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Abstract

Dealing with uncertainty in the context of planning has been
an active research subject in AI. Addressing the case when
uncertainty evolves over time can be difficult. In this work,
we provide a solution to this problem by proposing a tempo-
ral logic to reason about quantities and probability. For this
logic, we provide a PSPACE SAT algorithm together with a
complete calculus. The algorithm enables us to perform plan-
ning under uncertainty via SAT, extending a technique used
for classic planning. We can show that any obtained plan will
have certain properties (desired or undesired). The calculus
can also be used to derive the impossibility of a plan, given a
set of specifications.

1 Introduction
One of the most fruitful techniques to solve the planning
problem in AI has been by reduction to the satisfiability
problem over classical propositional logic (Kautz and Sel-
man 1992; Rintanen 2012). Classical propositional logic
does not address the problem of uncertainty and by con-
sidering a bounded time horizon one is able to reason and
plan efficiently by using propositional symbols representing
time. However, the main reason for the efficiency of this
type of planning is the advanced SAT algorithms already in
existence (Rintanen 2012).

In this work, we use a logic that not only allows one to
reason about quantities but also about probabilities, named
Exogenous Probabilistic Propositional Logic (EPPL) (Ma-
teus and Sernadas 2004; Mateus, Sernadas, and Sernadas
2005). The term exogenous was coined by Kozen (Kozen
and Parikh 1984) to express the fact that the probabilities
had an explicit syntax and were not hidden in the proposi-
tional symbols or connectives. Here we introduce a tem-
poralization of this logic (µ-calculus extension of EPPL).
Although quite expensive computationally, it has a rele-
vant sublogic, Exogenous Probabilistic Linear Time Logic
(EPLTL), which, as we show, has a PSPACE SAT algorithm.
With these temporal logics at our disposal, and with the ef-
ficient algorithms already known to solve the Satisfiability
problem of LTL (Vardi and Wolper 1986), we are able to
specify properties in a way relatively close to natural lan-
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guage. In this way we can produce plans for desired be-
haviors of agents, taking into account uncertainty. We also
present Hilbert calculi for both logics, allowing us to derive
that any satisfying plan has certain additional properties.

Temporal logics have a component to reason about states,
called the state logic, and temporal modalities to reason
about the evolution of states. The probabilistic state logic
considered, EPPL, is akin to the logic proposed by (Fa-
gin, Halpern, and Megiddo 1990) with some slight modi-
fications. For the temporal modalites we use the most pow-
erful decidable language, the µ-calculus; and the result is
a fixpoint logic whose SAT algorithm allows us to out-
put plans. Other approaches to reasoning about time and
probability exist. However, they either have an undecid-
able SAT problem, such as the probabilistic situation cal-
culus (Mateus et al. 2001), or their SAT problem is not
yet solved (for instance PCTL (Ciesinski and Größer 2004;
Brázdil et al. 2008)).

There have been three different approaches to planning
under uncertainty: full probabilistic (Konigsbuch, Infantes,
and Kuter 2008), contingent probabilistic (Bonet 2006) and
conformant probabilistic (Brafman and Hoffmann 2004).
The difference between these approaches is the observation
model considered. In full probabilistic planning, we assume
that the observations are total (but random); in contingent
probabilistic, the random observations are partial; and fi-
nally, in conformant probabilistic planning, no observations
exist (although the underlying behavior is random). The
SAT method proposed can be adopted to all the cases, al-
though the specification has to be significantly different for
each case. Many algorithms dedicated to each type of prob-
abilistic planning exist, and are in general more restrictive
than using an EPLTL specification. However, these are in
general much more efficient, in most cases, because intelli-
gent heuristics are used.

This paper is structured as follows. First, we begin by
motivating our intended applications by a simple example.
Then, we present the syntax, semantics and axiomatisation
of the state logic EPPL. After that, we introduce the fix-
point extension MEPL. Then, we address completeness for
MEPL and, finally, we revisit the example, formalizing the
constraints given in the first section.

The central contribution of this paper is the introduc-
tion of a new logic MEPL for planning under uncertainty,
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which enables us to reason with time explicitly. In partic-
ular, we are able to use the fact that MEPL has a sublogic
for which the SAT algorithm relies on the SAT problem of
LTL, which has been thoroughly studied. The associated
complexity results and algorithms are also completely new.
The full paper will develop EPPL in significantly more de-
tail than in earlier publications (Mateus and Sernadas 2004;
2006), including all the required proofs and presenting case
studies.

