
Stretchy Time Pattern Mining: A Deeper Analysis of Environment Sensor Data

Carlos Roberto Silveira Junior, Marcela Xavier Ribeiro, Marilde Terezinha Prado Santos
Department of Computing, Federal University of São Carlos

Washington Luı́s, km 235 – SP–310, 13565-905
São Carlos, São Paulo, Brazil

Abstract

Mining sequential patterns on environment sensor data
is a challenging task; the data can present noises and
may also contain sparse patterns, which are difficult
to be detected. The knowledge extracted from envi-
ronment sensor data can be used to determine climate
changes. However, there is a lack of methods that can
handle this kind of database. In this paper, we pro-
pose a method to mine sequential patterns in sparse, in-
complete and noisy sensor data. The proposed method,
called Stretchy Time Windows (STW), allows the min-
ing of sequential patterns that present time gaps be-
tween their events. We propose an algorithm to imple-
ment STW, called Miner of Stretchy Time Sequences
(MSTS). The proposed algorithm works with sequences
of any size and uses a balanced strategy to analyze the
search space. Our experiments show that MSTS returns
sequences that have a longer period of analysis than
GSP a traditional frequent pattern mining algorithm. In
fact, 5 times larger than GSP and higher number of pat-
terns (2.3 times) when compared to previous methods.

Introduction
Mining patterns on environment sensor data is a com-
plex task because the data present a set of characteristics
that makes the analysis hard. The data are sorted by the
space-time order, the data gathering moment and site. The
database can either be incomplete or present noises, be-
cause of miscalibrated measuring devices, and missing data.
Hence, sensor data are incremental and irregular. Normally,
during data collection time, many ad hoc procedures are
used (Barseghian 2010); the data are stored without stan-
dard. Furthermore, there are constantly adding of new data
in the database.

The knowledge extracted from the sensor data analysis
can be used, for example, to determine the best time to sow
a particular crop thus maximizing profits, it can improve
weather forecasts (based on data behavior). At the moment,
there is a lack of methods that effective extract patterns from
environmental sensor data. Sequential pattern mining is used
on databases whose data are sorted by the time order of event
occurrences. It is related to the task of finding sequences of

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

events that frequently occurs in a database, keeping the or-
der of events between their occurrences. That kind of task
was firstly proposed by (Agrawal and Srikant 1995).

The task of finding sequential patterns is also difficult
because sequential patterns should keep the time order be-
tween event occurrences. When working with natural envi-
ronment sensors, the data can present noise and error be-
cause the measurement devices are not always as calibrated
as they should be. Also, the task of mining sequential pat-
terns gets even more difficult in this domain because the nat-
ural phenomena usually take time to show their effects.

In fact, the size of relevant gaps (time intervals) between
events in a sequence can be defined by domain experts, al-
lowing the mining of patterns that best represent the knowl-
edge hidden in the database. To solve the problem of mining
patterns that have time gaps between the sequence events,
we propose a new algorithm called Miner of Stretchy Time
Sequences (MSTS), which uses a new technique of window-
ing to process the sequential data. MSTS is explained in Sec-
tion and it is employed to allow time gaps to occur between
events (items) in a sequential pattern. The size of the dura-
tion of the maximum time gap is set by the user. Also, the
proposed algorithm works with sequences of any size, not
imposing a size limit to the analyzed sequences, as the pre-
vious techniques do.

This paper is organized as follows: Section presents im-
portant concepts for this work and related works. Section
presents the MSTS Algorithm, Section presents the experi-
ments. Section finishes the paper presenting the conclusions
and the future works.

Background and Related Work
A sequential pattern is a sequence of events (itemsets) 1

that keep an order among their occurrences. Let’s consider
a sequence s =< i1 . . . in >, where ik is an itemset (a
nonempty set of items that happen together), n ≥ 2 and
ik−1 precedes ik for 1 < k ≤ n. s′ is a sub-sequence of
s (s ≺ s′), if and only if, for all itemset ik ∈ s, s′ has an
itemset i′ which is sub-itemset of ik or an empty set keeping

1The word “events” is sometimes used instead of “itemsets”
because “event” is more semantic to explanations focusing in the
application domain. However, “itemset” is ordinarily used to con-
ceptual explanations.

