both uniform and
clustered data. In Figure 2 we show the overlap, population,
and total error for both uniform and clustered (0.2 std dev)
data for the 16d runs – the other dimensions show similar
results. As expected, A1 and A2 have nearly zero error for
population and also little overlap. Algorithm A1 has zero
error in most of the models because the points can be equally
distributed in such a way that the clusters do not overlap, so
A1 is not visible in the figures.
k-means is known to prefer similar sized clusters in many

cases, and this is also reflected in Figure 2(a). In uniform
data, k-means has almost no population error and only over-
lap error, but in highly clustered data, k-means no longer
maintains this balance. As expected, the first two algorithms
based on reducing overlap and population imbalance have
lower total error than k-means.

Another note of interest is the time and number of iter-
ations of each algorithm. A1, A2, and A3 usually had less
than 10-20 iterations. k-means, however, had greater than
100 iterations, but the error (based on our metric) did not
change significantly after the 4th or 5th iteration. This may
indicate that k-means may be just as effective for indexing
within iDistance if stopped early based on our metric rather
than the traditional stopping criteria.

169

Overlap Population Total

Type of Error

0
0.

4
0.

8 A1
A2
A3
KM

(a) Uniform

Overlap Population Total

Type of Error

0
0.

4
0.

8 A1
A2
A3
KM

(b) Clustered

Figure 2: Model error for uniform and clustered data in 16d.

iDistance Results
Using the runs from the error results, the best model for each
algorithm was chosen based on our error metric. The clus-
tered results were then used as partitions for iDistance with
the corresponding data set for the following experiments.

Nodes Accessed iDistance is optimized for nearest-
neighbor searches, so we base our results on kNN queries.
For each method, a kNN query for 10 neighbors (k=10) was
performed on 500 random points in the space. Figure 3(a)
shows these statistics for nodes accessed for the algorithms
in uniform data. We can see that k-means has a higher av-
erage number of nodes, and that algorithms A2 and A3 out-
perform it on average. Reclustering k-means using our al-
gorithms also improves the average performance. However,
despite A1 having the lowest error, it has the worst perfor-
mance. This demonstrates our error metric alone is not in-
dicative of iDistance performance.

A1 A2 A3 KM KMA1 KMA2 KMA365
0

70
0

75
0

80
0

85
0

90
0

(a) 16d Uniform Nodes

A1 A2 A3 KM KMA1 KMA2 KMA3

0
20
0

40
0

60
0

80
0

(b) 16d Clustered Nodes

Figure 3: Average nodes per query over 500 10NN queries
in 16 dimensions for (a) uniform and (b) clustered data.

Figure 3(b) shows the statistics for clustered data, and this
is where k-means has an advantage since the data distribu-
tions can be exploited. Here, only the reclustered versions
are comparable. KMA3 has drastically reduced the spread
of k-means and outperforms all the other algorithms.

Candidate Sets We now examine the candidates accessed.
For each query only the 10 nearest neighbors are desired,
meaning any others are false positives. The goal is to reduce
the number of false positives by improving the clustering
layout in the data space. Figure 4 shows these results for
uniform and clustered data in 16d. Here, we see results sim-
ilar to the accessed nodes. With uniform data, our algorithms
have a wider spread, but a similar average to k-means. With
clustered data, k-means outperforms all methods, and only
those using the k-means centroids as seeds are comparable.

A1 A2 A3 KM KMA1 KMA2 KMA3

80
00

85
00

90
00

95
00

10
00
0

10
50
0

(a) 16d Uniform Candidates

A1 A2 A3 KM KMA1 KMA2 KMA30
20
00

40
00

60
00

80
00

10
00
0

12
00
0

(b) 16d Clustered Candidates

Figure 4: Average candidates per query over 500 10NN
queries in 16 dimensions for (a) uniform and (b) clustered
data.

Figure 5 also shows some favorable results in 32d on clus-
tered data. The reclustered algorithms actually outperform
k-means with the exception of KMA3, yet KMA3S does
well. KMA3S is a form of Expectation Conditional Maxi-
mization (ECM) (Meng and Rubin 1993). During the update
phase, the centroids are fixed and each centroid is updated
independently based on the fixed value of the others. This
was implemented and tested with all of the algorithms, but
there were no significant differences in most of the experi-
mental results and thus were omitted from the other graphs.

A1 A2 A3 KM KMA1 KMA2 KMA3 KMA3S

Algorithm

0
20
00

40
00

60
00

80
00

10
00
0
12
00
0

C
a
n
d
id
a
te
s

Figure 5: Clustered average candidates per query over 500
10NN queries in 32 dimensions.

kNN Size Most of the clustered results show that generally
k-means performs well, but this is partly dependent on kNN
size, how tight the clusters are, and the dimension of the
space. Results vary greatly when these are modified.

In 16 dimensions with clustered data, we can see in Figure
6 how the algorithms tend toward selecting all the candidates
as the size of k grows. What is also interesting about this
graph is that KMA3 outperforms k-means, and even when
selecting 10% of the data points, it is still only looking at
about 75% of all the candidates. This provides some valid-
ity to the idea of reclustering existing clusters. A similar re-
sult was also witnessed in 8 and 32 dimensions. This also
demonstrates that given the right seed, our algorithms can
compete in clustered data with k-means.