2 Motivating Example
Assume that a robot Healer 2.0 has been built and it
comes equipped with advanced medical equipment, previ-
ously tested in its earlier iteration. This time, however, it is
capable of locomotion. Its intended use is in deserted loca-
tions, where it can be deployed far from its target, and then
rescue its intended target. Unfortunately, the advanced med-
ical equipment occupies a large amount of space, and Healer
2.0 cannot transport much fuel. The cost of the deployment
of the supplies is limited by a threshold; moreover this cost
grows quadratically with the distance from the base.

Figure 1: A grid illustrating the possible movements of
Healer 2.0, with entry point and goal marked

The developers are interested in making a plan containing
the robot movements on the grid (requires temporal reason-
ing), and on how to distribute the supplies along the grid
(requires quantitative reasoning).

3 A Probabilistic State Logic
The state logic is intended to specify and reason about each
instant of time of a given agent. The idea is that, at each
instant, certain variables take a probability distribution or an
algebraic quantity. We are only able to perform algebraic
reasoning about these quantities and probabilities, i.e., addi-
tion and multiplication of real terms together with proposi-
tional reasoning about the comparison of real terms.

Syntax
The language of EPPL consists of formulae at two levels.
The formulae at the first level, basic formulae, allow us to
reason about state variables, for instance, locations. We can
abstract locations as a finite set of propositional symbols Λ.
The formulae at the second level, global formulae, allow us

to perform probabilistic reasoning. We also consider alge-
braic real terms, built over a set of real logic variables R.
These terms denote real numbers used for quantitative rea-
soning at the level of global formulae. The syntax of the
language is as follows, where r is any real agebraic number:

β := α 8 (¬β) 8 (β⇒ β)

t := x 8 r 8
∫
β 8 (t+ t) 8 (t× t)

δ := (Aβ) 8 (β⊥β) 8 (t ≤ t) 8 (∼δ) 8 (δ = δ)

Our logic will be able to denote the probability of an event
β. Moreover using quantifier elimination over Real Closed
Fields (Basu, Pollack, and Marie-Françoise 2003), we can
just add the constants 0 and 1 to our syntax. We will use
the usual abbreviations for both global connectives and basic
connectives, taking care to distinguish between both.

Semantics
Let (Ω,F ,P) be a probability space, and X = (Xα :
Ω → 2)α∈Λ a stochastic process over (Ω,F ,P) where
each Xα is a Bernoulli random variable, i.e. Xα ranges
over 2 = {0, 1}. The models of EPPL are tuples m =
(Ω,F ,P,X). Observe that each basic EPPL formula β
induces a Bernoulli random variable Xβ : Ω → 2, de-
fined as follows: X(¬β)(ω) = 1 −Xβ(ω); X(β1⇒β2)(ω) =
max{1−Xβ1(ω), Xβ2(ω)}.

So, each basic formula β represents the measurable subset
{ω ∈ Ω : Xβ(ω) = 1}. Moreover, each ω ∈ Ω induces
a valuation vω over Λ, such that vω(α) = Xα(ω), for all
α ∈ Λ. Given an EPPL model m = (Ω,F ,P,X), and
assignment ρ : R → R for the real logical variables, the
denotation of algebraic real terms is as follows:

• [[x]]m,ρ = ρ(x);
• [[r]]m,ρ = r;
• [[t1 + t2]]m,ρ = [[t1]]m,ρ + [[t2]]m,ρ;
• [[t1 × t2]]m,ρ = [[t1]]m,ρ × [[t2]]m,ρ; and
• [[
∫
β]]m,ρ =

∫
Xβ dP = P(Xβ = 1).

Note that the term [[
∫
β]]m,ρ gives the expected value of

Xβ . Since Xβ is a Bernoulli random variable, the expected
value is the same as the probability of observing an outcome
ω, such that vω satisfies β.