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

468

the sequential order of s. The traditional sequential mining
algorithms usually separate the sequences in frequent and
non-frequent ones. The frequency of a sequence is called
support and can be calculated by the Formula support(s) =

|number of occurrence of s|
|number of sequences on the database| . Support is a value be-
tween zero and one ([0; 1]) (Huang 2009).

If support(s) is equal or greater than a minimum value
of support, usually set by the user, then the sequence s is
considered frequent. If it is not, the sequence is considered
non-frequent. That is important because the anti-monotonic
property says that a frequent pattern is always composed by
frequent patterns. Therefore, if a non-frequent pattern is cre-
ated, it is discarded because it cannot be part of a frequent
one (Han, Pei, and Yan 2005).

Based on AprioriAll 2 (Agrawal and Srikant 1995) the
algorithm Generalized Sequential Patterns (GSP) was pro-
posed by (Srikant and Agrawal 1996). GSP and AprioriAll
are important in this work because MSTS is based on their
strategy (generation–and–test of candidates).

GSP receives a vertical database and the value of mini-
mum support as input. In a vertical database (the most com-
mon format employed to organize a database), all the tuples
are organized by the time of event occurrence. Hence, by us-
ing a vertical database, GSP avoids rearranging the data to
horizontal mode.

Others algorithms as PrefixSpan (Pei 2001) uses the hori-
zontal mode. In horizontal database, all tuples store an iden-
tification (e.g. site of collection of samples) followed by a
list of events ordered by time of occurence at the sample
collection site. PrefixSpan presents better performance than
GSP. However, PrefixSpan usually needs to rearrange the
data, which takes time and sometimes it needs the super-
vision of a domain expert to avoid the insertion of errors in
the data. For this reason, we decided to use GSP inside of
PrefixSpan to orientate MSTS.

The mining of sequential patterns with time constraint
considers some restriction of time domain to search for con-
sistent patterns (Chen 2010). For instance, the time con-
straint can restrict patterns to occur after a given data and
time. That is very used to stream mining because, when
working with this kind of data, the old data cannot repre-
sent correctly the behavior of the new data. Time constraint
can direct the focus of the data mining to a specific period
of time (Masseglia, Poncelet, and Teisseire 2009).

In (Nunthanid, Niennattrakul, and Ratanamahatana 2011)
the algorithm Variable Length Motif Discovery (VLMD)
is presented to extract temporal patterns from sequences.
The distance calculated between items is Euclidean. The
approach uses a kind of adaptive windowing where over-
laps are created without pre–configuration. However, this
approach does not allow the mining of time sparse patterns,
employing a window search on the new and/or most impor-
tant data. In the direction, MSTS is projected to mine time
sparse patterns and no different level of importance is given
to any set of data, being more appropriate to capture the evo-
lution of natural phenomena taken by environment data sen-
sors.

2First algorithm to mine sequential patterns.

Another important work is presented in (Zabihi 2010),
which proposes the Constrained Fuzzy Sequential Pattern
Mining Algorithm. The algorithm extracts Fuzzy Sequences
(sequences with numerical values) making unnecessary pre-
processing to discretize numerical values. A method, called
Fuzzy Sliding Windows, is presented in the paper, this
method restricts a time window and allows the candidate
generation in it.

The approaches discussed are not effective when working
with time sparse (time gaps) and incomplete data, as the data
produced by natural environment sensors. To amend this re-
striction from previous methods, MSTS has the advantage of
working with multi-resolution time window when searching
for sequential patterns.