In general, as the number of nearest neighbors increases,
our lossy transform will require more false candidates to be
examined. This query selectivity problem makes large kNN
queries behave similar to uniform data. Given our algorithms
perform better in uniform data, the larger kNN queries are
beneficial to compare with.

An advantage k-means has in tightly clustered data, is that

170

3 10 20 100 300 500 700 1000

Number of Neighbors

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

A
ve

ra
g

e
 N

u
m

b
e
r

o
f

C
a
n

d
id

a
te

s

A1
A2
A3
KMA1
KMA2
KMA3
KM

Figure 6: The affect on the average number of candidates
seen when varying the size of the kNN search in clustered
16 dimensional data.

the distribution is already minimal in overlap, but the clus-
ters can still have a larger radius, which our models limit.
Our algorithms, while more balanced in the tree structure,
suffer in the clustered data because with an even population
amongst the partitions, we will always have approximately
the same average number of candidates to look through. k-
means, however, will have fewer false candidates mapped to
the same area of the tree given the clusters are unbalanced.
The hope was that our methods would use points from mul-
tiple clusters, but it is more likely that our spheres settled in
the densest parts of clusters whenever possible in order to
evenly distribute the points.

Conclusion
In this paper we have introduced the idea of clustering for
the sake of indexing, and then presented a novel approach
of applying an unsupervised EM algorithm to cluster and
recluster data for iDistance. This focuses on the use of clus-
ter analysis to generate index trees for a specific indexing
method, as opposed to traditional, purely similarity-based,
clustering. We have shown that our basic algorithms de-
signed for iDistance perform well with uniform data. Fur-
ther, we have shown that using our algorithms to reclus-
ter k-means can yield equal or better performance benefits
in certain situations. Thus, existing clusters can be adapted
(reclustered) quickly for better use in specific indexing tech-
niques. Our methods alone provided no significant improve-
ments for iDistance over k-means in clustered data, and in
most cases performed worse. As indicated by the reclustered
versions though, this is largely due to random seeding, and
a preclustering algorithm would greatly improve this.

Our error metric was not as indicative of a correlation to
the query candidates and nodes as we would have hoped.
More work needs to be done to understand the balance of
overlap, population, and the specific iDistance index map-
ping function. Our results are encouraging, and demonstrate
the need for index-specific clustering techniques, as well as
some positive results and open questions in that direction.
Below we list several of the unanswered questions raised by
our study for future work on this topic.

(1) Would other clustering algorithms, used as seeds, yield
better results for our purposes? We tested against k-means
due to standard practices, but other methods may be better.

(2) For our algorithms, we need to test changing the radius
for clusters in higher dimensions. We know that some of k-
means’s effectiveness was due to not having this restriction.

(3) Other hyperparameters, such as the number of clusters
for a given dimension, also need more thorough experimen-
tation. How will an adaptive number of clusters based on
dimension and dataset size change the results, and what is
the best way to determine this trade-off?

(4) Will weighting the hyperparameters unevenly allow
for better performance in clustered data? In general, can our
error metric be adapted to more accurately reflect the iDis-
tance mapping function?

(5) Can better clustering methods be designed for iDis-
tance and consistently improve average retrieval?

(6) Can we create similar error metrics and clustering al-
gorithms for indexing methods other than iDistance?

References
Bayer, R., and McCreight, E. 1972. Organization and main-
tenance of large ordered indices. Acta Inform. 1:173–189.
Beckmann, N.; Kriegel, H.-P.; Schneider, R.; and Seeger, B.
1990. The R*-tree: an efficient and robust access method for
points and rectangles. SIGMOD Rec. 19(2):322–331.
Gordon, A. D. 1973. Classification in the presence of con-
straints. Biometrics 29(4):pp. 821–827.
Guttman, A. 1984. R-trees: a dynamic index structure for
spatial searching. SIGMOD Rec. 14:47–57.
Jagadish, H. V.; Ooi, B. C.; Tan, K.-L.; Yu, C.; and Zhang,
R. 2005. iDistance: An adaptive B+-tree based indexing
method for nearest neighbor search. ACM Trans. Database
Syst. 30:364–397.
Lefkovitch, L. P. 1980. Conditional clustering. Biometrics
36(1):pp. 43–58.
MacQueen, J. B. 1967. Some methods for classification and
analysis of multivariate observations. In Cam, L. M. L., and
Neyman, J., eds., Proc. of the 5th Berkeley Sym. on Math.
Stat. and Prob., volume 1, 281–297. UC Press.
Meng, X.-L., and Rubin, D. B. 1993. Maximum likelihood
estimation via the ECM algorithm: A general framework.
Biometrika 80(2):267–278.
Ooi, B. C.; Tan, K.-L.; Yu, C.; and Bressan, S. 2000. Index-
ing the edges: a simple and yet efficient approach to high-
dimensional indexing. In Proc. of the 19th ACM SIGMOD-
SIGACT-SIGART Sym. on Prin. of Database Syst., PODS
’00, 166–174. New York, NY, USA: ACM.
Wagstaff, K.; Cardie, C.; Rogers, S.; and Schroedl, S. 2001.
Constrained k-means clustering with background knowl-
edge. In ICML, 577–584. Morgan Kaufmann.

171