Moreover, the satisfaction of global formulae is given by:

• m, ρ  (Aβ) iff Xβ(ω) = 1 for all ω ∈ Ω;
• m, ρ  (β1⊥β2) iff [[

∫
β1 ∧ β2]]m,ρ = [[

∫
β1]]m,ρ ×

[[
∫
β2]]m,ρ;

• m, ρ  (t1 ≤ t2) iff [[t1]]m,ρ ≤ [[t2]]m,ρ;
• m, ρ  (∼δ) iff m, ρ 6 δ;
• m, ρ  (δ1 = δ2) iff m, ρ  δ2 or m, ρ 6 δ1.

Note that from the semantics just presented, we can see
independence formulae as syntactic sugar, by replacing each
independence formula β1⊥β2 for

∫
β1 ∧ β2 =

∫
β1 ×

∫
β2.

Although our definitions are more general, we intend to
reason about probabilities of classical valuations. Each val-
uation represents an atomic event; a disjunction of two val-
uations will then represent one of the two atomic events. If
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they are disjoint, then the probability of satisfying one of
the two valuations is the sum of each atomic event. The
set of propositional symbols could denote different spatial
locations, time moments, or both. We will focus on the spa-
tial perspective, since we will explicitly temporalize EPPL
models in forthcoming sections. This will let the spatial
reasoning to be probabilistic in nature, by allowing uncer-
tainty of position; while the temporal reasoning can be non-
deterministic, allowing many possible evolutions of proba-
bility distributions.

Small Model Theorem
Given that we are working towards a complete Hilbert cal-
culus for EPPL through a SAT algorithm, it is important to
investigate whether EPPL fulfills a small model theorem. In
fact, we will also show that it is enough to consider probabil-
ity spaces over finite valuations, as any EPPL formula will
have a finite number of propositional symbols. Let δ be an
EPPL formula; we denote the set of propositional symbols
that appear in δ by prop(δ).

Theorem 3.1 (Small Model Theorem) If δ is a satisfiable
EPPL formula then it has a finite model over valuations us-
ing at most 2|δ|+ 1 algebraic real numbers.

Decision Algorithm for Satisfaction
The decision algorithm for EPPL satisfaction uses the de-
cidability of the existential theory of real numbers and the
small model theorem. Before presenting the algorithm, we
introduce some notation. Given an EPPL formula δ, we will
denote by

• iq(δ), the set of all inequalities (t1 ≤ t2) in δ;
• bfA(δ), the set of all universal subformulae Aβ in δ;
• at(δ) = bfA(δ)∪ iq(δ)∪ ip(δ), the set of all global atoms

of δ.

From now on, by an exhaustive conjunction of literals of
at(δ), we mean a formula ε of the form δ1 u . . .u δk, where
each δi is either a global atom, or its negation. Moreover,
all global atoms or their negations occur in ε, therefore k =
|at(δ)|.

Given a global formula δ, we denote by δb the proposi-
tional formula obtained by replacing in δ, each global atom
δi with a fresh propositional symbol αi, for i = 1, . . . , k.
We also replace in δ, the global connectives∼ and =, by the
propositional connectives ¬ and⇒, respectively. We denote
by vε, the valuation over propositional symbols α1, . . . , αk,
such that vε(αi) = 1 iff δi occurs positively in ε.

Given an exhaustive conjunction ε of literals of at(δ), we
denote by lbfA(ε) the set of basic formulae such that β ∈
lbfA(ε) if Aβ occurs positively in ε (that is, not negated).
Similarly, the set of basic formulae that occur nested by a
∼A in ε is denoted by lbfE¬(ε). Finally, we denote all the
inequalities occurring in ε by liq(ε). This last set contains
the new inequalities introduced by the substitution of the in-
dependence formulae.

Given a global formula δ in liq(ε), we denote by δa the
analytical formula where all terms of the form

∫
β are re-

placed in δ by
∑
v∈V,vβ xv . We assume that xv is a fresh

variable from Var . We can use the PSPACE SAT algorithm
of the existential theory of the real numbers (Basu, Pollack,
and Marie-Françoise 2003), that we denote SatReal. We
assume that this algorithm either returns no model, if there
is no solution for the input system of inequations, or a solu-
tion array η, where η(x) is the solution for variable x. We
denote by var(δ) the set of real logical variables that occur
in δ.