The Proposed Algorithm: Miner of Stretchy
Time Sequences

The Miner of Stretchy Time Sequences (MSTS) Algorithm
is a new algorithm to find sequential patterns with time
constraint. The same time constraint is applied to every
occurrence of each pattern. The algorithm finds patterns
that present time gaps (time interval between consecutive
events). MSTS has an input parameter that specifies how
long the time gaps can be (µ). It makes the algorithm ade-
quate to find sequential patterns on environment sensor data
because the consequences of an event can take long time pe-
riods to be detected. For example, the growth of vegetation
takes five days to be perceived after a rainy day.

In our approach, the sequence n−sequence, presented by
(A), is characterized by a list of the events (itemsets i1,2,...n)
that could present time gaps (∆t1,...n−1) where n ≥ 2 is the
number of itemset. If the domain has granularity in days (pe-
riods between occurrence of the events are counted in days)
the ∆tk is the quantity of days that can take between ik and
ik+1 where 1 ≤ k < n. Each sequence must obey the con-
straint (

∑n−1
k=1 ∆tk) ≤ µ; the time gaps presented by each

occurrence of every pattern should not be greater than µ. A
n-sequence takes at least n time units (days, weeks. . .) to oc-
cur (event after event). In our proposal the same n-sequence
can take at most n+ µ time units to occurs completely.

n− sequence =< i1 ∆t1 i2 . . . ∆tn−1 in > (A)

MSTS, presented in Algorithm 1, receives as input a verti-
cal database db and the minimum support valueminSup –as
GSP; MSTS also receives the maximum time gap value µ.
The output is the set of frequent sequential patterns F . The
first step of MSTS consists in finding in the database db the
set of frequent itemset (line 1) and create the 1-sequences
(line 2) using the frequent itemsets. After that step, MSTS
checks if the support of all combination between each 1-
sequence (pattern p) with all frequent itemset (itemset ι)
is greater or equal to minSup (line 6). The combination
between the 1-sequences and the frequent itemsets is done
concatenating the itemsets to the sequences (creating the 2-
sequences candidate 3). If a 2-sequence is frequent then it

3Sequences candidate are those whose support values were not
checked yet.

469

Algorithm 1: The Miner of Stretchy Time Sequences al-
gorithm (MSTS).

Input: vertical database db,minSup, µ
Output: set of patterns F
/* Finding frequent itemsets and generating 1-sequences. */

1 C ← {frequent itemset of db} ;
2 F ← C ;

/* Generating and testing sequences. */
3 foreach pattern p ∈ F do
4 find← false ;
5 foreach itemset ι ∈ C do

/* Checking support of sequence candidate. */

6 if checkingOccurrence(p,ι,µ)|number of sequences in bd| ≥ minSup then
/* If the sequence candidate is frequent then

adding in F */
7 add(concat(p, ι), F) ;
8 find← true ;

9 if find then
/* Removing subpattern. */

10 remove(p, F) ;

is added to the set of frequent patterns F (line 7); making
the set bigger. The next step is to remove the sub-pattern.
If the 1-sequence (pattern p) has generated a bigger pattern
then this sequence is a sub-pattern and it should be removed
from frequent pattern set F . When all 1-sequences are pro-
cessed, MSTS processes the 2-sequences (that are in set F)
using the same process (line 3). In this way, all combination
of each 2-sequence (now represented by pattern p) with all
frequent itemset (ι) has its frequency checked (line 6), the
frequent 3-sequences are added in F (line 7) and the sub-
patterns are removed (line 9 and 10). That loop still running
until the combination does not generate any frequent pattern
anymore.

Although MSTS is based on algorithms that apply
generation-and-test of candidate strategy (e.g. AprioriAll
and GSP), it presents a huge difference on the way algo-
rithms count the pattern occurrences. Our proposed method
of counting occurrences, Stretchy Time Windows (STW), in
contrast to GSP and PrefixSpan, aims, by configuring the
parameter µ, to check a no fixed number of tuples looking
for the occurrence of the pattern while GSP and PrefixSpan
check in a fixed number of tuples the occurrence of the pat-
tern.

The STW method, presented in Algorithm 2, uses the pa-
rameter µ, which says how long the maximum time gap can
be. The STW method works in the following way: every
time a pattern p′ =< i1 . . . in in+1 > is generated based on
an old frequent pattern p =< i1 . . . in > (line 3), the exis-
tence of p′ is checked (line 4 until 10). Note that, p′ � p (p is
part of p′). The way of checking is: for all occurrences of p,
the algorithm sees how sparse that occurrence is (line 5) and
calculates a number of tuples that can be checked to find the
new item,window (line 6).window should be the minimum
value between µ − numberOfT imeGaps (µ decremented
the existent time gaps) and ∆(nextOcurrence(p) (distance
between the last itemset of the analyzed occurrence of pat-
tern p and the last itemset of next occurrence of p) because
the Time Search Window cannot be big enough to cover the
next occurrences of pattern p (line 6). The algorithm keeps a
vector with all timestamps where p has occurred and a vector

Algorithm 2: Algorithm of the it Stretchy Time Win-
dows (STW) method.

Input: pattern p, itemset ι, µ
Output: count /* Number of occurrence of pattern p */

1 function checkingOccurrence
2 count← 0 ;
3 p′ ← concat(p, ι) ;
4 foreach occurrence occ of pattern p do

/* Calculating the number of tuples where ι can be found
to consider the occurrence. */

5 numberOfTimeGaps←
(
timeOfLastElement(occ)−

timeOfFirstElement(occ) + 1
)
− sizeOf(p) ;

6 window ←
MIN(µ− numberOfTimeGaps,∆(nextOcurrence(p)));
/* Searching for ι in calculated tuples. */

7 for k ← 1 towindow do
8 if happen(ι, tupleAtTime(timeOfLastElement(occ) + k))

then
/* ι found. */

9 count← count + 1 ;
10 break ;

to store all frequent itemsets. Hence, to find the p′ counter
value, it is necessary to calculate how many times in+1 (fre-
quent itemset concatenated in p to generate p′) happened af-
ter p (line 7 to 10).

The Stretchy Time Windows (STW) is an alternative to
handle with noisy and missing data. The errors can be solved
because the errors can be considered as a time gap. In fact,
an error or a missing data is considered as a moment where
nothing happens: a time gap. Consider the hypothetical sit-
uation where there are two non–frequent patterns s1 =<
a b c > and s2 =< a d c >. The pattern s =< a c > is
frequent although its events do not happen one immediately
after one. MSTS finds that s =< a c > if it is frequent and if
the value of the maximum search window (µ) can cover c’s
occurrences enough times to consider s frequent. That way
MSTS can handle databases that present noises and data in-
consistency.

Examples of Stretchy Time Windows Process
Consider the three situation present in Figure 1. To the Situa-
tion 1, Figure 1(1), consider the 1-sequence p =< (A B) >
(that happens once) and the goal is to count how many
times p′ =< (A B) G > happens. Considering µ = 5
time unit. The pattern p does not present time gaps, so
numberOfT imeGaps = 0. There is no other occurrence
of pattern p than ∆(nextOccurence(p)) = 4 (distance
for the end of the database). It makes window = 4 (µ −
numberOfT imeGaps = 5 and ∆(nextOccurence(p)) =
4). I.e., after the occurrence of pattern p (tuple 1), SWT can
search until 4 tuples (tuples 2, 3, 4, 5) looking for the itemset
ι = {G}.

STW starts looking tuple 2 and does not find ι, it is it-
eration (i) present in Figure 1(1). The search window ex-
pands covering the tuple 3, iteration (ii), and does not find
the itemset {G}. The same happens to iteration (iii). At
iteration (iv), the window has its maximum size allowed
(window = 4), although it finds the itemset {G}. So the
number of occurrences of pattern p′ is one.