Algorithm 1: SatEPPL(δ)

Input: EPPL formula δ
Output: (V,P) (denoting the EPPL model

m = (V, 2V ,P,X)) and assignment ρ or no model

compute bfA(δ), ip(δ), iq(δ) and at(δ);
foreach exhaustive conjunction ε of literals of at(δ)
such that vε  δb do

compute lbfA(ε), lbfE¬(ε) and liq(ε);
foreach V ⊆ 2prop(δ) such that 0 < |V | ≤ 2|δ|+ 1,
V  ∧lbfA(ε) and V 6 β for all β ∈ lbfE¬(ε) do

κ←−
(∑

v∈V xv = 1
)
u
(⋂

v∈V 0 ≤ xv
)
;

foreach δ ∈ liq(ε) do
κ←− κ ∩ δa;

end
η ←− SatReal(κ);
if η 6= no model then

Pη ←− η|{xv :v∈V };
ρη ←− η|var(δ);
return (V,Pη) and assignment ρη;

end
end
return (no model);

end

Theorem 3.2 Algorithm 1 decides the satisfiability of an
EPPL formula in PSPACE.

Completeness
In general, when presenting a calculus, we are interested in
showing that everything that can be proved is true and also
that everything that is true can be proved as such. The first
property is called soundness, while the second property is
called completeness. Checking soundness (` δ ⇒|= δ) can
be done by just checking the validity of the axioms, one by
one. Checking completeness (|= δ ⇒` δ) is harder, and in
some cases it may even be impossible.

In (Mateus, Sernadas, and Sernadas 2005) it is shown that
a superset of axioms and inference rules presented here is
a sound and a (weakly) complete axiomatization of EPPL.
Due to the EPPL SAT algorithm, we are able to show that
the following calculus is weakly complete:

1. `EPPL (Aβ) for each valid propositional formula β,

2. `EPPL δ for each instantiation of a propositional tautology
δ,

3. `EPPL (A(β1⇒ β2) = (Aβ1 = Aβ2)),
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4. `EPPL (Af≡ F),

5. `EPPL (β1⊥β2)≡ (
∫
β1 ∧ β2 =

∫
β1 ×

∫
β2),

6. `EPPL (t1 ≤ t2) for each instantiation of a valid analytical
inequality,

7. `EPPL (
∫

t = 1),

8. `EPPL ((
∫
(β1 ∧ β2) = 0) = (

∫
(β1 ∨ β2) =

∫
β1 +

∫
β2)),

9. `EPPL (A(β1⇒ β2) = (
∫
β1 ≤

∫
β2)).

10. δ1, (δ1 = δ2) `EPPL δ2.

It is impossible to obtain a strongly complete axiomatiza-
tion for EPPL (that is, if ∆ |= δ then ∆ ` δ, for infinite
∆) because the logic is not compact (Mateus, Sernadas, and
Sernadas 2005). Nevertheless, weak completeness is enough
for system verification, since a plan usually just involves a
finite number of hypotheses.

For the axiomatization presented, we consider a Hilbert
system with a recursive set of axioms and finitary rules. Re-
call that the axiom schema 6 is decidable due to Tarski’s re-
sult on the decidability of real closed fields (Basu, Pollack,
and Marie-Françoise 2003). Thus, the axioms constitute a
recursive set.

Theorem 3.3 The set of rules and axioms is a weakly com-
plete axiomatization of EPPL.

4 Temporal Extension of Exogenous
Probabilistic Logic

We now introduce a µ-calculus extension of EPPL by adopt-
ing the fixpoint constructors (Kozen 1983). We also provide
a sound and (weakly-) complete proof system by enriching
the µ-calculus proof system (Walukiewicz 1995) with the
axioms of EPPL. We will present full MEPL, providing a
complete Hilbert calculus and a SAT algorithm.

This temporal extension can be seen as the most general
one, subsuming most of the common temporal logics like
LTL or CTL. In LTL, time evolves deterministically, as a se-
quence of instants. In CTL, time branches and behaves like
a tree of instants.

Syntax
The syntax of MEPL is formed by enriching the µ-calculus
by taking as propositional symbols the global atoms of
EPPL. The syntax is as follows, where r is any real alge-
braic number:

β := α 8 (¬β) 8 (β⇒ β)

t := z 8 r 8
∫
β 8 (t+ t) 8 (t× t)

φ := (Aβ) 8 (t ≤ t) 8 ξ 8 (∼φ) 8 (φ = φ) 8 3φ 8 µξ.φ

where in µξ.φ any occurrence of ξ in φ is under an even
number of negations.