Now, consider the Situation 2 presented in Figure 1(2).
In this situation, pattern p =< (A B) D > is found

470

Figure 1: Three examples of the STW running.

just if µ ≥ 1 because pattern p presents one time gap
between the itemsets {A B} and {D}. Now, consider-
ing µ = 5, pattern p′ =< (A B) D G > and ι =
{G}. To count how many times p′ happens it is neces-
sary to calculate the numberOfT imeGaps, as p presents
one time gaps (tuple 2) numberOfT imeGaps = 1. So
µ−numberOfT imeGaps = 4. ∆(nextOccurence(p)) =
2 because there is no other occurrence of pattern p, notwith-
standing the database ends at tuple 5 and the distance be-
tween the last element of pattern p (itemset {D}) and the
end of the database is 2 tuples. By that window = 2. STW
checks tuple 3 (first one after pattern p) looking for item G
and does not find it. The search window expands looking
tuple 5 and finds item G. So the number of occurrence of
pattern p′ is one.

The Situation 3, presented in Figure 1(3), is almost
the same one presented Situation 2. Nevertheless, con-
sider now µ = 2. Pattern p presents one time gap, so
numberOfT imeGaps = 1. µ−numberOfT imeGaps =
1 and ∆(nextOccurence(p)) = 2 (as it was explained in
Situation 2), so window = 1. STW search at tuple 4 and
does not find G. As it is the maximum number of tuples,
STW cannot check other tuples and STW ends. So the num-
ber of occurrence of pattern p′ is zero (i.e. pattern p′ does
not happen to µ = 2 in this database).

Experiments, Results and Discussion
We performed several experiments to validate our proposed
approach. The experiment used a real database that com-
prises data from environment sensors placed in the area of
Feijão River. Feijão is an important not polluted river that
supplies water to the city of São Carlos, which is an impor-
tant city in São Paulo state, Brazil. That database is used
to compare MSTS and GSP by the performance and the se-
mantic quality of the sequences found. To perform the ex-
periments, a notebook with 8 GB of RAM memory, 500 GB
of HD, processor Intel Due Core 2.53 GHz was used.

The data was collected since 1977 until 2004 and it keeps
information about hydro–characteristics (the value of rain-
fall and the discharge of Feijão). The data presents granu-
larity of days, i.e. the measures had happened daily. There
are a large number of tuples in the database. A real example
of tuple from Feijão River database is presented by Table 1.
The data present the discharge rate in cubic meters per sec-

ond and the rainfall rate in millimeters per hour. In order to
simplify the notation, the units of measure are omitted in this
work.

The database goes through a pre–processing step that dis-
crete the data. To discretize the data set it was used Omega
algorithm presented in (Ribeiro, Traina, and Traina 2008).
Omega is a supervised algorithm that discrete numerical val-
ues in linear computational cost. It creates data intervals
avoiding inconsistencies. Table 2 presents the same data in
Table 1 after Omega processes.

After the pre-processing occurs, the data are grouped by
weeks, aiming to reduce the granularity of the data. These
grouping are made by calculating the average value for the
rainfall and discharge of Feijão river. That also reduces the
number of records to be mined.

On that kind of database, an event can influence another
one if it occurs a time interval after it. So, at MSTS, the max-
imum value of this time gap is given by a new parameter, µ
(mi). With the configuration of that parameter, we can solve
two problems of this domain: gaps between occurrences of
the events that compose patterns and the noises originated
by measurement devices.

Our implementations of MSTS and GSP do not show the
sub-patterns, that means: if there were two sequences, s1 and
s2, with s1 � s2 (s2 is bigger than and composed by s1), just
s2 will be showed to the user. The GSP algorithm is used as
a baseline to compare with our method because there is no
algorithm that implements similar windowing technique or
something that has closer results to MSTS. Hence, MSTS is
based on GSP. This experiment aims at exposing the gains
and losses obtained with the implementation of the proposal
method STW over GSP, producing the MSTS algorithm.

The fact that the algorithms do not present subpatterns
makes sometimes the MSTS algorithm returns fewer se-
quences than GSP but the sequences found are bigger than
those found by GSP. The database used has a critical point;
at support greater or equal 46% both algorithms cannot
find sequences bigger than 1 itemset and more than 3 se-
quence. Other interesting point is when support is 22%. At
this point MSTS finds the same sequences to any sizes of
Stretchy Time Windows. At this point, MSTS finds bigger
and stronger itemsets, which GSP does not find. For that
GSP presents bigger sequences with smaller itemsets. Af-
ter this point, the number of sequence of GSP goes down
until support value reaches 46%.

At Figure 2 there are three graphics comparing the results
of the experiments. Graphic 2(a) presents a comparison by
the number of sequences found. It is possible to see that GSP
presents a good result, actually, after support value 22% the
result is almost the same. That happens due to the configura-
tion of the database. The sequences are not too strong, there-
fore, it is easier to find sequences with low support. With
low support sometimes MSTS also finds fewer sequences
because this implementation does not show the sub-patterns
that we can see at Graphic 2(b), where the sequences are big-
ger. However, it is important to recall that bigger sequences
encompass many smaller ones.

Graphic 2(b) is connected to Graphic 2(a). Whenever
Graphic 2(b) has a fall, Graphic 2(a) has a rise. For the fact

471

Table 1: Example of tuples in Feijão River database.
Date Discharge Rainfall Rate

1979.03.19 2.41m3/s 1.2mm/h
1979.03.10 2.25m3/s 0mm/h
1979.03.21 2.1m3/s 0.6mm/h

Table 2: Same tuples of Table 1 after pre-processing.
Tuple Rainfall Discharge
703 Rainfall4 Discharge1
704 Rainfall0 Discharge1
705 Rainfall2 Discharge0

(a) Number of sequences found (number of se-
quences) by support value.

(b) Number of itemsets on great sequences
found (number of itemsets) by support value.

(c) Time used to run the implementation
(seconds) by support value.

Figure 2: Comparison between MSTS and GSP over Feijão River database regarding the number of sequences found, the size
of the biggest sequence found and the performance of the mining algorithm.

that a big pattern does not let sub-patterns appear and be-
cause this pattern does not exist, other stronger sub-patterns
(greater support value) are presented. Graphic 2(a) also
shows that with bigger µ value it is possible to find bigger
sequences. And bigger sequences are important for that do-
main because it represents longer behaviors and, with that,
it is possible to predict future behavior with higher time ad-
vance. I.e., MSTS provides greater analysis period of data
behaviors.

At Graphic 2(c) the performance comparison is presented.
MSTS has lost to GSP in all the tests, but it was expected;
while MSTS is checking the support, it scans more tuples
than GSP does. For that, MSTS presents a worse perfor-
mance. On the other hand, changing the µ value, the per-
formance does not change a lot. That means it is possible to
adjust this value without influencing the performance.

The examples of patterns mined by GSP Algorithm pre-
sented are at Table 3. This patterns do not present time gaps.
The first pattern is a 2-sequence (because it presents two
itemsets) sgsp1 whose frequency is 5.12%. I.e., in 5.12% of
the database, the event (Rainfall0 Discharge0) (no rain-
fall and the measure of Feijão River discharge is a value
less than 1.6157) happens immediately after (the next week
after) the event Rainfall0 (no rain). The second pattern
mined by GSP Algorithm is a 3-sequence (sequence com-
posed by three itemsets) sgsp2 . That is frequent in 7.69%.
That 3-sequence shows that there are periods of three weeks
during which there is no rain.

Table 4 presents two examples of patterns mined by
MSTS (where maximum value of Stretchy Time Win-
dows is five weeks – MSTS5) that have almost the
same support values of that presented by Table 3 (pat-
terns mined by GSP). The first pattern mined is a 2-
sequence: sMSTS5

1 , whose frequency is 5.12%. That first
pattern shows that the event Rainfall5 (rainfall rate be-
tween 3.2143 and 4.6286) happens at most five weeks af-
ter the event of Discharge2 (Feijão River discharge rates

between 2.13 and 2.62). So, this pattern can be presented
as< Discharge2 ∆t1 Rainfall5 > where 0 ≤ ∆t1 ≤ µ
and µ = 5 weeks. The second pattern mined by MSTS5

is a 3-sequence sMSTS5
2 , whose frequency is 5.12%.