The basic formulae and probabilistic terms have the same
intuitive meaning as in EPPL. Similarly, the global formulae
with fixpoint operators have the same meaning as in the µ-
calculus.

Semantics
In order to provide semantics for the logic, we introduce a
very simple notion of Kripke structure over EPPL models.
An MEPL structure, or an EPPL-Kripke structure, consists
of a tuple M = (S,R,L) where S is a non-empty set of
states, R ⊆ S × S is a total relation, and L is a map that
assigns an EPPL model (including a variable assignment
γ : Z → R) to each state in S. Our models are closely
related to the models of probability and knowledge in (Fagin
and Halpern 1994).

The MEPL semantics mimics the semantics of the µ-
calculus. In a Kripke structure, L maps each state to a set of
propositional symbols (or equivalently to a valuation), that
is a propositional model. For our EPPL-Kripke structures,
L maps each state to an EPPL model.

We now present the formal semantics of MEPL. For this
purpose, we denote by [δ]MV the set of states ofM that satisfy
δ given valuation V : Ξ → 2S . The set [δ]MV is defined
inductively on the structure of δ as follows:

• [(Aβ)]MV = {s ∈ S : L(s) EPPL (Aβ)};

• [t1 ≤ t2]MV = {s ∈ S : L(s) EPPL (t1 ≤ t2)};

• [ξ]MV = V (ξ);

• [(∼ϕ)]MV = S \ [ϕ]MV ;

• [(ϕ1 = ϕ2)]MV = [∼ϕ1]MV ∪ [ϕ2]MV ;

• [(3ϕ)]MV = {s ∈ S : exists s′ ∈ S, such that (s, s′) ∈
R, and s′ ∈ [ϕ]MV };

• [µξ.ϕ]MV =
⋂
{S′ ⊆ S : [ϕ]MV [ξ←S′] ⊆ S

′};

where V [ξ ← S′], as before, denotes the valuation V ′ that
may just differ from V by V ′(ξ) = S′.

Given a closed formula ϕ, if s ∈ [ϕ]MV for some valuation
V then we write M, s MEPL ϕ.

Completeness
In this section we provide a complete calculus for MEPL.
Completeness is obtained by using the completeness of the
µ-calculus and EPPL. We give the complete axiomatization
HCMEPL of MEPL

• all EPPL tautologies,

• all instantiations of µ-calculus tautologies with MEPL
formulae,

• φ1, (φ1 = φ2) `MEPL φ2,

• (φ1[ξ ← φ2] = φ2) `MEPL (µξ.(φ1 = φ2)).

Theorem 4.1 The axiomatization HCMEPL is weakly com-
plete.
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Satisfaction
Theorem 4.2 Let φ be an MEPL formula. Deciding
whether φ is satisfiable can be reduced to the satisfiability
problem of the µ-calculus.

The satisfaction problem for µ-calculus is EXPTIME-
complete (Kozen and Parikh 1984). Furthermore, since the
translations used to bring φ ∈ MEPL to the µ-calculus realm
are exponential on the size of φ, one could imagine that the
complexity of deciding satisfiability of MEPL formulae is
exponentially worse than that for the µ-calculus. However,
as we shall see in the following subsection, for some cases
we need not apply the SAT algorithm directly.

Exogenous Probabilistic Linear Temporal Logic An
important sub-logic of MEPL is the one obtained by tak-
ing just the path connectives next X and until U, such that
Xϕ :=ab (3ϕ), and ϕ1Uϕ2 :=ab (µ.ξ(ϕ2t (3(ϕ1uξ)))).
We call this logic exogenous probabilistic linear temporal
logic (EPLTL). We also note that the temporal operators G
(meaning always), and F (meaning some time in the future),
can be obtained from the until (U) operator. We further re-
call that ϕ1Uϕ2 means that ϕ1 has to be true until the mo-
ment that ϕ2 is true, which will assuredly happen.

The algorithms introduced in (Sistla and Clarke 1985;
Gerth et al. 1996) to solve satisfiability of LTL can be ex-
tended to EPLTL.

Theorem 4.3 The satisfiability problem for EPLTL is in
PSPACE.