That sequence shows that, after a while before the event
Discharge6 (Feijão River discharge rates between 3.3171
and 3.6286) has happened, Rainfall3 (rainfall rate be-
tween 0.4857 and 1.6) happens. And after another period
of timeRainfall0 happens. So the sequence can be seem as
< Discharge6 ∆t1 Rainfall3 ∆t2 Rainfall0 > where
0 ≤ ∆t1 + ∆t2 ≤ µ.

Table 5 contains two patterns mined by MSTS; to find
these patterns the maximum of time gaps (µ) is 10 weeks,
MSTS10. That means that it can pass 10 weeks between
the occurrence of an itemset and the next one in the se-
quences. The first pattern mined by MSTS10 presented
at Table 5 is a 2-sequence sMSTS10

1 whose frequency is
5.12% of the tuples in the database. That sequence is in-
terpreted as: in at most ten weeks after the event Rainfall7
(rainfall rate between 9.2571 and 15.3429), the discharge
of Feijão River will be in the range Discharge7 (Feijão
River discharge rate between 3.6286 and 4.38). So, <
Rainfall7 ∆t1 Discharge7 > where 0 ≤ ∆t1 ≤ µ,
and µ = 10 weeks. The second pattern at Table 5 is a 3-
sequence sMSTS10

2 . Its frequency is 5.12% of the sequences
in the database. That pattern presents a gradual decrease of
the discharge value: first it is measured the Feijão River dis-
charge in the range Discharge8 (interval of (4.38; 5.0771])
and, then, after a ∆t1 weeks it is measure Discharge6. An-
other ∆t2 weeks later, there is the event Rainfall5. So,
< Discharge8 ∆t1 Discharge6 ∆t2 Rainfall5 > where
0 ≤ ∆t1+∆t2 ≤ 10 weeks. The pattern can take from three
(because it is a 3-sequence) to thirteen weeks (because there
is the time for the 3-sequence to happen plus the possible
time intervals between the events, µ).

Table 6 presents two examples of patterns mined by
MSTS where Stretchy Time Windows Maximum Value is

472

Table 3: Examples of patterns found by GSP over the Feijão
River database.

Label Pattern Sup
sgsp1 < Rainfall0 (Rainfall0 Discharge0) > 5.12%
sgsp2 < Rainfall0 Rainfall0 Rainfall0 > 7.69%

Table 4: Examples of patterns found by MSTS over the
Feijão River database. In this case, µ = 5 (maximum value
of Stretchy Time Windows): the patterns can present five
weeks of time interval between their events.

Label Pattern Sup
sMSTS5

1 < Discharge2 Rainfall5 > 5.12%

sMSTS5
1 < Discharge6 Rainfall3 Rainfall0 > 5.12%

Table 5: Examples of patterns found by MSTS with µ = 10:
the patterns can present ten weeks of time interval between
their events.

Label Pattern Sup
sMSTS10

1 < Rainfall7 Discharge7 > 5.12%

sMSTS10
2 < Discharge8 Discharge6

Rainfall5 > 5.12%

Table 6: Examples of patterns found by MSTS with µ = 15:
the patterns can present fifteen days of time interval.

Label Pattern Sup
sMSTS15

1 < Discharge8 Rainfall3 > 5.12%

sMSTS15
2 < Discharge8 Rainfall5 Rainfall0 > 5.12%

fifteen weeks, MSTS15. That means that the patterns can
present fifteen weeks of time gaps. The first example at the
table is a 2-sequence frequent in 5.12% of the database.
< Discharge8 ∆t1 Rainfall3 > where 0 ≤ ∆t1 ≤ µ
and µ = 15 (weeks). The interpretation of the pattern
is: at most fifteen weeks after the value of Feijão River
discharge has been Discharge8, the river rate may be
Rainfall3. The second pattern shows a gradual decrease
of the rainfall rate. The second sequence is the 3-sequence
< Discharge8 ∆t1 Rainfall5 ∆t2 Rainfall0 > where
0 ≤ ∆t1 + ∆t2 ≤ 15. So after ∆t1 weeks when it was
measured Discharge8, Rainfall5 is measured. After an-
other while (∆t2 weeks), there is no rainfall (Rainfall0).
That shows a decrease of the rainfall after a high value of
discharge of Feijão River. The pattern can take from three to
eighteen weeks.