5 Applications in planning
We will now show some of the properties MEPL can specify,
illustrating also some of its usefulness (although we leave
a more complex example for the full paper where we also
incorporate uncertainty of positions). We will not use full
MEPL, but we will use another important sublogic, a re-
striction of the µ-calculus to LTL, as it will be enough for
our demonstration.

In this 4x4 grid, the robot will have to navigate through
the cells until it finds the target, spending fuel to do so, and
regaining it at some locations yet to be discovered. The
fuel will be carried and delivered in discrete amounts, for
instance {0, 1

10 , . . . ,
9
10 , 1} using k for any of these discrete

amounts, and thus we are modeling the fuel level as a prob-
ability. We will stipulate that the robot will start its mission
with a full tank, and that the developers are willing to spend
K extra fuel units to supply the robot.

We will require the following propositional symbols and
constants: (i) {e(i,j) : i, j ∈ {1, . . . , 4}}, representing the
location of the robot; (ii) fuel , representing the amount of
fuel available; (iii) {sup(i,j) : i, j ∈ {1, . . . , 4}} represent-
ing the distribution of the refuel supplies, (iv) c(i,j),(i′,j′)
representing the fuel cost of moving from cell (i, j) to cell
(i′, j′); (v) K the total amount of fuel the developers are
able to deliver for refuel; and (vi) T the threshold cost.

Our specification is as follows:

1. The robot can only be in one place at once:
G((ui,j

∫
e(i,j) = 0 t

∫
e(i,j) = 1) u (

∑
i,j

∫
e(i,j) = 1))

2. The robot can only move to adjacent cells and if it has
some fuel left, spending c(i′,j′) fuel to move from cell
e(i,j) to cell e(i′,j′), whereC(i,j) = {(i′, j′) ∈ {1, ..., 4}×
{1, ..., 4} : |i− i′| ≤ 1, |j − j′| ≤ 1, (i, j) 6= (i′, j′)}:

G((
∫
fuel = k u k > 0 ∧

∫
e(i,j) = 1) =

X(( t(i′,j′)∈C(i,j)

∫
e(i′,j′) = 1)∧

((
∫
fuel = 0 u k +K ∗

∫
sup(i,j) − c(i′,j′) < 0)⊕

(
∫
fuel = 1 u k +K ∗

∫
sup(i,j) − c(i′,j′) > 1)⊕

(
∫
fuel = k +K ∗

∫
sup(i,j) − c(i,j),(i′,j′)))))

3. The probability distribution of supplies is set at the begin-
ning:
(tk(

∫
sup(i,j) = k) = G(

∫
sup(i,j) = k)) u∑

i,j

∫
sup(i,j) = 1

4. The cost of deployment of supplies is limited by a thresh-
old T ; moreover, the cost grows quadratically with the
distance:∑
i,j(
∫
sup(i,j))

(i+j)2

4+4 ≤ T
5. If the robot has no fuel, it will not leave the cell:
ti,jF((

∫
fuel = 0 u

∫
e(i,j) = 1) = G

∫
e(i,j) = 1)

6. The robot begins at cell (1, 1), and its gas tank is full:∫
e(1,1) = 1 u

∫
fuel = 1

7. The robot will not revisit any cell:
(ti,jG(

∫
e(i,j) = 1 = XG(

∫
fuel > 0 =

∫
e(i,j) = 0)))

8. All paths should eventually lead to the target location:
F(
∫
e(4,4) = 1)

So, using the SAT algorithm, one is able to decide whether
the set of constraints has a model. Note that if we omit the
last axiom, the model generated is the model of all possible
paths Healer 2.0 can take. However, if the last axiom is
included, the generated model is a trimmed down version of
the earlier model, such that all paths are viable and the robot
can choose from any of them. Either way, the developers
obtain their unknown distribution of the fuel supplies.

6 Conclusions
The proposed logic can be used to specify any type of prob-
abilistic interaction provided that there are a finite number
of probability distributions that model the problem. So the
example provided in Section 5 can be extended to consider
robots with random movements, since we only consider fi-
nite amount of fuel. This finitary constraint is necessary for
the SAT algorithm to remain decidable, as any attempt to go
beyond leads easily to undecidability. Note that one advan-
tage of this approach compared to planning using SAT over
propositional logic is that we do not require a bound on time,
although both methods require to put a bound on the number
of states (in our case in the number of probability distribu-
tion). Finally, completeness may help to derive additional
properties about the behavior of all solutions.
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