Conclusion

This work presented a new method to search sequential pat-
terns over sparse and noisy data, which are the kind of data
generated by environment sensors. The proposed method is
called Stretchy Time Windows (STW), which allows all oc-
currences of a pattern to happen with gaps (spaces between
the events of the sequence). The number of gaps is set by the
user. The algorithm that implements the proposed method
STW is called Miner for Stretchy Time Sequences (MSTS).
The approach allows time gaps between events in sequences
occurrences that aim to solve the problem of mining sparse
patterns. Our experiments show that the proposed approach
finds sequences with greater analysis time when compared
with the previous methods. It is possible to see that the size
of the Stretchy Time Windows influences the size of the se-
quences. With relatively low support values, it was possi-
ble to find sequences four and five times bigger than GSP.
Furthermore, there are occasions, with low support, where
we could find more sequences than GSP. As future work,
MSTS will be modified for the application of incremental
mining. This modification aims to improve the performance
of the algorithm to check databases that present increments
periodically. The incremental mining aims to keep the found
patterns compatible with changes in old data or increments
in new data.

Acknowledgments
We thank the Brazilian funding agencies CAPES, CNPq,
FAPESP and FINEP for financial support and Federal Uni-
versity of Itabubá for the access on Feijão River database.

References
Agrawal, R., and Srikant, R. 1995. Mining sequential patterns.
In Proceedings of the Eleventh International Conference on Data
Engineering, 3–14.
Barseghian, D. et al. 2010. Workflows and extensions to the kepler
scientific workflow system to support environmental sensor data
access and analysis. Ecological Informatics 5:42 – 50.
Chen, H. 2010. Efficiently mining the recent frequent patterns over
online data streams. In Intelligent Systems and Applications (ISA),
2010 2nd International Workshop on, 1 –4.
Han, J.; Pei, J.; and Yan, X. 2005. Sequential pattern mining by
pattern-growth: Principles and extensions. Foundations and Ad-
vances in Data Mining 1:183–220.
Huang, T.-K. 2009. Developing an efficient knowledge discover-
ing model for mining fuzzy multi-level sequential patterns in se-
quence databases. In New Trends in Information and Service Sci-
ence, 2009. NISS ’09. International Conference on, 362 –371.
Masseglia, F.; Poncelet, P.; and Teisseire, M. 2009. Efficient min-
ing of sequential patterns with time constraints: Reducing the com-
binations. Expert Systems with Applications 36:2677–2690.
Nunthanid, P.; Niennattrakul, V.; and Ratanamahatana, C. 2011.
Discovery of variable length time series motif. In Electrical Engi-
neering/Electronics, Computer, Telecommunications and Informa-
tion Technology (ECTI-CON), 2011 8th International Conference
on, 472 –475.
Pei, J. et al.. 2001. Prefixspan: Mining sequential patterns effi-
ciently by prefix-projected pattern growth. In ICDE ’01: Proceed-
ings of the 17th International Conference on Data Engineering,
215–224. IEEE Computer Society.
Ribeiro, M. X.; Traina, A. J. M.; and Traina, Jr., C. 2008. A new
algorithm for data discretization and feature selection. In Proceed-
ings of the 2008 ACM symposium on Applied computing, 953–954.
Srikant, R., and Agrawal, R. 1996. Mining sequential patterns:
Generalizations and performace improvements. In EDBT ’96:
Proceedings of the 5th International Conference on Extending
Database Technology, 3–17. Springer-Verlag.
Zabihi, F. et al.. 2010. Fuzzy sequential pattern mining with sliding
window constraint. In 2nd International Conference on Education
Technology and Computer, V5–396 –V5–400.

473

